Yrd. Doç. Dr. Sedat ŞEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Sedat ŞEN"

Transkript

1 6. SUNUM Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd. Doç. Dr. Sedat ŞEN

2 Amacın belirlenmesi Kapsamın belirlenmesi Maddelerin yazılması ve düzeltilmesi Ön uygulama Madde analizi ve madde seçimi Son testin oluşturulması, uygulanması ve puanlanması Yrd. Doç. Dr. Sedat ŞEN

3 Ölçme araçlarının birimlerinden bahsederken soru ifadesi yerine madde ifadesi kullandığımızı hatırlatalım. Sınavlarda yer alan sorular her zaman puanlanmadığı için puanlanabilen soruları da içeren madde kavramı daha uygun bir ifadedir. Ölçme araçlarının güvenilir ve geçerli olmasının sağlanabilmesi için testin ön uygulama sonuçlarından yararlanılarak testteki her bir maddenin analizi yapılır ve maddenin istenilen özelliklere sahip olup olmadığı araştırılır. Yapılacak analizler: madde güçlüğü, madde ayırıcılığı, madde varyansı ve standart sapması, madde güvenirliğidir. Yrd. Doç. Dr. Sedat ŞEN

4 Çoktan seçmeli test maddelerinin analizi iki yöntemle yapılabilir. 1. Basit Yöntem (Alt-üst grup yöntemi): en yüksek puan alan öğrenciler ile en düşük puan alan bazı öğrencilerin oluşturduğu gruplar analize alınır. Öğrenci sayısı ya da daha çok olduğu durumlarda tavsiye edilir. Bu yöntemin kullanılması için test puanları dağılımının simetrik olması istenir. 2. Yöntem: Bu yöntemde testin uygulandığı tüm öğrenciler analize dahil edilir. Öğrenci sayısının çok daha az olduğu (60-70 gibi) durumlarda tercih edilebilir. Bu iki yöntemin uygulanabilmesi için madde puanları matrisi hazırlanmalıdır. Yrd. Doç. Dr. Sedat ŞEN

5 TEST MADDELERİ Doğru Yanıt E C E D B B A D B B Günay E C E E C A A D B - Serdar E C C A D E D B B A İsmail E A C C D B B D E C Veli E C E E D C A D E C Necip E E B C B E B D C B Oğuzhan E C E E D B A D B C Gökhan E C E E C D - D B A Olcay E B D C D B D D E C Kerim E C E E D B A D B C Cenk E C E C D C A D B C Yrd. Doç. Dr. Sedat ŞEN

6 Doğru Yanıt E C E D B B A D B B Günay Serdar İsmail Veli Necip Oğuzhan Gökhan Olcay Kerim Cenk Yrd. Doç. Dr. Sedat ŞEN

7 Doğru Yanıt E C E D B B A D B B Öğrenci puanı Günay Serdar İsmail Veli Necip Oğuzhan Gökhan Olcay Kerim Cenk Yrd. Doç. Dr. Sedat ŞEN

8 Doğru Yanıt E C E D B B A D B B Günay Serdar İsmail Veli Necip Oğuzhan Gökhan Olcay Kerim Cenk Madde puanı Testin en zor maddeleri: Testin en kolay maddeleri: Yrd. Doç. Dr. Sedat ŞEN

9 Basit Yöntem (alt-üst yöntemi) ile madde analizi aşağıdaki basamakları takip ederek yapılabilir: Cevapların kodlaması yapılır. Doğru cevaplar 1 puan; yanlış, boş ve geçersiz cevaplar da 0 olarak kodlanır. Daha sonra bu 0 ve 1 ler toplanarak her bir öğrencinin toplam test puanı hesaplanır. Öğrencilerin puanları en yüksekten en düşüğe doğru sıralanır. Test puanına göre en düşük %27 ile en yüksek puanlı %27 lik gruplar seçilir (üst grup ve alt grup adı verilir). Bu işlemden sonra madde analiz tabloları oluşturulur. Bu tablolar yardımıyla her bir maddenin analizi yapılır. Yrd. Doç. Dr. Sedat ŞEN

10 1.madde A B C *D E Üst grup Alt grup TOPLAM Maddenin doğru cevabı D seçeneğidir. Bu tabloyu kullanarak bu maddenin ne kadar zor/kolay olduğunu ve ne kadar ayırt edici olduğunu tahmin edebiliriz. Yrd. Doç. Dr. Sedat ŞEN

11 Madde güçlüğü testteki bir maddeyi doğru cevaplayan öğrenci sayısının testi alan tüm bireylerin sayısına bölümü şeklinde ifade edilir. Basit analiz yönteminde elimizde üst ve alt grubun cevapları bulunduğunda aşağıdaki formülü kullanarak madde güçlük değerini bulabiliriz Bir önceki slayttaki tabloda verilen verilere göre maddenin güçlüğü 20/100=0,2 dir. Burada payda kısmına üst grup ve alt gruptaki öğrencilerin toplam mevcudu yazılacaktır!!! Yrd. Doç. Dr. Sedat ŞEN

12 Madde güçlüğü 0 ile 1 arasında değerler alır! Bir soruyu 50 kişilik bir sınıfta herkes doğru cevaplamışsa madde güçlüğü p=50/50=1 olarak bulunur. Eğer herkes doğru cevap veriyorsa bu soru çok kolay bir soru demektir. Bir soruya hiç kimse doğru cevap veremiyorsa madde güçlüğü p=0/50=0 olarak bulunur. Eğer hiç kimse doğru cevap veremiyorsa bu soru çok zor bir sorudur. Eğer sınıfın yarısı doğru cevap vermişse o maddenin güçlüğü p=25/50=0,5 olarak bulunur ve madde orta derecede güçlüğe sahip denir. Madde güçlük değeri 0 a yaklaştıkça madde zorlaşır eğer madde güçlüğü 1 e yaklaşıyorsa madde kolaydır denir. Bu açıklamalara göre örneğimizde yer alan maddenin güçlük düzeyinin düşük yani zor bir madde olduğunu söyleyebiliriz (p=0,2) Yrd. Doç. Dr. Sedat ŞEN

13 Madde ayırt ediciliği maddenin bilenler ile bilmeyenleri ayırt edebilmesi ile ilgilidir. Maddeye ait en önemli istatistiklerdendir. Madde ayırt ediciliği madde güvenirliği ile ilişkilidir. Bu sebeple bir maddenin teste alınıp alınmamasına karar verirken ilk bakılacak istatistiklerdendir. Eğer ayırt ediciliği yüksek ise madde iyidir. Örneğimizdeki maddenin ayırt ediciliği: (15-5)/50=0,2 Yrd. Doç. Dr. Sedat ŞEN

14 Madde ayırt ediciliği -1 ile 1 arasında değerler alır. Diyelim ki bir sınıf 100 kişi vardır. Eğer üst gruptaki ve alt gruptaki herkes bir maddeyi doğru bilirse madde ayırtediciliği [(27-27)/50 = 0] 0 olur. Eğer üst gruptaki tüm öğrenciler maddeyi doğru cevaplarken alt gruptaki hiçbir öğrenci doğru cevap veremezse madde ayırt ediciliği [(27-0)/50 = 0,54] 0,54 olur.>istenilen DURUM. Eğer üst gruptaki tüm öğrenciler maddeyi yanlış cevaplarken alt gruptaki tüm öğrenciler doğru cevap verirse madde ayırt ediciliği [(0-27)/50 = -0,54] -0,54 olur.> İSTENİLMEYEN DURUM. EĞER BİR MADDENİN AYIRT EDİCİLİĞİ 0,3 VE ÜZERİNDE BİR DEĞER ALIYORSA O MADDE (AYIRTEDİCİLİK BAKIMINDAN) İYİ BİR MADDEDİR DİYEBİLİRİZ!!! Yrd. Doç. Dr. Sedat ŞEN

15 Madde ayırt ediciliği 1 e yakın olmalıdır. İLK BAKILACAK ÖZELLİK Madde güçlüğü ne çok düşük ne de çok yüksek olmalıdır (0,5 civarı olması gerekir). Çeldiricileri işaretleyen üst gruptaki öğrenci sayısının alt gruptaki öğrenci sayısından az olması gerekir. Çeldiricileri işaretleyen öğrenci sayısının olabildiğince dengeli bir dağılım göstermiş olması istenir. Yrd. Doç. Dr. Sedat ŞEN

16 1.madde A *B C D E Üst grup Alt grup Doğru cevap: B TOPLAM Bir maddeye verilen cevaplar tabloda gösterilmiştir. A, C, D ve E seçenekleri çeldirici olarak düşünüldüğünde çeldiricilerin daha çok alt grup öğrencilerini çeldirmesi gerekir. A seçeneği en iyi çeldiricidir çünkü sadece alt grup öğrencilerini çeldirmiş ve A cevabı (yanlış olan cevabı) vermelerini sağlamıştır. C seçeneği 2 grubu da eşit oranda çeldirmiş (8 er) D seçeneği çok kötü bir çeldiricidir çünkü sadece üst grup üyelerini çeldirmiştir. Aslında sadece alt grup öğrencilerini yani bilmeyenleri çeldirmesi gerekliydi. E seçeneği de iki grubu çeldirmiş fakat üst grubu daha çok çeldirmiştir. Bu nedenle E seçeneği de iyi bir çeldirici değildir. Yrd. Doç. Dr. Sedat ŞEN

17 maddeye verilen cevapların değişimi madde varyansı ve madde standart sapması ile gösterilir. 6. slaytta verilen tablodaki 1. maddeyi öğrencilerin hepsi doğru cevaplamıştır güçlük düzeyi 10/10=1 ve buradan madde varyansı =1*(1-1)=0. yani hiç değişim yoktur. Aynı slayttaki 7.maddeye bakarsak güçlük=5/10=0,5 ve madde varyansı = 0,5*(1-0,5)=0,25 olur ve madde standart sapması = 0,5 olur. Yrd. Doç. Dr. Sedat ŞEN

18 Madde güvenirliği, maddenin ayırt ediciliği ve madde standart sapması kullanarak hesaplanabilir. Madde ayırt ediciliği doğrudan güvenirliği artıran bir özellik olduğu için bir maddede ayırt edicilik değeri olabildiğince yüksek olmalıdır. Aynı şekilde madde standart sapması da güvenirlikle doğru orantılıdır. Madde standart sapması arttıkça madde güvenirliği de artar. Madde güçlük değeri 0,5 olduğunda madde standart sapması maksimum değeri (0,25) alır. Bu sebeple bir maddenin madde güçlük değerinin 0,5 civarında olması istenir. Madde standart sapması Yrd. Doç. Dr. Sedat ŞEN

19 1.madde A *B C D E Üst grup Alt grup TOPLAM Maddenin doğru cevabı B seçeneğidir. Yrd. Doç. Dr. Sedat ŞEN

20 Bu yöntem kullanarak yapılan madde analizinde testi alan öğrencilerin hepsinin puanları kullanılır Basit yöntem ile Henrysson yönteminden elde edilen sonuçlar her zaman aynı olmayabilir. Henrysson yöntemini elle hesaplama yaparak uygulamak basit yönteme göre çok daha zordur. Eğer bilgisayar ya da hesap makinesi kullanma imkanı varsa bu yöntem tercih edilebilir. Yrd. Doç. Dr. Sedat ŞEN

21 TEST ARİTMETİK ORTALAMASI ve STANDART SAPMASI Yrd. Doç. Dr. Sedat ŞEN

22 Madde güçlüğü Madde ayırt ediciliği Yrd. Doç. Dr. Sedat ŞEN

23 Testin aritmetik ortalaması Testin ortalama güçlüğü testi alan öğrencilerin aritmetik ortalamasının kişi sayısına bölünmesiyle elde edilir. Yrd. Doç. Dr. Sedat ŞEN

24 Bir testin ortalama güçlüğü o testin maddelerine ait güçlük indeksi değerlerinin toplamının madde sayısına bölünmesiyle de elde edilir. Madde No 1.Madde 0,2 2.Madde 0,3 3.Madde 0,4 4.Madde 0,1 5.Madde 0,5 Madde güçlüğü Test ortalama güçlüğü= (0,2+0,3+0,4+0,1+0,5)/5=0,3 Yandaki testin ortalama güçlüğü 0,3 tür. Yrd. Doç. Dr. Sedat ŞEN

25 Güler, N. (2014). Eğitimde Ölçme ve Değerlendirme, Pegem Akademi: Ankara. Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 8. HAFTA Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

TEST VE MADDE ANALİZLERİ

TEST VE MADDE ANALİZLERİ TEST VE MADDE ANALİZLERİ Madde güçlüğü Madde ayırt ediciliği Madde varyansı ve madde standart sapması Madde güvenirliği Çeldiricilerin işlerliği Test Analizleri Merkezi Eğilim(Yığılma Ölçüleri) Merkezi

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

M d a d dd e A l na i li i z

M d a d dd e A l na i li i z Mdd Madde Analizi i Madde: Ölçme araçlarının (testlerin, ölçeklerin, vb.) kendi başına ş puanlanabilen en küçük birimidir. Ölçme sonuçlarına dayalı olarak bir testi oluşturan ş maddeler analiz edilerek

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

Test İstatistikleri. Test İstatistikleri Madde İstatistikleri Madde Güçlük İndeksi. Madde Ayırt Edicilik İndeksi Madde Varyansı Madde Güvenirliği

Test İstatistikleri. Test İstatistikleri Madde İstatistikleri Madde Güçlük İndeksi. Madde Ayırt Edicilik İndeksi Madde Varyansı Madde Güvenirliği Test İstatistikleri Test İstatistikleri ünite başlıkları Test İstatistikleri Madde İstatistikleri Madde Güçlük İndeksi Madde Ayırt Edicilik İndeksi Madde Varyansı Madde Güvenirliği 1 Test İstatistikleri

Detaylı

Pedagojik Formasyon Eğitimi ÖLÇME VE DEĞERLENDİRME

Pedagojik Formasyon Eğitimi ÖLÇME VE DEĞERLENDİRME Pedagojik Formasyon Eğitimi SERTİFİKA PROGRAMI ÖLÇME VE DEĞERLENDİRME Prof. Dr. Mehmet Küçük Ünite 3: Test Geliştirme ve Madde Analizi Bu sunu, KTÜ Fatih Öğretim Üyesi Prof. Dr. Muammer Çalık tarafından

Detaylı

EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE İSTATİSTİKLERİ

EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE İSTATİSTİKLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ, İZLEME VE DEĞERLENDİRME DAİRE BAŞKANLIĞI 2015-2016 EĞİTİM ÖĞRETİM YILI II. DÖNEM ORTAK SINAV TEST VE MADDE

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

MADDE VE TEST ANALİZİ. instagram: sevimasiroglu

MADDE VE TEST ANALİZİ.  instagram: sevimasiroglu MADDE VE TEST ANALİZİ Sunu Sırası Madde Analizi Madde Güçlüğü Madde Ayırıcılık Gücü Test Analizi Dizi Genişliği Ortanca Ortalama Standart Sapma Testin Ortalama Güçlüğü Testin Çarpıklık Düzeyi Test Güvenirliği

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

KPSS/1-EB-CÖ/ Bir öğretim programında hedefler ve kazanımlara yer verilmesinin en önemli amacı aşağıdakilerden hangisidir?

KPSS/1-EB-CÖ/ Bir öğretim programında hedefler ve kazanımlara yer verilmesinin en önemli amacı aşağıdakilerden hangisidir? 82. Belgin öğretmen öğrencilerinden, Nasıl bir okul düşlerdiniz? sorusuna karşılık olarak özgün ve yaratıcı fikir, öneri ve değerlendirmeleri açıkça ve akıllarına ilk geldiği şekilde söylemelerini ister.

Detaylı

TEST GELİŞTİRME Ahmet EŞ Sancaktepe Rehberlik ve Araştırma Merkezi Nisan 2014

TEST GELİŞTİRME Ahmet EŞ Sancaktepe Rehberlik ve Araştırma Merkezi Nisan 2014 TEST GELİŞTİRME Ahmet EŞ Sancaktepe Rehberlik ve Araştırma Merkezi Nisan 2014 Semineri 1 TEST GELİŞTİRME Tanımı İstendik özelliklerde ölçme aracı hazırlama süreci Semineri 2 Test Geliştirmenin Basamakları

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları 1. TANIM ve AMAÇ 1.1. Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir.

Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Dr. Sedat Şen 1 Veri nedir? Bir öğrenci kümesine uygulanan bir sınavdan elde edilen puanların herhangi bir işlem yapılmamış haline ham veri denir (ham puanlar) denir. Değer nedir? Bir veriyi (puanlar dizisini)

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği BÖLÜM 3 Ölçme Araçlarında Bulunması Gereken Nitelikler Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Ölçme Araçlarında Bulunması Gereken Nitelikler Geçerlik Güvenirlik Kullanışlılık Geçerlik Geçerlik,

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak,

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak, 43. Bir öğretim programına öğrenci seçmek için mülakat yapılacaktır. Bu mülakata bir genel yetenek testinden 0 ve daha üstü standart T puanı alanlar başvurabilecektir. Yetenek testinden elde edilen puanlar

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Tıp Bilimlerine Giriş Ders Kurulu (1.1) Sınav Analizi 2008-2015 Sınav Analizi 2008-2015; Güncellenme tarihi: 16.02.2015;

Detaylı

BEM. Öğrencinin tüm hayatını temelden etkileyen öğrenme stillerini belirleyerek. Eğilimlerini belirleyerek. Öğrencinin kendini tanımasını sağlayarak

BEM. Öğrencinin tüm hayatını temelden etkileyen öğrenme stillerini belirleyerek. Eğilimlerini belirleyerek. Öğrencinin kendini tanımasını sağlayarak B E M Öğrencinin tüm hayatını temelden etkileyen öğrenme stillerini belirleyerek Eğilimlerini belirleyerek Öğrencinin kendini tanımasını sağlayarak Bireye uygun akademik programlara yönlendirerek Öğrencinin

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Klinik Mikrobiyoloji ve Enfeksiyon Hastalıkları Ders Kurulu (3.5) Sınav Analizi 2010-2015 İÜ Cerrahpaşa Tıp Fakültesi,

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Klinik Bilimlere Giriş Ders Kurulu (1.4) Sınav Analizi 2008-2015 İÜ Cerrahpaşa Tıp Fakültesi, Türkçe ve İngilizce

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Sinir Sistemi ve Duyu Organları Ders Kurulu (3.1) Sınav Analizi 2010-2015 İÜ Cerrahpaşa Tıp Fakültesi, Türkçe ve

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Dahili Tıp Pratiğine Giriş Ders Kurulu (3.0) Sınav Analizi 2014-2015 Kurulu Sınav Analizi 2014-2015; Güncellenme

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ÖLÇME VE DEĞERLENDİRME Ders No : 0310380127 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 3 Ders Bilgileri Ders Türü Öğretim Dili

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ATATÜRK İLKELERİ VE İNKILAP TARİHİ I Ders No : 0310330040 Teorik : 2 Pratik : 0 Kredi : 2 ECTS : 2 Ders Bilgileri Ders Türü

Detaylı

KPSS 2007 EB (43) DENEME 4 / 103. SORU 43. Aşağıdaki örneklerin hangisinde sözü edilen ölçme işleminde bağıl (keyfî, itibari) sıfır söz konusu değildir? A) Ankara ili Çankaya ilçesinin deniz seviyesinden

Detaylı

EĞİTİMDE KULLANILAN ÖLÇME ARAÇ VE YÖNTEMLERİ

EĞİTİMDE KULLANILAN ÖLÇME ARAÇ VE YÖNTEMLERİ EĞİTİMDE KULLANILAN ÖLÇME ARAÇ VE YÖNTEMLERİ Öğrenci başarısının belirlenmesi amacıyla eğitim-öğretim süreci içerisinde veya sonrasında çeşitli ölçme araçları kullanılmaktadır. Öğrenci başarısının belirlenmesinde

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

Diğer sayfaya geçiniz KPSS / EB CÖS soruları aşağıdaki bilgilere göre cevaplayınız. 43.

Diğer sayfaya geçiniz KPSS / EB CÖS soruları aşağıdaki bilgilere göre cevaplayınız. 43. 43. (I) Eda Öğretmen, dersini işledikten sonra öğrencilerine bir sınav uygular. (II) Sınavı hazırlarken ilgili kazanımları ve kazanımların ağırlıklarını göz önüne alarak bir belirtke tablosu hazırlar.

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ YABANCI ÖĞRENCİ SINAVI 2016 RAPORU İçerik Giriş... 2 Puanlama... 2 Puanların Dağılımı... 3 Klasik Test Kuramına Göre Madde İstatistikleri... 4 Madde zorluk katsayıları...

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ GÜZEL SANATLAR EĞİTİMİ BÖLÜMÜ, MÜZİK ANABİLİM DALINDA UYGULANAN GİRİŞ ÖZEL YETENEK SINAVINDAKİ

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ GÜZEL SANATLAR EĞİTİMİ BÖLÜMÜ, MÜZİK ANABİLİM DALINDA UYGULANAN GİRİŞ ÖZEL YETENEK SINAVINDAKİ Uludağ Üniversitesi Eğitim Fakültesi Dergisi Cilt: XV, Sayı: 1, 2002 ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ GÜZEL SANATLAR EĞİTİMİ BÖLÜMÜ, MÜZİK ANABİLİM DALINDA UYGULANAN GİRİŞ ÖZEL YETENEK SINAVINDAKİ

Detaylı

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para

Detaylı

2015-2016 EĞİTİM ÖĞRETİM YILI I. DÖNEM ORTAK SINAVI TEST VE MADDE İSTATİSTİKLERİ

2015-2016 EĞİTİM ÖĞRETİM YILI I. DÖNEM ORTAK SINAVI TEST VE MADDE İSTATİSTİKLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ VE İZLEME DEĞERLENDİRME DAİRE BAŞKANLIĞI 2015-2016 EĞİTİM ÖĞRETİM YILI I. DÖNEM ORTAK SINAVI TEST VE MADDE

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu 2013-2014 Eğitim Öğretim yılından itibaren Fakültemizin kayıtlı tüm öğrencilerinin (hem eski hem de yeni müfredata tabi olan öğrencilerin) başarı notları

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

TOTBİD-TOTEK UZMANLIK EĞİTİMİ GELİŞİM SINAVI (UEGS) DEĞERLENDİRME RAPORU

TOTBİD-TOTEK UZMANLIK EĞİTİMİ GELİŞİM SINAVI (UEGS) DEĞERLENDİRME RAPORU TOTBİD-TOTEK UZMANLIK EĞİTİMİ GELİŞİM SINAVI (UEGS) - 2017 DEĞERLENDİRME RAPORU 1. SINAV 2017 yılı Uzmanlık Eğitimi Gelişim Sınavına 755 uzmanlık öğrencisi katılmıştır. Katılımcıların kıdem yıllarına göre

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) KANTİTATİF ANALİZ (NİCEL) KANTİTATİF ANALİZ Bir numunedeki element veya bileşiğin bağıl miktarını belirlemek için yapılan analizlere denir. 1 ANALİTİK ANALİTİK

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Testler AHMET SALİH ŞİMŞEK

Testler AHMET SALİH ŞİMŞEK Testler AHMET SALİH ŞİMŞEK Test Standart koşullar altında yapılan gözlem Sistematik bir yaklaşım Farklı maddeleri türleri kullanılabilir. Ancak yaygın olarak «çoktan seçmeli» ya da «dereceli» «çoktan seçmeli

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

SBS SINAV SİSTEMİ BİLGİLENDİRME KİTAPÇIĞI

SBS SINAV SİSTEMİ BİLGİLENDİRME KİTAPÇIĞI SBS SINAV SİSTEMİ BİLGİLENDİRME KİTAPÇIĞI ORTAÖĞRETİME GEÇİŞ SİSTEMİ KAVRAMLARI (SBS) SEVİYE BELİRLEME SINAVI NEDİR? Maksimum SBS puanı: 500 SP(Sınıf Puanı) Katkı Payı : %70 İlköğretimin 6, 7 ve 8. sınıflarında

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

6. SINIF DÜNYA MIZ, AY VE YAŞAM KAYNAĞIMIZ GÜNEŞ ÜNİTESİ NE YÖNELİK BİR BAŞARI TESTİ GELİŞTİRME

6. SINIF DÜNYA MIZ, AY VE YAŞAM KAYNAĞIMIZ GÜNEŞ ÜNİTESİ NE YÖNELİK BİR BAŞARI TESTİ GELİŞTİRME 6. SINIF DÜNYA MIZ, AY VE YAŞAM KAYNAĞIMIZ GÜNEŞ ÜNİTESİ NE YÖNELİK BİR BAŞARI TESTİ GELİŞTİRME Sevilay KARAMUSTAFAOĞLU, Miyase TUTAR Giriş Madde Analizi Yöntem Bulgular Tartışma, Sonuç ve Öneriler Kaynakça

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Ağırlık ve Ters Ağırlık (Kofaktör) Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 016 AĞIRLIK

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Çukurova Üniversitesi Lisans Öğrencilerine Düzenlenen Temel Bilgi Teknolojileri Kullanımı Dersinin Muafiyet Sınavı Üzerine Bir Çalışma

Çukurova Üniversitesi Lisans Öğrencilerine Düzenlenen Temel Bilgi Teknolojileri Kullanımı Dersinin Muafiyet Sınavı Üzerine Bir Çalışma Çukurova Üniversitesi Lisans Öğrencilerine Düzenlenen Temel Bilgi Teknolojileri Kullanımı Dersinin Muafiyet Sınavı Üzerine Bir Çalışma Murat KARA, Şemseddin KOÇAK, Esin ÜNAL, Erkan KAYNAK, Yoldaş ERDOĞAN,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

ölçme ve değerlendirme

ölçme ve değerlendirme ÖLÇME VE DEĞERLENDİRME SORU KAMPI YANIT ANAHTARI adım 1 adım 2 adım 3 adım 4 adım 5 adım 6 1. C 1. A 1. E 1. C 1. C 1. B 2. C 2. C 2. C 2. B 2. A 2. A 3. B 3. B 3. B 3. D 3. D 3. D 4. C 4. B 4. C 4. A

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM, İKTİSAT VE İŞLETME FAKÜLTELERİ GENEL NOT ORTALAMASI HESAPLAMA KURALLARI

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM, İKTİSAT VE İŞLETME FAKÜLTELERİ GENEL NOT ORTALAMASI HESAPLAMA KURALLARI ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM, İKTİSAT VE İŞLETME FAKÜLTELERİ GENEL NOT ORTALAMASI HESAPLAMA KURALLARI 1. Bu kurallarda geçen tanım ve kısaltmalar; a) Açıköğretim Sistemi: Anadolu Üniversitesine bağlı

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Ölçme aracındaki 3 temel özellik Ölçmede hata Hata türleri Güvenirlik Güvenirlik hesaplama yöntemleri Ölçmenin standart hatası Geçerlik Kullanışlılık

Ölçme aracındaki 3 temel özellik Ölçmede hata Hata türleri Güvenirlik Güvenirlik hesaplama yöntemleri Ölçmenin standart hatası Geçerlik Kullanışlılık 2. ve 3. HAFTA Ölçme aracındaki 3 temel özellik Ölçmede hata Hata türleri Güvenirlik Güvenirlik hesaplama yöntemleri Ölçmenin standart hatası Geçerlik Kullanışlılık 19.01.2016 1 Ölçme araçlarından elde

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 Excel - Hücreler Excel de hücrelere hangi değerler girilebilir? Metin Rakam Tarih ve Saat Formül 1 HÜCRE SEÇİMİ Matematikteki

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Okullarda Kullanılan Sınavlar ve Özellikleri

Okullarda Kullanılan Sınavlar ve Özellikleri Okullarda Kullanılan Sınavlar ve Özellikleri 1 Sınav Hazırlamada Dikkat Edilecekler Ölçme aracı amaca uygun olmalıdır Sınav mutlaka planlanmalıdır Bir madde bir bilgiyi yoklamalıdır. Sorular açık ve net

Detaylı