DERS 12. Belirli İntegral

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DERS 12. Belirli İntegral"

Transkript

1 DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i f fonksionu veilmiş olsun ve e [, ] için f olduğunu kul edelim. f in gfiği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili integl kvmı çok kındn ilişkilidi. f Şekildeki tlı ölgenin lnının esı elili integlle pılı. Belili integle geçmeden öne, i süekli eği ile -ekseni sınd kln lnın klşık olk esın i önek veelim. Önek. [, ] lığı üzeinde eğisi ile -ekseni sınd kln ölgenin lnı olsun. [, ] lığı nın ot noktsı oln sısını kullnk [, ] lığını ikie ölelim ve ndki şekilde göüldüğü gii tnı u iki pç otun dikdötgenlei düşünelim. Hesplmğ çlıştığımız lnın klşık değe olk, lnın içinde kln iki küçük dikdötgenin lnlı toplmı oln ve lnı öten iki dikdötgenin lnlı toplmı oln 5. 8 lınili: [, ] kplı lığı d küçük lıkl ölüneek lnının geçek değeine d kın değele ulunileeği çıktı. /

2 Des 9.. Belili integl, Riemnn Toplmlı. Bi [, ] kplı lığı üzeinde süekli i f fonksionu veilmiş olsun. [, ] lığınd < < < <... < n- < n- < n olk içimde,,..., n-, n sılı llım. Bu sıl [, ] lığını küçük lıklltlıkl öle. Bu şekilde seçilmiş < < <... < n- < n- < n sılın [, ] lığının i pçlnışı deni., f n- n- n n- n- n- n f Şimdi, e k,,...,n için k [ k -, k ] seçelim ve [ k -, k ] lığının uzunluğunu k ile gösteelim: şğıd ifde edilen k k k-, k n. T n n f f n n f k k f L k T n toplmın f fonksionunun < < < <... < n- < n- < n pçlnışı için Riemnn Toplmı deni. Bud k ldn e ii sıfı klşıken ki u duumd n sısı sınısız olk t, ni sonsuz ıks T n Riemnn Toplmı nın limit değeinin mevut olduğu knıtlnili. İşte u limit değee f fonksionunun [, ] kplı lığı üzeinde elili integli deni ve u integl f d semolü ile gösteili. Bu gösteimde sısın elili integlin ltsınıı, sısın d üstsınıı deni. f d ifdesine, elisiz integlde olduğu gii, integnd deni.

3 Belili İntegl.. 9 f fonksionunun [, ] kplı lığı üzeinde elili integli f d lim k lim k T n f f L f içiminde ifde edileili. Belili integlin ukıdki tnımındn, eğe f fonksionu [, ] lığınd süekli ve e [, ] için f ise, f d elili integlinin [, ] lığı üzeinde f in gfiği ile ekseni sınd kln ölgenin lnını vediği sonuunu çıkiliiz. Geçekten u duumd, T n Riemnn toplmındki e i f k k teiminin tn uzunluğu k ve üksekliği f k oln dikdötgenin lnını ifde etmekte olduğu; u lnlın toplmı oln T n toplmlının limitinin de [, ] lığı üzeinde f in gfiği ile -ekseni sınd kln ölgenin lnı olduğunu gömek zo değildi. n n f f d Benze düşüne ile, eğe f fonksionu [, ] kplı lığınd süekli ve e [, ] için f ise, f d elili integli [, ] lığı üzeinde f in gfiği ile ekseni sındki ölgenin lnının tes işetlisi oln negtif sıı vei. Bşk i deimle, [, ] lığı üzeinde f in gfiği ile ekseni sınd kln ölgenin lnı, f d di. f d f Yukıd çıklnn iki duum ileştiileek [, ] kplı lığınd süekli i f fonksionunun gfiği ile ekseni sınd kln ölgenin lnı elili integl insinden, d kşıt olk, f nin [, ] kplı lığı üzeinde elili integli f nin gfiği ile

4 Des 9 ekseni sınd kln ölgenin lnı insinden ifde edileili. Öneğin, f nin [, ] kplı lığı üzeinde gfiği şğıdki şekilde gösteildiği gii ise, B d C f u tkdide, [, ] kplı lığı üzeinde eği ile -ekseni sınd kln ölgenin lnı, [, d] kplı lığı üzeinde eği ile -ekseni sınd kln ölgenin lnı B ve [d, ] kplı lığı üzeinde eği ile -ekseni sınd kln ölgenin lnı C ile gösteilmek üzee f d B C di. Bşk i ifde ile, [, ] kplı lığı üzeinde eği ile -ekseni sınd kln ölgenin tmmının lnı di. d f d d f f d Belili integlin, tnımı, ukıdki ln oumu ve limit özelliklei kullnılk knıtln ileek zı özellikleini şğı listeliouz.. f d. f d k k f d. m g d f d m f g d. < < için f d f d f d. 5. f d f d d

5 Belili İntegl Klkülüs ün Temel Teoemi. Btı çıkışlı knkld fonksionl ve onlın limit, tüev ve integlleini, ni u desimizin konulını işleen dese klkülüslulus dı veilmektedi. Şimdi Bu kesimde ele lğımız teoem, klkülüs desinin temel teoemidi. Bu teoem elili integl ile elisiz integl sındki ilişkii vei: Klkülüs ün Temel Teoemi. f fonksionu [, ] kplı lığınd süekli ve f nin i tes tüevi ise, d f di. Bundn öle, fkı için şğıdki gösteimi kullnğız.. Bölee, eni gösteimle, ' d f f C d f d f. Önek.. d Önek. d. Bölee şlngıçt zı klşık değeleini ulduğumuz şğıdki tlı ölgenin lnının geçek değeini elilemiş olduk. Önek. şğıdki integli d öne elisiz integl olk esplmıştık.. ln ln ln e e e e e d e. d

6 Des 9 5 Önek. d. elili integlinin değeini ulmk için öne değişken değiştime öntemi ile d elisiz integlini esplıp d son elili integle geçeiliiz. u seçilise, du d olu ve söz konusu elisiz integl şğıdki gii esplnı: Dolısıl, d du lnu ln C. u 5 5 d ln ln5 ln ln.5... Belili integlde değişken değiştime ve kısmî integson. Son öneğimizde elili integli esplken, tes tüevin, ni elisiz integlin elilenmesinde değişken değiştime öntemini kullndık. Bu öntemi doğudn doğu elili integl üzeinde de uguliliiz. Htt u pıldığı tkdide zmn kznılğı d söleneili. ' g g' d gii i elili integli esplmk için, u integl elisiz integl olk düşünülüp u g seçiline du g' d olduğu ve integlin u insinden ifde edildiğini nımsınız. Belili integlde değişkeni ile sınd değişmektedi. Bu duumd, u değişkeni de g ile g sınd değişeeğinden, şğıdki eşitliği ziliiz: ' g g' d g g ' u du. Sğ tftki ' u nun tes tüevi u u iliosk, esımızı ' g g' d g g ' u du. u g g g g içiminde südüüp sonuçlndııız. O lde, elili integle değişken değiştime öntemi ugulken u g seçiminden son du g' d ile ilikte g ve g değelei de esplnıp u değele eni değişken u insinden zılmış oln integl için lt ve üst sınıl olk lını ve eni integl de elili integl olk eni sınılı ile esplnmış olu.

7 Belili İntegl.. 95 Yukıdki son öneğimizi u oll plım: Önek. d ln ln 5 ln ln.5. du u u u, du d u ; 5 u 5 Öneğimizde, değişkenine göe veilmiş oln integlin ltsınıı oln kşılık u değişkenine göe zılmış integlin u ltsınıı ve değişkenine göe veilmiş oln integlin üstsınıı oln 5 e kşılık u değişkenine göe zılmış integlin u 5 5 üst sınıının kullnıldığın dikkt ediniz. Bu önekte olduğu gii şğıdki öneklede de u nun seçimi ve eni sınılın esı kutu içinde gösteilmişti. 6 Önek. d u du u 8. 6 u u, du 6 d, d /6 du u ; u e Önek. e e d u du u e. u e u e, du e d, e d / du u ; u e - e Önek Ugulm. Hftd televizon ünitesi üeten i işletmenin ftlık mjinl kâı, YTL olk, K 65 -., içiminde veilio. Şu nd ftd 5 ünite üeten fim, ftlık üetimini tımk istio. Hftlık üetimini 6 e çıkıs, ftlık kâındki değişim ne olktı? Çözüm. Kâdki tış 6 K 6 K5 K K' d d

8 Des 96 Son ifdede değele eleştiiline, K 6 K YTL olk elde edili. D öne elisiz integl esınd kullndığımız kısmî integson öntemini elili integl esplken de kullniliiz. Öne kşılık gelen elisiz integlesplnı ve en sonund sınıl eleştiileek elili integl ulunu. Önek 5. e d u dv uv vdu e e d e e. u, dv e d du d, v e Bzı integllein esınd değişken değiştime ve kısmî integson öntemlei ilikte kullnılili. Önek 6. ln d lnt dt lnt dt t ln t t dt t t, dt d, d / dt t, t u ln t, dv dt du /t dt, v t t t ln t ln ln ln. t t t t t t Önek 7. e d te dt te dt te e dt te e. t, dt d, d t, t dtt dt. t u t, dv e dt t du dt, v e

9 Belili İntegl Otlm Değele. Bi fonksionun sonlu sıd değei veildiği zmn u değelein otlmsını nsıl espldığımızı nımslım. Öneğin, f fonksionunun değeleinin otlmsı olk tnımlnı. f, f, K, f n f f L f n n f fonksionu i [, ] kplı lığınd tnımlı ise, f nin u lıkt ldığı tüm değelein otlmsı nsıl esplnili? Eğe f fonksionu [, ] kplı lığınd süekli ise, u otlm değe şğıdki teoem ışığınd integl dımı ile esplnili. Teoemİntegl için otlm değe teoemi. f fonksionu [, ] kplı lığınd süekli ise, öle i, vdı ki di. f f d Teoemin ifdesindeki eşitlik f d f içiminde zılıs, ndki şekilden de izleneileeği üzee u eşitlik, f nin gfiği ile -ekseni sınd kln ölgenin lnının, tn uzunluğu ve üksekliği f oln dikdötgenin lnın eşit olduğunu ifde etmektedi., f f nin gfiği ile -ekseni sınd kln ölgenin lnı, k, f nin [, ] kplı lığınd ldığı tüm değelein toplmı olk düşünülüse, f fonksionunun [, ] lığı üzeinde otlm değeinin f f d olk tnımlnileeği göülü.

10 Des 98 Önek. f - nin [-, ] lığı üzeinde otlm değei f d 8 5 di.. Önek. it-tlep fonksionu p 5e olk veilmişse, [, ] tlep lığı üzeinde otlm fitın ne olduğunuytl olk elileelim. Veilen lıktki otlm fit p ile gösteilise, p 5e. 5 d 5e.. e d 5. 5e. 5 e e.75 YTL olu..6. ln Hesı. Bi eği ile -ekseni sınd kln ln ile elili integl sındki ilişkii desimizin şlngıınd gömüştük. Eğe eğinin tmmı -ekseninin ukısınd ise f f d

11 Belili İntegl.. 99 Eğe eğinin tmmı -ekseninin şğısınd ise f f d Eğe eğinin i kısmı eğinin -ekseninin ukısınd i kısmı d -ekseninin şğısınd ise f d f d f d tlı ölgenin lnı d d f Şimdi ln esın zı somut önekle veeeğiz. Önek. f 6, ile veilen ölgenin lnı. 6 6 d 6 5.

12 Des Önek. f -, ile veilen ölgenin lnı. Önek. f -, - ile veilen ölgenin lnı. d 8. 7 d d -.

13 Belili İntegl...7. İki Eği sınd Kln Bölgenin lnı. f ve g [, ] lığınd süekli fonksionl, e [, ] için g f olsun. Bu duumd f in gfiği g in gfiğinin ukısınddı ve [, ] lığı üzeinde u iki eği sınd kln ln integl olk şöle ifde edili: f f g d g Önek. f, g -, ile veilen ölgenin lnı. d d 8. -

14 Des İki eği sınd kln ölgenin lnı esplnıken, f in gfiğinin i kısmı g in gfiğinin ukısınd, i kısmı d şğısınd olili. Bu duumd söz konusu lık lt lıkl ölüneek ln esplnı. Önek olk şğıdki şekilde gösteilen ölgenin lnın klım. Önek. f -, g -, ile veilen ölgenin lnı. d d d d 8 : Tlı ölgenin lnı d f g d g f f g - -

15 Belili İntegl...8. Him Hesı, Dönel Cisimlein Hmi. Düzlemde i ölgenin -ekseni etfınd döndüülmesile medn gelen ismin mi integl dımıl esplnili. [, ] lığı üzeinde f in gfiği ile ekseni sınd kln ölgenin ekseni etfınd döndüüldüğünü düşünelim. Yndki şekilde göülene enze i ktı isim ot çıkktı. Bu ktı ismin mini elili integl kullnk espliliiz. Geçekten, f tn uzunluğu d ve üksekliği f oln dikdötgen ekseni etf fınd döndüülüse i silindişekilde kımızı olk çizilen silindi elde edili. Bu silindiin mi d dv π f d di ve integl tnımı göz önüne lınk şekildeki ktı ismin minin V π f d olduğu sonuu çıkılili. Önek. f, ile veilen ölgei - ekseni etfınd döndüüne medn gelen ismin mini espllım. V π d π π 5 5 d π 5

16 Des Önek Küenin mi. Yıçpı iim oln küe, ıçpı iim oln i ım çemein çpı etfınd döndüülmesile elde edili. Dolısıl, sözü edilen im f - /, - eğisinin - ekseni etfınd döndüülmesile elde edili. π d V d π π π. π Önek Koninin mi. Tn ıçpı iim ve üksekliği iim oln koni, f /, eğisinin - ekseni etfınd döndüülmesile elde edili. π d V / d π π π π.. - /

17 Belili İntegl.. 5 Polemle. şğıdki şekilde veilen lnlı elili integlle olk ifde ediniz: f d [, ] lığı ile gfik sındki ln. [, ] lığı ile gfik sındki ln. [, d] lığı ile gfik sındki ln. ç [, ] lığı ile gfik sındki ln. d [, d] lığı ile gfik sındki ln. e [, d] lığı ile gfik sındki ln.. şğıdki elili integllei esplınız. 5 d d d ç d e e d d e d f e d g ln e d. şğıdki elili integllei değişken değiştime öntemi ile esplınız. 5 5 d d e 5 d d e e e d.5 d ç d 7 f d

18 Des 6. şğıdki elili integllei esplınız. e d ln d e ln d ç d d. e d e e e d 5. Dğ isikleti üeten i fimnın ştım deptmnı, mjinl gide fonksionunu, d det isiklet üetilmesi duumund, Gi 5, olk elilio. isikletlik i üetim seviesinden 9 isikletlik i üetim seviesine geçilmesi duumund toplm gidede ne kd tış olğını i elili integl olk ifde edip esplınız. 6. şğıd veilen eğile ile veilen lık üzeinde çevelenmiş ölgelein lnlını ulunuz., ;, ;, ; ç e, ; d, ;.5 t e 8, ; t f, ; g, ; 7. şğıd veilen iki eği sınd kln ölgenin lnını ulunuz.,, 5, ç, d, e 6, 9 8. lıştım 6 d veilen ölgelein ekseni etfınd döndüülmesile elde edilen isimlein imleini ulunuz.

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425 Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

Belirsiz İntegral İntegral Alma Yöntemleri Değişken Değiştirme Yöntemi

Belirsiz İntegral İntegral Alma Yöntemleri Değişken Değiştirme Yöntemi Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mt MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 ulunu.. P ve pd eklenecek sı olsun. - + =- + + & - + =-- - & + = ^--h + & =- ulunu. + 3. Veilen

Detaylı

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir. I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey

Detaylı

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b

Detaylı

DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x.

DRC. 1. x 2 + 2xy + y 2 = 25 x + y = ± , 4, 6,..., 48 numaralı bölmeler yakılıyor. ( 24 tane ) 5. f ( x + 3 ) = x. eneme - 8 / YT / MT MTMTİK NMSİ. + + + ± + 8 9 9. s( + ) s() İ İ + 9 9 7... ( I ) + 9 + 9 7... ( II ) I ve II den [ 7, 7 ] fklı tm sı değei lbili. evp.,,,..., 8 numlı bölmele kılıo. ( tne ), 9,,..., numlı

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ YS / TTİ N ÇÖZÜRİ eneme -. +. + + ti. - + + - + + > ise - + - + evp. ^ + ^- ^- +. z z + + + + evp z + -. c- m z z + - + + + z z z ^ ^ evp. çift sı olmlı Ç+ T T. Ştı sğln sdece vdı.. + + lde tne sl sı vdı.

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MTMTİK NM ÇÖZÜMLRİ eneme -. ) - - + ) - 7 - + ) - - +. + m ; + m + ^ ^ > H + ) - - + ^ ) 7- - + Sılın plı eşit olduğun göe, pdsı en üük oln sı en küçüktü. un göe seçeneğindeki sının pdsı en üük olduğundn

Detaylı

21. İlk 5 dakikanın sonunda Burak ve Onur un bulundukları. Cevap B. Burak 100. = 45 olup farkları = 22 bulunur. Cevap C

21. İlk 5 dakikanın sonunda Burak ve Onur un bulundukları. Cevap B. Burak 100. = 45 olup farkları = 22 bulunur. Cevap C Deneme - / Mt MEMİK DENEMESİ Çözümle.. c + m. d ı. 4 4 6 4 4 6 ( 6) ( 4) ( ) ( ) y 5 7. y c + m. y d ı. 4 8 6 ( ) ( ) ( ) olduğun göe, 6 6y 8y bulunu.. y - + + y - y - y y - y 6 6. ^009, h. ^0, 07h > c

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / EETRİ EEE ÇÖZÜERİ enee -.. H E desek E E EH (E uğund ot tn) olu. ` j $ $ c hlde, ^h $ $ 0 0 0 0 üüüş esfesi 0 c di. ulunu. evp de 0 0 0 ile c di. de 0 0 0 ile c di. hlde, lnın nık klcğı üüüş esfesi

Detaylı

2 Diğer sayfaya geçiniz

2 Diğer sayfaya geçiniz TYT / MTEMTİK Deneme - 5. + c m $ ^+ & & + & Cevp : 5. ^ ise 'dn son gelen tm ke oln syı ^ + di. Yni ^ + + + ulunu. Cevp : E 6. 5! + 6! + 7! 5! + 6$ 5! + 7$ 6$ 5! 8! 7! 8$ 7! 7!. ise ^ + ^ + > H ^ + +

Detaylı

Elektromanyetik Teori Bahar Dönemi. KOORDİNAT SİSTEMLERİ ve DÖNÜŞÜMLER

Elektromanyetik Teori Bahar Dönemi. KOORDİNAT SİSTEMLERİ ve DÖNÜŞÜMLER KOORDİNT SİSTEMLERİ ve DÖNÜŞÜMLER i önceki bölümde Kteen koodint sisteminde işlemleimii ptık. Kteen koodint sisteminden bşk biçok koodint sistemlei vdı. u bölümde kteen koodint sistemine ek olk silindiik

Detaylı

ELEKTRIKSEL POTANSIYEL

ELEKTRIKSEL POTANSIYEL FİZK 14-22 Des 7 ELEKTRIKSEL POTANSIYEL D. Ali ÖVGÜN DAÜ Fizik Bölümü Kynkl: -Fizik 2. Cilt (SERWAY) -Fiziğin Temellei 2.Kitp (HALLIDAY & RESNIK) -Ünivesite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) www.ovgun.com

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır.

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır. 1 Temel Elektik Kvml Aşğıdki notl, D.J.Giffit s in Elektomnyetik Teoi kitındn lınmıştı. 1- Elektik Aln (E) Yüklü i cisim, fzl elekton vey potonu oln i cisimdi. Cisimdeki u fzl net yükün üyüklüğü, fzl oln

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MEMİK ENEME ÇÖZÜMLERİ enee -. - + - + - - + - + - 7 - evp E. - + + 9 ifdelei tf tf çplı. ^- h^ + + 9h - 7. + + + ifdesinde zlı. + 7 ise + 7 evp + + + + + + + + + + +. z + z + + + z + z + dı. z z

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ Y / Rİ N ÇÖZÜRİ eneme -. de ' çizilise + olcğındn cm, cm ve cm bulunu. ikizken üçgeninde m^\ m ^\ desek iki iç çının toplmı bi dış çı olcğındn m^\ olu. ikizken üçgeninde m^\ m^\ dı. m^\ m^\ dı. (Yöndeş

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri Öğenci Yeleştime Sınvı (Öys) Hzin 99 Mtemtik Soulı Ve Çözümlei. Rkmlı bibiinden fklı oln üç bsmklı en büyük tek syı şğıdkileden hngisine klnsız bölünebili? A) B) C) 6 D) 8 E) 9 Çözüm Rkmlı bibiinden fklı

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER KTI ÝSÝMLR KTI İSİMLR YILLR 1966 1967 1968 1969 1970 1971 197 197 197 1975 1976 1977 1978 1979 1980 1981 198 198 198 1985 1986 1987 1988 1989 1990 1991 199 1995 1996 1997 1998 1999 001 001 00 00 00 005

Detaylı

LİMİT TÜREV İNTEGRAL SORU BANKASI

LİMİT TÜREV İNTEGRAL SORU BANKASI LİMİT TÜREV İNTEGRAL SORU BANKASI ANKARA İÇİNDEKİLER LİMİT Limitin Özelliklei... Paçalı Fonksionlada Limit... Mutlak Değeli Fonksionlada Limit... Gafikte Limit... Genişletilmiş Reel Saılada Limit... Belisizliği

Detaylı

Elektromagnetik Alan Teorisi

Elektromagnetik Alan Teorisi Elektomgnetik ln Teoisi ttik ln teoisi Zmnl eğişim ok Elektosttik ln sttik elektik ln) Mgnetosttik ln sttik mgnetik ln) Dlg Teoisi enince inmik ln mnl eğişim v) kl gelio Mtemtiksel Temelle + B = B + B

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY FİZ2 FİZİK-II Ank Ünivesitesi Fen Fkültesi Kimy Bölümü 24-25 Bh Yıyılı Bölüm-4 Ank Aysuhn OZANSOY Bölüm 4. Elektiksel Potnsiyel. Elektiksel Potnsiyel Eneji 2. Elektiksel Potnsiyel ve Potnsiyel Fk 3. Noktsl

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ LYS / GOMRİ NM ÇÖZÜMLRİ eneme -. 9 9 de [] hem çı oty hem yükseklik olduğu için ikizken üçgen u duumd 9 cm ve olu. de [ ] ot tbn olduğu için cm. α 0 0 α 0 m ^ h α olsun. 0 - - 90 üçgenini çizip desek ve

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

TOPLAM FARK FORMÜLLERİ İKİ KAT AÇI FORMÜLLERİ TRİGONOMETRİK DENKLEMLER ANALİZ TESTLERİ

TOPLAM FARK FORMÜLLERİ İKİ KAT AÇI FORMÜLLERİ TRİGONOMETRİK DENKLEMLER ANALİZ TESTLERİ ÖÜ OP OÜİ inüs oplm - k omülü... osinüs oplm - k omülü...9 njnt ve otnjnt oplm - k omüllei... oplm - k omülleinin Geometik Şekillee ygulnmsı... G İ...9 ÖÜ İİ Ç OÜİ inüs İki t çı omülü... osinüs İki t çı

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

ELEKTROSTATİK (II) Giriş

ELEKTROSTATİK (II) Giriş Elektomnyetik Teoi Bh 5-6 önemi ELEKTROTATİK (II) Giiş Bundn önceki bölümde yük dğılımı bilindiğinde elektik lnın Coulomb yssı kullnılk nsıl hesp edileceği üeine konuştuk. Htılycğını gibi Coulomb yssını

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E - 8. LYS Mtemtik Soulı Ve Çözümlei M + +. eel sısının değei kçtı? M. > eşitsizliğinin en geniş çözüm kümesi şğıdkileden hngisidi? ) ) ÇÖZÜM : ve ) ) ve olduğundn di.. YNIT : ) ) R ) Z ) R + ) R {} ) R

Detaylı

TYT Temel Yeterlilik Testi

TYT Temel Yeterlilik Testi Otöğetim lnı MF - 01 TYT Temel Yetelilik Testi Geometi Des Föyü Geometik Kvml Doğud çıl Nokt: Klemin syfy bıktığı ize deni. Uygulylım 1. şğıdki boşluklı dolduunuz. ) Doğu...boyutludu. Noktsı noktsı oyutsuzdu.,,

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ LYS / GMİ NM ÇÖZÜMLİ eneme -. 0 ' 0 ile l eş üçgenle olduğundan; = 0 cm l = 0 cm ve = desek l = olu. l de pisago ise l = cm. 0 @ nin ota noktasını olaak işaetlielim. u duumda, = cm ( de ota taan) = cm

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

KATILARDA DAYANIKLILIK

KATILARDA DAYANIKLILIK BÖÜM 3 ATIARDA DAANIII MODE SORU - DEİ SORUARIN ÇÖZÜMERİ 4.. Cnlılın dynıklılığı, biim ğılığ düşen kesitlnı olk ifde edili., kkteistik uzunlukolmk üzee, kesitlnı kesitlnı Dynıklılık ğılık cim 3 di. Bu

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

KKKKKKK. Adı Soyadı : Numarası : Bölümü : İmzası : VERİLER

KKKKKKK. Adı Soyadı : Numarası : Bölümü : İmzası : VERİLER Adı Soydı : Numsı : Bölümü : İmzsı : EİLE e - =e + =p=1,6x10-19 C Metik Ön Tkıl g=10 m/s 2 k=(1/4πε0)=9x10 9 N.m 2 /C 2 10 9 gig G εo=9,0x10-12 C 2 /N.m 2 10 6 meg M π=3 10 3 kilo k mp =1,7x10-27 kg 10-2

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir? ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

Elektromanyetik Teori Bahar Dönemi ELEKTROSTATİK (III) Elektriksel potansiyel

Elektromanyetik Teori Bahar Dönemi ELEKTROSTATİK (III) Elektriksel potansiyel Elektomnetik Teoi Bh 5-6 Dönemi ELEKTROSTATİK (III) Elektiksel otnsiel Bunn önceki bölümlee elektik lnın Coulomb ve Guss slı kullnılk nsıl hes eileceğini inceleik. Elektik lnı elektik skle otnsiel ve kısc

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Matematik. Trigonometri FEN LİSESİ 1. FASİKÜL

Matematik. Trigonometri FEN LİSESİ 1. FASİKÜL Mtemtik SINIF FEN LİSESİ. FSİKÜL Tigonometi 9 sou nılgılı fedt ışı Konu Kvm Y Mü Uılı olojilei ilgi Tekn Ulmlı ı Soul PIS Tz mış ÖSYM Çık Sınv Soulı Video Çözümle Tmmı Çözümlü Öğetmen Seti Kol Eişilebili

Detaylı

Ox ekseni ile sınırlanan bölge, Ox ekseni

Ox ekseni ile sınırlanan bölge, Ox ekseni DERSİN ADI: MATEMATİK II MAT II (06) ÜNİTE: BELİRLİ İNTEGRALLERİN UYGULAMALARI. HACİM HESABI GEREKLİ ÖN BİLGİLER 1. Eğri Çizimleri. İntegrl formülleri KONU ANLATIMI. HACİM HESABI ) Disk Yöntemi = f ()

Detaylı

İNTEGRAL ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

İNTEGRAL ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT İNTEGRAL ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Belili İntegal. Kazanım : Riemann toplamı adımıla integal kavamını açıkla.. Kazanım : Belili integalin özellikleini açıkla.. Kazanım : İntegal hesabının biinci

Detaylı

SORU. m(cdo ) = = 20 olur. OB = OD = OC = r den; m(bco ) = 30, m(dco ) = 20 ve. [AB ile [AD B ve D noktalar nda çembere te ettir.

SORU. m(cdo ) = = 20 olur. OB = OD = OC = r den; m(bco ) = 30, m(dco ) = 20 ve. [AB ile [AD B ve D noktalar nda çembere te ettir. GMR eginin bu sy s nd Çembede ç l, Kiiflle ötgeni, e et Kiifl Özelliklei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ptik yoll, soul m z n çözümü içinde

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 sou vadı.. Cevaplaınızı, cevap kâğıdının Matematik Testi için aılan kısmına işaetleiniz.. Veilen, ve z tamsaılaı için. =. z =. =f() olduğuna göe, + + z toplamı en çok kaçtı?

Detaylı

ÜNITE. Uzay Geometri. Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test

ÜNITE. Uzay Geometri. Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test Katı Cisimler Test ÜNI Uzy Geometi tı isimle est -... tı isimle est -... tı isimle est -... tı isimle est -... tı isimle est -...7 tı isimle est -...9 Uzy oğu ve üzlem est -...0 Uzy oğu ve üzlem est -... Uzy oğu ve üzlem

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için

4. f ( x ) = x m x + m. Cevap C. m açılımındaki bir terim, x. 5. cx 3 + Cevap D. 6. x 2 + ( a + 4 ) x + 3a + 3 ifadesinin tam kare olması için Deneme - / YT / MT MTMTİ DNMSİ Çözümle. < n < 0. f ( ) m + m p ve q asal saıla olmak üzee, n p. q vea p şeklinde olmalıdı. n {.,.,. 7,.,.,. 7,. 9,.,. 9,.,. 7,.,.,. 7,. 9,. 7,.,, } 9 tane bulunu.. { 7,,,

Detaylı

ELEKTRİK ALANI III.2.01.ELEKTRİK ALANI.

ELEKTRİK ALANI III.2.01.ELEKTRİK ALANI. 1 III.. LKTRİK ALANI III..01.. Fiziksel lylın nltımınd klylık sğlnmsı mcıyl ln kvmı geliştiilmişti. İlgilendiğimiz fiziksel ly için seçilen kdinnt sisteminin belili bi nktsın, ynı nd kşılık gelen fiziksel

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

ELEKTRİK ALANI, ELEKTRİK POTANSİYELİ, İŞ VE ENERJİ

ELEKTRİK ALANI, ELEKTRİK POTANSİYELİ, İŞ VE ENERJİ 25 II. BÖLÜM LKTRİK ALANI, LKTRİK POTANSİYLİ, İŞ V NRJİ 2.1. LKTRİK ALANI V ALAN ŞİDDTİ lektik ükleinin etkisini göstediği lnl, elektik lnı olk dlndıılı. lektik lnı içeisindeki üklü cisimlee elektik lnı

Detaylı

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E. nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8-0, 90 & 0, - 90-0+ - & - 0+ - 9+ 9+ 7 + 8 + 5 5 5 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık Kplı çık Kplı çık 5 6 Kplı Kplı

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

Aydınlanma. I x. 4. Her iki du rum da ki ay dın lan ma lar ya zı lıp oran la nır sa, 5. a) Kay nağın top lam ışık akı sı,

Aydınlanma. I x. 4. Her iki du rum da ki ay dın lan ma lar ya zı lıp oran la nır sa, 5. a) Kay nağın top lam ışık akı sı, ADAA BÖÜ Alıştıml Sınıf Çlışmsı Ayınlnm ve noktlınki yınlnml yzılıp onlnıs, ( + ) 5 ( + ) 6 m 3 ı sy m m e ışı ğın % 4 ını ge çi i ğin en, ge çen ışı ğın şi e ti, 4 4 Ι Ι 9 36 c olu Şe kile nok t sın ki

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

ÜNITE. Analitik Geometri. Düzlemde Vektörler Test Düzlemde Vektörler Test Düzlemde Vektörler Test

ÜNITE. Analitik Geometri. Düzlemde Vektörler Test Düzlemde Vektörler Test Düzlemde Vektörler Test ÜNITE nlitik Geometi üzleme Vektöle Test -... üzleme Vektöle Test -... üzleme Vektöle Test -... üzleme Vektöle Test -... önüşüm Geometisi Test -... önüşüm Geometisi Test -... önüşüm Geometisi Test -...7

Detaylı

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir.

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir. Mtemtik üns, 2004 Güz Geometi Köflesi Mustf Y c gcimustf@hoo.com iklik Mekezi i üçgenin üç üksekli i dim tek noktd kesifli. u nokt üçgenin diklik mekezi deni. = iklik mekezi genelde ile gösteili. Üçgen

Detaylı

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ BÖLÜM ĞLK MERKEZİ-TLET MOMENTİ BÖLÜM 5: ĞRLK MERKEZ-TLET MOMENTİ 5.. ĞRLK MERKEZİ HESB [LNN BİRİNCİ MOMENTİ] ğılık, csme uulnn kütle çekm kuvvetd. Dnmomete le ölçülü. Dün'd csm ele lısk ükseğe çıkıldıkç

Detaylı

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR UZY MRİ IN NL IRLMLR UZY SİYMLRI kı iki noktdn i tek doğu geçe oğus omyn fkı noktdn i tek düzem ÜÇ İM RMİ tı isim souını çözmede çok fydı i igidi geçe i doğu ve u doğu üzeinde uunmyn i nokt düzem eiti

Detaylı

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1 Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları İNTEGRAL İÇ KAPAK B kitın ütün ın hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI n ittir. Kısmen de ols lıntı pılmz. Metin, içim ve sorlr, ımln şirketin izni olmksızın, elektronik, meknik, fotokopi

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

AKM 202. Akışkanlar Mekaniği. Ders Notları. 8.Bölüm. Sıkıştırılamaz Viskoz İç Akış İTÜ. Gemi İnşaatı ve Deniz Bilimleri Fakültesi.

AKM 202. Akışkanlar Mekaniği. Ders Notları. 8.Bölüm. Sıkıştırılamaz Viskoz İç Akış İTÜ. Gemi İnşaatı ve Deniz Bilimleri Fakültesi. AKM 0 Akışknl Mekniği Des Notlı 8.Bölüm Sıkıştıılmz iskoz İç Akış İTÜ Gemi İnştı ve Deniz Bilimlei Fkültesi Hzıln Yd. Doç. D. Şfk N Etük Od No:47 Tel: () 85 638 e-ost: etk@it.ed.t DES NOTAI SIKIŞTIIAMAZ

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Sf No tek ve çok üeli kplı üele ve ktı cisimle.................................. KVRMSL IM EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Üç boutlu nesnelee ktı

Detaylı

Cebirsel ifadeler ve Özdeslik Föyü

Cebirsel ifadeler ve Özdeslik Föyü 6 Ceirsel ifdeler ve Özdeslik Föyü KAZANIMLAR Bsit ceirsel ifdeleri nlr ve frklı içimlerde yzr. Ceirsel ifdelerin çrpımını ypr. Özdeslikleri modellerle çıklr. 06 8. SINIF CEBiRSEL ifadeler VE ÖZDESLiK

Detaylı

DERS 3. Fonksiyonlar - II

DERS 3. Fonksiyonlar - II DERS 3 Fonksionlr - II Bu derste fonksionlr için eni örnekler göreceğiz. Önce, grfik çiziminde kollık sğlck ir kvrmdn söz edeceğiz. 3.. Bir Fonksionun Koordint Kesişimleri. Bir fonksionun grfiğine kınc

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

BASİT MAKİNELER BÖLÜM 4

BASİT MAKİNELER BÖLÜM 4 BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

TG 11 ÖABT İLKÖĞRETİM MATEMATİK

TG 11 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN BİLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖAB İLKÖĞREİM MAEMAİK Bu testlein he hkkı sklıdı. Hngi mçl olus olsun, testlein tmmının ve i kısmının İhtiç Yıncılık

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

Terimler: Sabit Terim: Katsayılar: ÖR: 3x 2-4x cebirsel ifadesine göre aşağıdaki. Terimler: Sabit Terim: Katsayılar: Terimler: Sabit Terim:

Terimler: Sabit Terim: Katsayılar: ÖR: 3x 2-4x cebirsel ifadesine göre aşağıdaki. Terimler: Sabit Terim: Katsayılar: Terimler: Sabit Terim: 08 8. SINIF CEBiRSEL ifade VE ÖZDESLiK Ceirsel İfde:En z ir ilinmeyen ve ir işlem içeren ifdelere ceirsel ifdeler denir. Terim ÖR: x 2 -y+5 ceirsel ifdesine göre şğıdki sorulrı cevplyınız.. 2x + 3y - 5

Detaylı

9. log1656 x, log2 y ve log3 z

9. log1656 x, log2 y ve log3 z ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Logritm Alm Kurllrı Dersin Konusu. log4 loge ln4 işleminin sonucu kçtır? D) ln E) ln 6. olduğun göre, 8 9 log 9 4 ifdesi nee eşittir? D) E). log

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

1. y(m) Kütle merkezinin x koordinatı x = 3 br olduğundan, Kütle merkezinin x koordinatı, ... x KM = = 5m + 4m K = 10m olur.

1. y(m) Kütle merkezinin x koordinatı x = 3 br olduğundan, Kütle merkezinin x koordinatı, ... x KM = = 5m + 4m K = 10m olur. 0. BÖLÜM AĞIRLI MEREZİ ALIŞTIRMALAR ÇÖZÜMLER AĞIRLI MEREZİ. y(m) m m m 8m (m) 0 8m ütle mekezinin koodintı, m+ m+ M m + m + m.( ) + m. + 8m. + m.( ) + 8m. m+ m+ 8m+ m+ 8m + 9+ 8+ 6 8 m olu. ütle mekezinin

Detaylı

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu.

( x y ) 2 = 3 2, x. y = 5 tir. x 2 + y 2 2xy = 9. x 2 + y 2 = 19 bulunur. Cevap D / 24 / 0 ( mod 8 ) Pikaçu. eneme - / YT / MT MTMTİK NMSİ. I. KK (, ) = : Z II. KK (, ) = : Z III. KK ( 8, ) = 7 7 : Z. - - = = ( ) ile. rlrınd sl ise ( ) =,. = tir. + = + = bulunur. evp evp. + / / ( mod 8 ) Pikçu. M n + n n + 8

Detaylı

JEOTERMAL REZERVUARLARIN MODELLENMESİ

JEOTERMAL REZERVUARLARIN MODELLENMESİ 233 JEOTERMAL REZERVUARLARIN MODELLENMESİ Hüly SARAK Abduhmn SATMAN ÖZET Litetüde jeoteml ezevu dvnışlını modelleyen çeşitli modelle mevcuttu. Bunl üetim debisi zlm yöntemi, boyutsuz ezevu modellemesi

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4 98 ÖYS. işleminin sonucu kçtır. 6. Bir stıcı ir mlı üzde 0 krl strken, stış fitı üzerinden üzde 0 indirim prk 8 lir stıor. Bu mlın mlieti kç lirdır? A) 0 B) 00 C) 80 D) 70 E) 60 7.,, c irer pozitif tm

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

11.EK KARAKTERİSTİKLER YÖNTEMİ İÇİN ÖRNEK UYGULAMA ANİ GENİŞLEMELİ SÜPERSONİK NOZUL DİZAYNI

11.EK KARAKTERİSTİKLER YÖNTEMİ İÇİN ÖRNEK UYGULAMA ANİ GENİŞLEMELİ SÜPERSONİK NOZUL DİZAYNI Sesüstü kımlr için krkteristikler öntemi - E ARATERİSTİLER YÖNTEMİ İÇİN ÖRNE UYGULAMA ANİ GENİŞLEMELİ SÜPERSONİ NOZUL DİZAYNI Burd krkteristikler önteminin örnek bir ugulmsı olrk ni genişlemeli sesüstü

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistemtik ÖLÜM: ÖRTNLR LIŞTIRMLR u bşlık ltınd her bölüm kznımlr yrılmış, kznımlr tek tek çözümlü temel lıştırmlr ve sorulr ile trnmıştır. Özellikle bu kısmın sınıf içinde öğrencilerle işlenmesi

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı