Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4"

Transkript

1 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol

2 Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei itemlerin matematikel ifade edilmeidir. Tranfer fonkiyonu metodu ve durum değişkenleri metodu en çok kullanılan modelleme yöntemleridir. Tranfer fonkiyonu metodu adece lineer itemlere uygulanabilir. 6 February 007 Otomatik Kontrol

3 6 February 007 Otomatik Kontrol 3 Başlangıç koşulları ıfır kabul edilerek bir itemin cevap fonkiyunu çıkışı ile ürücü fonkiyonu giriş araındaki Lapla tranformayonları oranına tranfer fonkiyonu denir. Tranfer Fonkiyonu: Tranfer fonkiyonu itemin dinamik karakteritiklerini tanımlar. Sitem özelliğidir. Sitemin fizikel yapıı hakkında bilgi vermez, farklı fizikel itemlerin tranfer fonkiyonları aynı olabilir a b a b b b G R C n n n n m m m m

4 dx dt Örnek: x r t için tranfer fonkiyonunu oluşturunuz. Başlangıç koşullarını 0 kabul ederek iki tarafın Lapla dönüşümünü alalım: X X R G X R 6 February 007 Otomatik Kontrol 4

5 Elektrikel Sitemlerin Tranfer Fonkiyonları Elektrikel itemlerin modellenmeinde linneer ve paif üç devre elemanı yaygın olarak kullanılır. Direnç, Endüktan ve Kapaitan 6 February 007 Otomatik Kontrol 5

6 Kapaitör için: V I C Direnç için: V RI Endüktör için: V LI Tranfer fonkiyonu tanımlayacak olurak: V I Z 6 February 007 Otomatik Kontrol 6

7 Elektrikel devrelerin matematikel modellenmeinde Kirşof yaalarından faydalanılır: Bir kapalı çevrimde gerilimlerin ıfırdır. Bir noktaya gelen ve noktadan çıkan akımların ıfırdır. Bu ilişkiler kurulduktan onra devre için diferaniyel denklemler yazılır. Daha onra Lapla dönüşümü yapılır ve tranfer fonkiyonu elde edilir. 6 February 007 Otomatik Kontrol 7

8 Örnek: Aşağıdaki devrede kapaitör gerilimi V c ve giriş gerilimi V yi ilişklendiren tranfer fonkiyonunu yazınız. Kontrol taarımcıı ilk önce giriş ve çıkışı belirlemelidir. Ancak bu örnekte giriş ve çıkış bize verilmiştir. Giriş ugulanan Vt gerilimi çıkış ie kapaitör gerilimi, V c t. 6 February 007 Otomatik Kontrol 8

9 . Yöntem Kirşof Gerilimler Yaaı: di t Ri t L i τ dτ v τ dt C t 0 Başlangıç koşullarını ıfır kabul ederek Lapla dönüşümünü yapalım: RI LI I V C Denklemi düzenleyecek olurak: V R L I C Dikkat edilecek olura uygulanan gerilim; çevrimdeki devre elemanlarının empedanları çarpı devre akımıdır. 6 February 007 Otomatik Kontrol 9

10 V I R L C V c i elde etmeye çalışıyoruz. V V c I C V V V c C c R L V C RC LC C C V c LC V R L LC 6 February 007 Otomatik Kontrol 0

11 Alında devreyi çözmeye başlamadan devre elemanlarının devre üzerinde empedan değerlerini yazabiliriz. 6 February 007 Otomatik Kontrol

12 . Yöntem Kirşof Akımlar Yaaı: Bir noktadan çıkan akımları pozitif, noktaya gelen akımları negatif kabul edeceğiz. Bizim devremizde akımlar; kapaitör içinden geçen akım ve eri bağlı direnç ve endüktörden geçen akımdır. Vc C V c V R L 0 6 February 007 Otomatik Kontrol Çözecek olurak: V c LC V R L LC

13 3. Yöntem Gerilim Bölücü: Kapaitör uçlarındaki gerilim uygulanan gerilimin bir kımıdır. Dolayııyla kapaitör empedanını toplam empedana bölerek de kapaitör gerilimini bulabiliriz. V C c V R L C Bu örnekte tek çevreli bir elektrikel devremiz vardı, fakat çoğu elektrikel devreler birden çok döngü içerirler. Çok çevreli devrelerin tranfer fonkiyonlarını elde edebilmek için:. Devre elemanlarının empedan değerleri yazılır. Çevrede akımın yönü eçilir 3. Çevrede Kirşof gerilimler yaaı uygulanır 4. Çıkışı elde etmek için denklemler ıraıyla çözülür 5. Tranfer fonkiyonu oluşturulur 6 February 007 Otomatik Kontrol 3

14 Örnek: Aşağıdaki devrede I /V tranfer fonkiyonunu yazınız. Başlangıç koşullarını ıfır varayarak devre elemanlarının empedanlarını yazalım 6 February 007 Otomatik Kontrol 4

15 . Çevrimde R I LI LI V C. Çevrimde LI R I I LI 0 I ve I li terimleri birlikte yazacak olurak; R L I LI V LI L R I C I i Çözmek için kramer yaaını kullanacak olurak; 0 Δ R L L L L R C 6 February 007 Otomatik Kontrol 5

16 6 February 007 Otomatik Kontrol 6 Δ 0 L V L R I Δ LV Tranfer Fonkiyonu: V I G Δ Δ L V LV G R L R R C LC R R LC

17 6 February 007 Otomatik Kontrol 7

18 6 February 007 Otomatik Kontrol 8

19 . Çevrimdeki empedanları n Ortak empedanların I I -. Çevrimde uygulanan Gerilimlerin - Ortak empedanların. Çevrimdeki empedanların I I. Çevrimde uygulanan Gerilimlerin Çoğu zaman tranfer fonkiyonunun bulunmaı için en kolay yöntem çevre gerilimleri değil, nod akımları yöntemidir. Diferaniyel denklemlerin ayıı gerilimleri bilinmeyen nod ların ayıı kadardır. Nod denklemlerini yazarken devre elemanlarını admitan olarak götermek kolaylık ağlar. Admitan : Empedanın çarpmaya göre teridir ve Y ile göterilir; Y Z I V 6 February 007 Otomatik Kontrol 9

20 Nod akımları ile tranfer fonkiyonunu elde edecekek:. Devre elemanlarının admitan değerleri yazılır. Gerilim kaynakları akım kaynakları cininden yazılır Eğer kolaylık ağlayacaka 3. Nod da Kirşof akımlar yaaı uygulanır 4. Çıkışı elde etmek için denklemler ıraıyla çözülür 5. Tranfer fonkiyonu oluşturulur 6 February 007 Otomatik Kontrol 0

21 Örnek: Aşağıdaki devrede V c /V tranfer fonkiyonunu nod akımlarını kullanarak yazınız. Gerilim kaynağını, akım kaynağına empedanları admitanlara dönüştürelim. 6 February 007 Otomatik Kontrol

22 I Y V G G L VL VL G[ VL VC ] V Vc nod undaki akımların : CV V L S ve V C leri düzenleyelim: G C G [ V V ] L C G VL GVC V G L 0 G C V 0 VL C G 6 February 007 Otomatik Kontrol

23 Sırayla çözdüğümüzde tranfer fonkiyonu: V c V G G GG C GG L C LC G LC. Nod a bağlı admitanların V L - Ortak admitanların V C. Nod da uygulanan akımların - Ortak admitanların V L. Nod a bağlı admitanların V C. Nod da uygulanan akımların 6 February 007 Otomatik Kontrol 3

24 Örnek: Aşağıdaki devrede çevre denklemlerini yazınız. 6 February 007 Otomatik Kontrol 4

25 . Çevredeki empedanların. ve. Çevredeki ortak empedanların I - I. ve 3. Çevredeki ortak empedanların - I 3. Çevrede uygulanan Gerilimlerin -. ve. Çevredeki ortak empedanların. Çevredeki empedanların I I. ve 3. Çevredeki ortak empedanların - I 3. Çevrede uygulanan Gerilimlerin -. ve 3. Çevredeki ortak empedanların. ve 3. Çevredeki ortak empedanların I - I I I 9 I 4 I 3. Çevredeki empedanların I February 007 Otomatik Kontrol I I I 3 4 I I Çevrede uygulanan Gerilimlerin V 0 0 5

26 Mekanikel Sitemlerin Tranfer Fonkiyonları Düzlemel Hareket 6 February 007 Otomatik Kontrol 6

27 Mekanikel itemler ile elekrikel itemler araında analoji oluşturmamız mümkündür. Örneğin, uygulanan kuvvet, uygulanan gerilimin; hız, akımın; yer değiştirme de yük ün karşılığıdır. Mekanikel Empedan: Z M F X Yay elemanı: Sönüm elemanı: F KX F f X v Kütle: F M X 6 February 007 Otomatik Kontrol 7

28 Örnek: X/F tranfer fonkiyonunu bulunuz. RLC devreine benziyor, mekanikel itemelerde diferaniyel denklem hareket denklemi ile yazılır ve bu mekanikel itemi tanımlar. Elektrikel devrelerde akımın yönünü biz eçtiğimiz gibi mekanikel itemlerde de hareketin pozitif yönünü belirleriz ve erbet ciim diyagramını çizeriz. Serbet ciim diyagramında cime etkiyen tüm kuvvetler ve pozitif hareket yönü göterilir. Kuvvetler zaman tanım aralığında veya Lapla dönüşümü ileıfır başlangıç koşulu varayılarak göterilebilir. Newton yaaı uygulanarak, kuvvetler toplanır ve ıfıra eşitlenir. 6 February 007 Otomatik Kontrol 8

29 Kxt dx t f v dt d x t M dt Kuvvetleri toplayıp ıfıra eşitleyecek olurak; M X fv X KX F G X F M M f v K X F fv K 6 February 007 Otomatik Kontrol 9

30 Çoğu mekanikel itemler, çok çevrimli çok nod lu elektrikel devrelere benzemektedir ve itemi tanımlamak için birden fazla diferaniyel denklem gerekir. Mekanikel itemlerde gerekli olan hareket denklemlerinin ayıı, lineer olarak bağımız hareketlerin ayıına eşittir. Lineer bağımızlığın manaı hareket noktaının diğer hareket noktaları abitlendiği halde hareket edebilmeidir. Lineer bağımızlığın bir diğer manaı erbetlik dereceidir. Eletrikel itemlerden örnek verecek olurdak; iki çevreli bir devrede her bir akım diğer çevrenin akımının etkii altındadır. Eğer çevrelerden birini açık devre yaparak, diğer çevrede gerilim kaynağı vara o çevrede akım akmaya devam eder. 6 February 007 Otomatik Kontrol 30

31 Örnek: X/F tranfer fonkiyonunu bulunuz. Her iki kütle yatay doğrultuda biri abit iken hareket ettirilebileceği için itemin erbetlik derecei ikidir. İki denklem iki kütlenin erbet ciim diyagramından elde edilecektir. Eğer M yi abit tutup M i ağa doğru hareket ettirecek olurak 6 February 007 Otomatik Kontrol 3

32 Eğer M yi abit tutup M i ağa doğru hareket ettirecek olurak M üzerine üperpoziyon uygulanacak olura: 6 February 007 Otomatik Kontrol 3

33 Aynı işlemleri M için yapalım: Eğer M yi abit tutup M i ağa doğru hareket ettirecek olurak Eğer M yi abit tutup M i ağa doğru hareket ettirecek olurak M üzerine üperpoziyon uygulanacak olura: 6 February 007 Otomatik Kontrol 33

34 6 February 007 Otomatik Kontrol 34 [ ] 3 3 F X K f X K K f f M v v v [ ] X K K f f M X K f v v v Δ 3 K f G F X v Δ K K f f M K f K f K K f f M v v v v v v

35 X deki harekete bağlı empedanların X ve X deki ortak empedanların X - X X e uygulanan Kuvveterin - X ve X deki ortak empedanların X X deki harekete bağlı X empedanların X e uygulanan Kuvveterin 6 February 007 Otomatik Kontrol 35

36 Örnek: Yukarıdaki mekanikel itemin hareket denklemlerini direk yazınız. [ ] M f f K K X K X f X 0 v v3 v3 3 [ ] M f f K X f X F KX v v4 v4 3 f v [ ] M f f X f X 0 3 X fv4x 3 v3 v4 3 v4 3 6 February 007 Otomatik Kontrol 36

37 Mekanikel Sitemlerin Tranfer Fonkiyonları Daireel Hareket 6 February 007 Otomatik Kontrol 37

38 Daireel hareket eden mekanikel itemler düzlemel hareket eden mekanikel itemler gibi ele alınır. Kuvvet in yerini tork, düzlemel yer değiştirmenin yerini açıal yer değiştirme alır. Ayrıca kütle yerine atalet ifadei kullanılır. Serbetlik derecei ie düzlemel harekette yer değiştirme ile belirlenirken daireel harekette dönebilme ile belirlenir. Önce, hareket noktalarını abit tutularak cimi döndürürüz ve oluşacak torkları erbet ciim diyagramı üzerinde göteririz. Sonra cimi abitleyip ıraıyla bitişik hareket noktaları döndürülerek oluşacak torklar erbet ciim diyagramında göterilir. Her bir hareket noktaı için bu işlemi tekrarlanır. Tüm erbet ciim diyagramlarında tork lar toplanır ve ıfıra eşitlenir. 6 February 007 Otomatik Kontrol 38

39 Örnek: Sitemin, θ /T tranfer fonkiyonunu yazınız. Çubuk her iki taraftan yataklanmışıtır ve burulmaya maruz kalmaktadır. Sağ tarafa tork uygulanırken yer değişrtirme ol taraftan ölçülmektedir. Burada çubuğun burulmaını iki atalet araında bulunan yay gibi düşünebiliriz. 6 February 007 Otomatik Kontrol 39

40 J üzerindeki J nın hareketiyle oluşan Torklar J üzerindeki J nın hareketiyle oluşan Torklar J üzerindeki oluşan toplam Torklar J üzerindeki J nın hareketiyle oluşan Torklar J üzerindeki J nın hareketiyle oluşan Torklar 6 February 007 Otomatik Kontrol J üzerindeki oluşan toplam Torklar 40

41 Her iki ataletteki torkları topladığımızda, hareket denklemini elde ederiz: J D K θ Kθ T J D K θ 0 Kθ θ T K Δ Δ J D K K K J D K 6 February 007 Otomatik Kontrol 4

42 θ deki harekete bağlı empedanların θ ve θ deki ortak empedanların θ - θ θ e uygulanan Torkların - θ ve θ deki ortak empedanların θ θ deki harekete bağlı θ empedanların θ e uygulanan Torkların 6 February 007 Otomatik Kontrol 4

43 Örnek: Hareket denklemlerini direk yazınız. θ deki harekete bağlı empedanların θ ve θ deki ortak empedanların θ - θ - θ ve θ 3 deki ortak empedanların θ 3 θ e uygulanan Torkların - θ ve θ deki ortak empedanların θ θ deki harekete bağlı empedanların θ ve θ 3 deki ortak θ - empedanların θ 3 θ e uygulanan Torkların - θ ve θ 3 deki θ ve θ 3 deki ortak ortak θ empedanların empedanların θ 3 deki harekete bağlı empedanların - θ 6 February 007 Otomatik Kontrol θ 3 θ 3 e uygulanan Torkların 43

44 J D K θ Kθ 0θ T 3 J D K θ D θ 0 Kθ 3 J D D θ 0 0θ Dθ February 007 Otomatik Kontrol 44

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders # Otomatik Kontrol Laplas Dönüşümü Pierre-Simon Laplace, 749-87 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ Zamanla değişen bir f(t)

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

Devreler II Ders Notları

Devreler II Ders Notları Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI LAPLACE DÖNÜŞÜMÜNÜN DERE ANALİZİNE UYGULANMAS ÖĞRENME HEDEFLERİ Laplace ile devre çözümleri Laplace dönüşümünün kullanışlılığını göerme Devre Elemanı Mdelleri Devrelerin Laplace düzlemine dönüşürülmei

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02 İNÖNÜ ÜNİERSİTESİ MÜENDİSİK FKÜTESİ EEKTRİK-EEKTRONİK MÜ. BÖ. 325 EEKTRİK MKİNRI BORTURI I TEK-FZI TRNSFORMTÖRÜN PRMETREERİNİN BUUNMSI DENEY 325-02 1. MÇ: Tek fazlı tranformatörün çalışmaını incelemek

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi

Uydu Kentlerin Tasarımı için Bir Karar Destek Sistemi ve Bilişim Sistemi Modeli Önerisi Akademik Bilişim 0 - XII. Akademik Bilişim Konferanı Bildirileri 0-2 Şubat 200 Muğla Üniveritei Uydu Kentlerin Taarımı için Bir Karar Detek Sitemi ve Bilişim Sitemi Modeli Önerii TC Beykent Üniveritei

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlei m=.kg olan bir taş, yükekliği h=5m olan bir kaleden yatay yönde v =5m/ hızı ile atılıyor. Cimin kinetik ve potaniyel enerjiini zamanın fonkiyonu olarak

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım.

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım. 1.. Karışıın özkütleini bulalı. d K 6 v v v d 9 3v (1) 6 kütleli ıvının özkütleini bulalı. O noktaına göre oent alırak şekildeki T niceliğinin büyüklüğünü bulabiliriz. 7P. = P.1 + T.4 Bu ifade yardııyla

Detaylı

YAĞLAMA VE KAYMALI YATAKLAR

YAĞLAMA VE KAYMALI YATAKLAR YAĞLAMA TĐPLERĐ YAĞLAMA VE KAYMALI YATAKLAR Yağlamanın beş farklı şekli tanımlanabilir. 1) Hidrodinamik ) Hidrotatik 3) Elatohidrodinamik 4) Sınır 5) Katı-film VĐSKOZĐTE τ F du = = A µ dy du U = dy h τ

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

DİELEKTRİK ÖZELLİKLER

DİELEKTRİK ÖZELLİKLER 0700 ENEJİ HATLAINDA ÇAPAZLAMA! zun meafeli enerji taşıma hatlarında iletkenler belirli meafelerde (L/) çarazlanarak direğe monte edilirler! Çarazlama yaılmadığı durumlarda: Fazların reaktan ve kaaiteleri

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

3.5. Devre Parametreleri

3.5. Devre Parametreleri 3..3 3.5. Devre Parametreleri 3.5. Devre Parametreleri Mikrodalga mühendisliğinde doğrusal mikrodalga devrelerini karakterize etmek için dört tip devre parametreleri kullanılır: açılma parametreleri (parametreleri)

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ

DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ T. C. GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK E FEN BİLİMLERİ ENSTİTÜSÜ DAĞITIM SİSTEMLERİ İÇİN YENİ BİR GÜÇ AKIŞI ALGORİTMASININ GELİŞTİRİLMESİ Ulaş EMİNOĞLU DOKTORA TEZİ ELEKTRONİK MÜHENDİSLİĞİ

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

AKIŞKANLAR. 8. 1 Giriş 8. 2 Basınç, Basıncın Derinlikle Değişimi

AKIŞKANLAR. 8. 1 Giriş 8. 2 Basınç, Basıncın Derinlikle Değişimi 8 AKIŞKANLAR 8. 1 Giriş 8. Baınç, Baıncın Derinlikle Değişimi 8. Archimede Prenibi ve Kaldırma Kuvveti 8. 4 ikozluk 8. 5 Süreklilik Denklemi 8. 6 Yüzeyel Gerilim Akışkan ortam; durgun halde iken veya ideal

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar Temel Yaa Fourier ıı iletim yaaı İLETİMLE ISI TRANSFERİ Ek bağıntı/açıklamalar k: ıı iletim katayıı A: ıı tranfer yüzey alanı : x yönünde ıcaklık gradyanı Kartezyen koordinatlar (düz duvar Genel ıı iletimi

Detaylı

BÖLÜM 1 GİRİŞ, TERMODİNAMİK HATIRLATMALAR

BÖLÜM 1 GİRİŞ, TERMODİNAMİK HATIRLATMALAR BÖLÜM GİİŞ, EMODİNAMİK HAILAMALA.-ermodinamik hatırlatmalar..- Mükemmel gaz..- İç enerji e antali..3- ermodinamiğin. kanunu..4- Antroi e termodinamiğin. kanunu..5- Antroinin healanmaı..6- İzantroik bağıntılar.-

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Fizik 101: Ders 22. Gündem

Fizik 101: Ders 22. Gündem Fizik 101: Ders 22 Tekrar Gündem Kalas & Teller Ya tel koparsa? Merdiven Asılı Krişler Denge Kamyonda Buzdolabı Statik (tekrar) Herhangi bir statik problemini çözmek için genelde 2 denklem F 0 0 kullanırız.

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ

PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ 9. Ululararaı Makina Taarı ve İalat Kongrei 3 5 Eylül 000, ODTÜ, Ankara, Türkiye PASİF ve YARI AKTİF SÜSPANSİYON SİSTEMLERİNİN TİTREŞİM YALITIM PERFORMANSININ İNCELENMESİ Meut ŞENGİRGİN, Uludağ Üniveritei

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

ROBOT KOL DENETİM TASARIMI İÇİN DURUM DEĞİŞKENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YAKLAŞIMI

ROBOT KOL DENETİM TASARIMI İÇİN DURUM DEĞİŞKENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YAKLAŞIMI Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 9, No, 54, 4 Vol 9, No, 54, 4 ROBOT OL DENETİM TASARIMI İÇİN DURUM DEĞİŞENLERİ GERİ BESLEMELİ VE TÜMLEVLİ DENETİMCİ YALAŞIMI Uğur CANER

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Gerilim Bölücü Bir gerilim kaynağından farklı

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI

DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DAİMİ MIKNATISLI SENKRON MOTORUN ROTOR ALAN YÖNLENDİRMELİ KONTROLU VE PASİF FİLTRE İLE HARMONİKLERİN AZALTILMASI Elektrik Mühendii İmail Ercan BUZCU FBE

Detaylı

1 ELEKTROMANYETİK HIZ ALGILAYICILARI

1 ELEKTROMANYETİK HIZ ALGILAYICILARI HIZ VE İVME ÖLÇÜMÜ Hız bir cimin dinamik karakteritiğidir çünkü Newton un ikinci kanununa göre hız bir kuvvetin uygulanmaını gerektirir. Alında yer değişimi, hız ve ivme birbirleriyle ilişkilidir. Hız

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

2. BENZERLİK ve MODEL TEORİSİ, BOYUT ANALİZİNİN DENİZ ARAÇLARININ DİRENCİNE UYGULANIŞI

2. BENZERLİK ve MODEL TEORİSİ, BOYUT ANALİZİNİN DENİZ ARAÇLARININ DİRENCİNE UYGULANIŞI . BENZEİK e MODE TEOİSİ, BOYUT ANAİZİNİN DENİZ AAÇAININ DİENCİNE UYGUANIŞI.1 Benzerlik e Model Teorii Benzerlik e odel teorii ile farklı büyüklükteki ciilerin ekanik bir olay karşıındaki daranışlarının

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

DİĞER ANALİZ TEKNİKLERİ

DİĞER ANALİZ TEKNİKLERİ DİĞER ANALİZ TEKNİKLERİ ÖĞRENME HEDEFLERİ DOĞRUSALLIK SUPERPOZİSYON KAYNAK DÖNÜŞÜMÜ THEVENIN VE NORTON TEOREMLERİ ENFAZLA GÜÇ AKTARIMI EBE-215, Ö.F.BAY 1 BAZI EŞDEĞER DEVRELER EBE-215, Ö.F.BAY 2 DOĞRUSALLIK

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ SEKİZİNCİ BÖLÜM: AĞ ÇÖZÜMLEME TEKNİKLERİ

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ SEKİZİNCİ BÖLÜM: AĞ ÇÖZÜMLEME TEKNİKLERİ SEKİZİNCİ BÖLÜM: AĞ ÇÖZÜMLEME TEKNİKLERİ Anahtar Kelimeler Yıldız üçgen dönüşümü, üçgen yıldız dönüşümü, çevre, çevre gerilimleri, düğüm, farz edilen çevre akımları, göz. Şu ana kadar öğrendiklerinizle

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Problemler: Devre Analizi-II

Problemler: Devre Analizi-II Problemler: Devre Analizi-II P.7.1 Grafiği verilen sinüsoidalin hem sinüs hem de kosinüs cinsinden ifadesini yazınız. v(t) 5 4 3 2 1 0-1 t(saniye) -2-3 -4-5 0 1 2 3 4 5 6 7 8 9 10 P.7.2 v1(t) 60Cos( 100

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

ÖN DİZAYNDA AĞIRLIK HESABI

ÖN DİZAYNDA AĞIRLIK HESABI ÖN DİZAYNDA AĞIRIK HESABI Her türlü geminin dizaynında gemiyi oluşturan ağırlıkların ön dizayn aşamaında doğru olarak heaplanmaı geminin tekno-ekonomik performan kriterlerinin belirlenmeinde on derece

Detaylı

YERALTI ENERJİ KABLOLARINDA MEYDANA GELEN ARIZALARDA, ARIZA MESAFESİNİN YAPAY SİNİR AĞLARI (YSA) KULLANILARAK BELİRLENMESİ

YERALTI ENERJİ KABLOLARINDA MEYDANA GELEN ARIZALARDA, ARIZA MESAFESİNİN YAPAY SİNİR AĞLARI (YSA) KULLANILARAK BELİRLENMESİ ERALTI ENERJİ KABLOLARINDA MEDANA GELEN ARIZALARDA, ARIZA MESAESİNİN APA SİNİR AĞLARI (SA) KULLANILARAK BELİRLENMESİ * edat GÜN, ** Sedi akka ÜSTÜN *Celal Baar Ünv., **Celal Baar Ünv. Müh. ak. vedat.gun@baar.edu.tr,

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKAA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTİK ELEKTONİK MÜHENDİSLİĞİNE GİİŞ LABOATUAI DENEİ APTIAN: DENEİN ADI: DENE NO: DENEİ APANIN ADI ve SOADI: SINIFI: OKUL NO:

Detaylı

BURULMA. Deformasyondan önce. Daireler yine dairesel kalır. Boyuna çizgiler çarpılır. Radyal çizgiler doğrusal kalır Deformasyondan sonra

BURULMA. Deformasyondan önce. Daireler yine dairesel kalır. Boyuna çizgiler çarpılır. Radyal çizgiler doğrusal kalır Deformasyondan sonra BURULMA Toprak matkabının ucunda burulma etkisiyle oluşan gerilme ve dönme açısı matkap makinasının dönme çıkışıyla birlikte mile temas eden toprağın direncine bağlıdır. BURULMA Dairesel kesite sahip Mil

Detaylı

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1 ELEKTRİK-ELEKTRONİK DERSİ FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ Şekiller üzerindeki renkli işaretlemeler soruya değil çözüme aittir: Maviler ilk aşamada asgari bağımsız denklem çözmek için yapılan tanımları,

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı