Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat"

Transkript

1 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs E(uu') = u I = I (hata termlernn varyansı sabttr ve aralarındak kovaryans sıfırdır) varsayımıdır: E(uuuu ) = Değşen varyans sorunu se hata termlernn varyansları brbrnden farklı olduğu durumda vardır: Var(u ) = E(u ) Sorunun varlığı durumunda hata term varyans-kovaryans matrs Var, Cov(u) = E(uu') = I n şeklnde yazılamıyor fakat Var, Cov(u) = E(uu') = Ω = n olarak yazılablyor se değşen varyans sorunu var demektr. Her br hata term çn E(u ) = =,,, n dr ve her br hata term varyansı farklıdır. 8-

2 Değşen varyans sorunu genellkle yatay kest verleryle tahmn yapıldığında ortaya çıkar. Hata termlernn varyanslarının değşken olmasının bazı nedenler aşağıdak gbdr. ) Hataların öğrenldğ durumlar: nsanlar öğrendkler çn hataları zaman çnde azalır. Ör. Klavye kullanımı arttıkça yazım hataları sayısı azalır. ) Gelr arttıkça nsanların gelrn harcamak çn daha fazla seçm alanı olur. Örneğn bağımlı değşken gıda harcamaları olsun ve açıklayıcı değşkenler br sabt ve harcanablr gelr olsun. Gıda çn Engel eğrsnn poztf eğml olması beklenr. Yan ortalamada daha yüksek gelrllern gıda harcamalarının daha yüksek olması beklenr. Aynı zamanda yüksek gelrl haneler arasında harcama farklılıklarının düşük gelrller arasında olduğundan daha yüksek olması beklenr. Dolayısıyla hata termnn (u ) varyansı gelrle brlkte artar. C Y Gerçekleşen tüketm değerleryle tahmn edlen (çzg üzerndek) tüketm değerler arasındak fark, hata term tahmnn vermektedr ve gelr arttıkça bunlar da büyümektedr. Bu durumda hata termnn varyansı da gderek artmaktadır. Benzer bçmde frmaların karları veya frma büyüklüğü (çalışan sayısı) arttıkça kar payı da ğıtımı gb kararlarında daha fazla değşkenlk gösterrler. ) Ver toplama teknkler gelştkçe hata varyansları azalır. Ör. Daha gelşmş ver şleme teknkler olan bankaların müşterler le lgl verdkler blgler daha az hata çerr. v) Aşırı uçlar (outlers): örneklemdek dğer gözlemlere göre çok farklı olan gözlemler değşen varyansa neden olablr. v) Spesfkasyon hataları olması durumunda, özellkle dışlanan değşken varsa değşen varyans sorunu ortaya çıkablr. 8-

3 v) ARCH : Otoregresf koşullu değşen varyans (Autoregressve Condtonal Heteroscedastcty) Değşen varyans sorunu zaman serleryle yapılan tahmnlerde de ortaya çıkablr. Özellkle enflasyon, hsse sened fyatları, dövz kurları gb volatltenn zaman çnde değştğ verlerde gözlenmektedr. Hata term varyansları hem geçmş dönemlern hata termler le lşkldr hem de dalgalanmalar gösterr. Hata termlernn t dönemndek koşullu varyansı: E(u t u t-, u t-,, u t-p ) = t = α α u t- α u t- α p u t-p (8.) Bu modelnn makul olması çn (8.) nn poztf olması, bunun çn de tüm katsayıların poztf olması gerekr. Çünkü varyans negatf değer alamaz. (8.) dek genel model ARCH(p) sürecn yansıtır. Bu durumda örneğn ARCH() t = α α u t- dr. 8-3

4 8.. Değşen Varyans Sorunu EKK Tahmn Edclern Nasıl Etkler?. E(u) = ve E('u) = varsayımları geçerl olmayı sürdürdükler çn sapmasızlık özelllğn korunur.. EKK tahmn edcs etknlk özelllğn kaybeder. Çünkü Var,Cov (ββ) = E{[ββ-E(ββ)][ ββ-e(ββ)]'} = E{[(') - 'u -E((') - 'u))][(') - 'u -E((') - 'u))]'} = E{[(') - 'u][(') - 'u]'} = E{(') - 'uu'(') - } = (') - ' E(uu')(') - = (') - ' Ω(') - = (') - 'Ω(') - Bu durumda değşen varyans sorunu daha büyük varyansa neden olur ve daha küçük varyansa sahp tahmn edcler vardır. (E(uu') = I n olsaydı Var,Cov (ββ) = (') - 'I(') - = (') - olurdu) 3. EKK tahmn edcsnn hesaplanan varyans ve standart hataları yanlış br fadeye dayanacak, dolayısıyla t ve F statstkler sapmalı olacak, testler güvenlr olmaktan çıkacaktır: Hata termlernn varyansının ( uu ) tahmn edcs uu nn kk Var(ββ jj ) aşağı doğru, t statstkler yukarı doğru sapmalı olur. aşağı doğru sapmalı olur. Dolayısıyla Dğer yandan R ve F statstğ de yukarı doğru sapmalıdır. 8-4

5 8.3. Değşen Varyans Sorununun Varlığı Saptanablr m? Bçmsel Olmayan Yöntemler Elmzdek çalışmanın ntelğ br pucu vereblr: Daha öncek çalışmalar göstermştr k tüketmn gelrle açıklandığı tahmnlerde değşen varyans sorunu vardır. Bu nedenle tüketm denklem tahmnnde bu sorunun olmasını beklerz. Kest verler tahmnlernde heterojen brmler varsa bu sorun sözkonusu olacaktır: örneğn yatırımların bağımlı çıktı, faz vs. nn açıklayıcı değşken olduğu denklemde küçük, orta ve büyük ölçekl şletmeler aynı örneklemde yer alıyorsa bu sorundan şüphelenmelyz. Grafk yöntem: Değşen varyansla lgl önceden elmzde blg yoksa hata tahmn karelernn grafğ ncelenerek sstematk br şekl verp vermedğne bakılablr. Hata tahmnler hata termler le aynı değldr fakat özellkle örneklem büyüklüğü yeternce genşse y br tahmnn verr. Dkey eksende hata tahmn kareler, yatay eksende Y nn tahmn değerler varken: Brnc grafkte Ŷ le û arasında sstematk br lşk görünmemektedr. Ama dğerlernde vardır: örneğn 3. de doğrusal br lşk 4. ve 5. de karesel br lşk vardır. Grafk özellkle. grafkte olduğu gb br lşk göstermyorsa yatay eksende açıklayıcı değşkenlerden brnn olduğu grafk de kullanılablr. 8-5

6 8.3.. Bçmsel Yöntemler. Goldfeld-Quandt Test Hata term varyansındak değşmeler açıklayıcı değşkenlerden brs le lşklendrleblyorsa bu test uygulanablr. Y = β β β 3 3 β k k u, 8-6 = n modelnde Var(u) dyelm k değşken (veya örneğn kares) le lşkldr. Test brkaç aşamada uygulanır: - Önce bu değşken küçükten büyüğe doğru sıralanmalıdır. Sonra, bağımlı değşken ve dğer açıklayıcı değşken verler de değşkennn sıralanmış verlerne karşılık gelecek şeklde yenden düzenlenmeldr. - Yen sıralanmış verlern ortasındak c adet ver atılmalıdır ve c n/6 olmalıdır. Kalan n-c gözlem k eşt sayıda (=(n-c)/) olmalıdır. Ör. n = 4 se n/6 6 dersek 4-6=34 kye bölüneblr: n = n = Yukarıda verlen denklem n ve n ver le k kez tahmn edlmeldr. n adet ver le yapılan tahmnde KKT = Σ û n adet ver le yapılan tahmnde KKT = Σ û bulunmalıdır. Burada KKT düşük varyanslı grup, KKT yüksek varyanslı gruptur. 4- Burada test edlecek hpotez aşağıdak gbdr: H : = H : Kullanılacak statstk F h RSS/(n = RSS /(n k) k) Eğer u normal dağılmışsa ve sabt varyans varsayımı geçerl se F h F tab = F(n -k, n -k) tablo değer le karşılaştırılmalıdır. F h > F tab se H reddedlr, varyansın sabt olmadığına karar verlr. Bu testn gücü c değerne bağlıdır: c büyük olursa yardımcı denklemlern serbestlk dereces azalır; küçük olursa gözlemler arasındak farklılığı belrlemek zordur. Goldfeld-Quandt testnn olumsuz yönü, hata term varyansının br açıklayıcı değşkenle lşklendrlmesdr. Özellkle çok açıklayıcı değşken olması durumunda bu lşklendrme kolay olmayablr.

7 . Whte Test Whte test br LM testdr ve dğer LM testlernde olduğu gb asıl denkleme ek olarak br yardımcı denklem tahmn gerektrr. Testn arkasındak temel düşünce şudur: Eğer sabt varyans varsa E(u ) = dır ve ler veya lern fonksyonu olan değşkenler u y açıklamaz. Bu nedenle sol taraf değşkennn u, sağ taraf değşkenlernn lern br fonksyonu olduğu br yardımcı denklem tahmn edlr. Değşen varyans sorunundan şüphelenlyor ama formu hakkında br fkrmz yoksa Whte test uygun br testtr. Asıl denklem aşağıdak gb olsun Y = β β β 3 3 β k k u, = n - Asıl denklem tahmn edlerek hata tahmn kareler bulunur: - Aşağıdak yardımcı denklem tahmn edlr: û û = α α α k k α k α k k α k 3 v Yan asıl denklemn hata tahmn karelernn bağımlı, açıklayıcı değşkenlern kendler, kareler ve çarpımlarının açıklayıcı değşken olduğu denklem tahmn edlr. Açıklayıcı değşkenlern daha yüksek dereceler de kullanılablr. Asıl denklemde sabt term olsa da olmasa da yardımcı denklemde vardır. Bu yardımcı denklem çn R hesaplanır. Buna R Y dyelm. 3- Boş hpotez değşen varyans olmadığı şeklndedr: H : α = α 3 = = α k = H : α, α 3,, α k R Y nn n le çarpımı asmptotk olarak k-kare dağılımına sahptr ve serbestlk dereces yardımcı denklemde yer alan sabt dışındak açıklayıcı değşken sayısıdır. nr Y χ (kf-) (burada f asıl denklemde bulunmayıp yardımcı denklemde bulunan değşken sayısıdır) 4- Eğer hesaplanan χ değer tablo değernden büyükse H reddedlr. Yan değşen varyans sorunu var demektr. Eğer büyük değlse değşen varyans sorunu yoktur. 8-7

8 Test edlen hpotez bakımından düşünülürse Whte test Goldfeld-Quandt testnden daha geneldr. Olumsuz tarafı: çok sayıda açıklayıcı değşken olduğunda yardımcı denklemde serbestlk dereces hızla düşer. Test statstğnn anlamlı bulunduğu durumlarda bunun neden değşen varyans olmak zorunda değldr, tanımlama hataları da olablr veya ks brden olablr. Hangsnn olduğunu blmek se zordur. 3. ARCH-LM Test Engle ARCH sorununun varlığını test etmek çn br LM test önermştr. Dğer LM testlernde olduğu gb ARCH çn yapılan LM testnde de asıl denkleme ek olarak br yardımcı denklem tahmn edlr. Asıl denklem ve yardımcı denklem sırasıyla şöyledr: Y t = β β t β 3 t3 β k tk u t, t = n û = a c û c û c p e t t t- t- û t-p Yardımcı denklemdek geckme sayısı p araştırmacıya kalmıştır ancak üç aylık verler kullanılıyorsa geckme sayısı 4 e çıkablr. Whte testnde olduğu gb test statstğ olarak χ dağılımlı değşkenler kullanılablr: χ (p) nr Y H : c, c,, c p = H : c, c,, c p Hesaplanan değer tablo değernden büyükse H reddedlr ve modelde ARCH vardır sonucuna ulaşılır. 8-8

9 8.4. Değşen Varyans Sorununun Çözümü Var mıdır? Değşen varyans sorununu nasıl çözeceğmz, değşen varyansın formunu belrleyp belrleyemedğmze bağlıdır. Değşen varyans sorununun nasıl çözüleceğne geçmeden önce daha önce belrttğmz br şey tekrarlayalım: değşen varyans model spesfkasyonunun yanlış olmasından kaynaklanablr. Vernn logartmasının alınması değşen varyans sorununun azalmasını veya ortadan kalkmasını sağlayablr. Bu nedenle ele alacağımız metodları uygulamadan önce spesfkasyonun doğru olduğundan emn olmak gerekr. Değşen varyansın formu tam olarak blnyorsa GEKK yöntem kullanılır. Değşen varyansın formunu blmyorsak veya tahmn edemyorsak Whte standart hatalar kullanılır u değerler blnyorsa: Genelleştrlmş EKK (GEKK) Yöntem (Generalzed Least Squares - GLS) Değşen varyans sorununda hata term varyans-kovaryans matrsnn Var, Cov(u) = E(uu') = I n yerne Var, Cov(u) = E(uu') = Ω = n geçmektedr. GEKK yöntem asıl denklemden br dönüştürülmüş denklem elde edp bu dönüştürülmüş denklem EKK le tahmn etmek anlamına gelmektedr. Bu durumda dönüştürülmüş denklem aşağıdak gbdr. Y = β β,... β k k, e Dönüştürülmüş denklemn hata term e = u / dr ve e nn varyansı : Var(e ) = E(e ) = E(u / ) = (/ )E(u ) = (/ ) = dr ve sabttr. 8-9

10 8- Dönüştürülmüş denklemn EKK le tahmn edlmes, asıl denklemn GEKK le tahmn edlmes anlamına gelmektedr. Buradak dönüştürülmüş denklemn EKK uygulanması Ağırlıklı EKK (weghted least squares) olarak adlandırılır. Çünkü her br gözlem hata term varyansının ters le ağırlıklandırılmıştır. Ağırlıklı EKK, daha genel br yöntem olan GEKK n özel br durumudur. Daha sonrak bölümlerde GEKK n farklı özel durumlarını da ele alacağız. Ağırlıklı EKK da ağırlıkların kullanılması şu anlama gelr: yüksek varyansa sahp gözlemler tahmnde daha düşük ağırlığa sahptr. Daha genel olarak şu söyleneblr: en yüksek kaltedek gözlemlere en yüksek ağırlık verlr, en düşük kaltedek gözlemlere en düşük ağırlık verlr. Bazı durumlarda Var, Cov(u) = E(uu') = Ω = = n n Olduğu varsayılır. Yan her br hata term çn E(u ) = dr. Yan her br varyansın gb sabt br kısmı vardır fakat nedenyle her br varyans brbrnden farklıdır: Var(u ) =, Var(u ) =, Var(u n ) = n Bu durumda dönüştürülmüş denklem şöyle fade edeblrz: k, k, u β... β β Y = veya k, k, e β... β β Y = dönüştürülmüş denklemn hata term e = u / e nn varyansı : Var(e ) = E(e ) = E(u / ) = (/ )E(u ) = / = dr ve sabttr.

11 8.4.. u değerler blnmyorsa: GEKK yöntemnn bu şeklde uygulanablmes çn Ω değerlernn blnmes gerekr. Bu değerlern blnmemes durumunda üç yöntem uygulanablr. - Değşen varyans le lgl varsayım Ω genellkle blnmedğ çn hata term varyansının açıklayıcı değşkenlerden brs le lşkl olarak değştğ varsayımı yapılır: Örneğn a- Hata termler varyansı le orantılıdır: Var(u ) = ( = ) Bu durumda Ω matrs şu şeklde tanımlanmış olmaktadır: Ω=,,,n Sonuç olarak dönüştürülmüş model şu şekldedr: Y, k, = β β... β k e e = u /,,, e nn varyansı : Var(e ) = E(e ) = E(u /, ) = (/, )E(u ) = /, = dr (sabt) b- Hata termler varyansı le orantılıdır: Var(u ) =, ( = ) dönüştürülmüş model: Y, = β, β,... β k k,, e e = u /, 8-

12 - Whte değşen varyansla tutarlı varyansları (Whte s heteroscedastcty-consstent varances and Standard errors) Whte göstermştr k büyük örneklemlerde gerçek parametre değerler le lgl statstk çıkarımlarda bulunulablr. Bu yöntemde katsayı varyans kovaryans matrsnn hesaplanmasında, yerne onun tahmn olarak (Whte cov matrs: (') - [Σ = n u x x ']( ) - ) û kullanılır. Pek çok ekonometr paket Whte değşen varyansla tutarlı varyansları ve standart hataları vermektedr. Bu değerler EKK değerlernden büyük veya küçük olablr. Bu yöntemn uygulanablmes çn büyük örneklem olması gerekr. 8-

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Sansürlenmiş ve Kesikli Regresyon Modelleri

Sansürlenmiş ve Kesikli Regresyon Modelleri TOBİT MODEL 1 Sansürlenmş ve Keskl Regresyon Modeller Sınırlı bağımlı değşkenler: sansürlenmş (censored) ve keskl (truncated) regresyon modeller şeklnde k gruba ayrılır. 2 Sansürlenmş ve Keskl Regresyon

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

REGRESYON ANALİZİ BÖLÜM 5-6

REGRESYON ANALİZİ BÖLÜM 5-6 REGRESYON ANALİZİ BÖLÜM 5-6 Yayın Tarh: 03-11-2007 Revzyon No:0 1 5. E.K.K. REGRESYONUNDA KARŞILAŞILAN PROBLEMLER VE BAZI KONU BAŞLIKLARI 2 1 EN KÜÇÜK KARELERDE KARŞILAŞILAN PROBLEMLER EKK da karşılaşılan

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri) k ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA k ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr BAĞIMSIZ İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Savaş OKUR PARAMETRİK VE PARAMETRİK OLMAYAN BASİT DOĞRUSAL REGRESYON ANALİZ YÖNTEMLERİNİN KARŞILAŞTIRMALI OLARAK İNCELENMESİ ZOOTEKNİ ANABİLİM

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI. Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK

REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI. Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 014 ANKARA Can DARICA tarafından hazırlanan

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS EN KÜÇÜK KARELER, RİDGE REGRESYON VE ROBUST REGRESYON YÖNTEMLERİNDE ANALİZ SONUÇLARINA AYKIRI DEĞERLERİN ETKİLERİNİN BELİRLENMESİ ZOOTEKNİ ANABİLİM

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz *

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz * Busness and Economcs Research Journal Volume. umber. 0 pp. 65-84 ISS: 309-448 www.berjournal.com Hsse Sened Fyatları ve Fyat/Kazanç Oranı Đlşks: Panel Verlerle Sektörel Br Analz * Mehmet argelecekenler

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

2006 DÜNYA KUPASI FUTBOL TAKIMLARININ STOKASTİK SINIR ANALİZİ İLE PERFORMANS DEĞERLENDİRMESİ. Serdar YARLIKAŞ YÜKSEK LİSANS TEZİ İSTATİSTİK

2006 DÜNYA KUPASI FUTBOL TAKIMLARININ STOKASTİK SINIR ANALİZİ İLE PERFORMANS DEĞERLENDİRMESİ. Serdar YARLIKAŞ YÜKSEK LİSANS TEZİ İSTATİSTİK 2006 DÜNYA KUPASI FUTBOL TAKIMLARININ STOKASTİK SINIR ANALİZİ İLE PERFORMANS DEĞERLENDİRMESİ Serdar YARLIKAŞ YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2007 ANKARA Serdar

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Fak YNAM stanbul Teknk Ünverstes stanbul Teknk Ünverstes ÖZET Trafk kazaları, ülkemz gündemn sürekl olarak gal eden konularıdan brdr. Üzernde çok

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi Fnansal Rskten Korunma Muhasebesnde Etknlğn Ölçülmes Dr. Fahreddn OKUDAN * Fath Ünverstes, İİBF. Özet Bu makalenn amacı, etknlk test yöntemlernn ncelenmesdr. TMS 39, rskten korunma muhasebes uygulanablmes

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ Central Bank Revew Vol. 11 (January 2011), pp.1-9 ISSN 1303-0701 prnt / 1305-8800 onlne 2011 Central Bank of the Republc of Turkey http://www.tcmb.gov.tr/research/revew/ KALĐTE ARTIŞLARI VE ENFLASYON:

Detaylı

HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖNTEMLERİN KULLANIMI. İstatistiksel Maddelerin Önemi ve Sınıflandırılması

HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖNTEMLERİN KULLANIMI. İstatistiksel Maddelerin Önemi ve Sınıflandırılması HİDROLİK ÇALIŞMALARDA İSTATİSTİKSEL YÖTEMLERİ KULLAIMI Grş İstatstksel Maddelern Önem ve Sınıflandırılması Hdrolojk büüklüklern brçoğu fzk asalarıla tam olarak açıklanamaan rastgele değşken ntelğ taşırlar.

Detaylı

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131.

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131. Süleyman Demrel Ünverstes İktsad ve İdar Blmler Fakültes Y.008, C.3, S. s.-3. BİREYSEL EMEKLİLİK FONLARINDA FON YAPILARININ KARMA DENEMELER YÖNTEMİ İLE İNCELENMESİ EXAMINING THE STRUCTURE OF FUNDS BY MIXTURE

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI YATIRIM PROJELER ANALzNDE BLACK-SCHOLES OPSYON FYATLAMA MODELNN KULLANIMI Yrd. Doç. Dr. Erkan Uysal Ankara Ünverstes Syasal Blgler Fakültes Özet Bu çalışmada, fnansal opsyon fyatlama modellernn yatınm

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

HisSE SENEDi FiYATlARıNDAKi SÜRPRiz HABERLERiN BULAŞICIlIK ETKiSi VESÜREKliliK

HisSE SENEDi FiYATlARıNDAKi SÜRPRiz HABERLERiN BULAŞICIlIK ETKiSi VESÜREKliliK HsSE SENED FYATlARıNDAK SÜRPRz HABERLERN BULAŞICIlIK ETKS VESÜREKllK Evrmlmer Türkye Cumhuryet Merkez Bankası Özet Bu çalışmada hsse sened pyasalarındak sürprz haberlern ülkeler arasında yayılması olgusu

Detaylı

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2007 ANKARA

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

Devalüasyon, Para, Reel Gelir Değişkenlerinin Dış Ticaret Üzerine Etkisinin Panel Data Yöntemiyle Türkiye İçin İncelenmesi

Devalüasyon, Para, Reel Gelir Değişkenlerinin Dış Ticaret Üzerine Etkisinin Panel Data Yöntemiyle Türkiye İçin İncelenmesi Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Clt 6, Sayı:4, 2004 Devalüasyon, Para, Reel Gelr Değşkenlernn Dış Tcaret Üzerne Etksnn Panel Data Yöntemyle Türkye İçn İncelenmes Yrd.Doç.Dr.Ercan BALDEMİR*

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ Yrd. Doç. Dr. Seda ŞENGÜL Çukurova Ünverstes İktsad Ve İdar Blmler Fakültes Ekonometr Bölümü Mart 2004 ANKARA YAYIN NO: 119 ISBN: 975-407-151-9

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi Bölüm 4 İk Değşkenl Bağlanım Model - Tahmn Sorunu 4.1 Sıradan En Küçük Kareler Yöntem Sıradan En Küçük Kareler Yöntem Bağlanım çözümlemesnde amaç, örneklem bağlanım şlev (ÖBİ) temel alınarak anakütle bağlanım

Detaylı

2. LİNEER PROGRAMLAMA

2. LİNEER PROGRAMLAMA İÇİNDEKİLER ÖZE... ABSRAC... EŞEKKÜR..... ŞEKİLLER DİZİNİ..... v. GİRİŞ.... Motvasyon...... emel anım ve Kavramlar...... Konvekslk ve lneer eştszlkler....3. Ekstrem Noktalar..... 0.4. Lneer Eştszlkler...

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model Tahmn Sorunu Yrd. Doç. Dr. A. Talha YALTA Ekonometr 1 Ders Notları Sürüm 2,0 (Ekm 2011) Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği Türkye Cumhuryet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI Kalte Artışları ve Enflasyon: Türkye Örneğ Yavuz Arslan Evren Certoğlu Abstract: In ths study, average qualty growth and upward

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması Busness and Economcs Research Journal Volume 2. Number 1. 2011 pp. 143-151 ISSN: 1309-2448 www.berjournal.com Türkye de Bölgeler Arası Gelr Yakınsaması: Rassal Katsayılı Panel Ver Analz Uygulaması Fatma

Detaylı

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK DEGİşKENLİ NORMALLİK A. Mete Çlngrtürk aclng@marmara.edu.tr Marmara Ünverstes Dlek Altaş d] eka] tas@marmara.edu.tr Marmara Ünverstes ÖZET Pek çok sosyal

Detaylı

ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI

ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI Bölüm 6 ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI Öncek bölümlerde tek-boutlu örnek uzalarla lgl rastgele değşkenler ve bu değşkenlern olasılık dağılımları ncelenmştr. Başka br anlatımla "br tek" rastgele değşkenle

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı