DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA"

Transkript

1 Yöeim, Yıl: 7, Sayı: 55, Ekim 6 DİNAMİK PORFÖY SEÇİMİ ve BİR UYGULAMA Dr. Mehme HORASANLI İsabul Üiversiesi İşleme Fakülesi Sayısal Yöemler Aabilim Dalı Bu çalışmada, Li ve Ng ( arafıda aaliik çözümü üreile opimal porföy sraejisii uygulamada kullaımı üzeride durulmakadır. Ayı zamada, Isabul Mekul Kıymeler Borsası verileri kullaılarak oralamavaryas eki sıırı elde edilmekedir. So olarak Markowiz modeli ile göz öüe alıa modeli risk ve beklee geiri paramerelerie ekisi karşılaşırılarak araşırılmışır. Aahar Sözcükler: Diamik programlama, Diamik Porföy Seçimi, Çok Döemli Oralama-Varyas Porföy Seçimi DYNAMIC PORFOLIO SELECION ad a APPLICAION his paper focuses o he usage of aalyical opimal porfolio policy ad he aalyical expressio of he meavariace efficie froier derived by Li ad Ng ( for he muliperiod mea-variace formulaio. he muliperiod opimal porfolio policy is obaied by usig he Isabul Sock Exchage daa. Fially, he impac of he model o he risk ad reur parameers compared o Markowiz s sigle period model is aalyzed. Key Words: Dyamic Programmig, Dyamic Porfolio Selecio, Muliperiod Mea-Variace Porfolio Selecio 5

2 GİRİŞ. İLGİLİ ÇALIŞMALAR Porföy seçimi, varlığı belirli yaırım araçları arasıda e uygu biçimde dağıılması olarak adladırılabilir. Porföy seçimi Harry Markowiz i 95 yılıda gelişirdiği oralama-varyas formülasyou (Markowiz,95,s.77-9 ile durağa porföy seçimi problemii çözümü içi emel oluşurmuş ve moder fias eorisii de başlagıcı ve diğer bir çok eorii de dayaak okası olarak kabul edilmişir (Yao,Zhag ve Zhou,,s.79. Markowiz ile birlike risk kavramı, bir varlığı beklee geiri oraıı sadar sapması veya varyası olarak aımlamaya başlamışır (Alay,,s.. Markowiz, bu çalışması ile birlike, yapıla yaırımı beklee geirisi maksimize edilirke, riski çeşiledirme yoluyla düşük uulmasıı sağlamış ve bu sayede uzu yıllar bir çok araşırmacıı ilgisii çekmiş ve bu çalışması ile 99 yılı Nobel ödülüe layık görülmüşür (Pedro,998,s:. Markowiz arafıda emelleri aıla Moder Porföy eorisi ek periyolu bir yaırım sürecii göz öüe almakadır. Markowiz modeli de yaırımcı ilgili periyo içi opimal yaırım sraejisii belirleyerek, döem soua kadar porföy ağırlıklarıda hiçbir değişiklike bulumamakadır. Bu ise modeli e büyük eksikliği olarak belirilebilir. Markowiz i ek döemli modeli ile seçile porföy ağırlıklarıı zama içeriside sabi kalıp kalmayacağı veya çok döemli opimum yaırım kararları ile ek döemli yaırım kararları arasıdaki ilişkii varlığı yaırımcılar arafıda sıklıkla sorgulamışır (Oberuc,,s:9. Markowiz oralama-varyas porföy seçimi, fias eoriside bu kadar öemli bir yere sahip olmasıa rağme, uzu vadeli yaırım hedefleye yaırımcıları aleplerii karşılayamaması ve işlem maliyelerii göz öüde buludurmaması sebebiyle diamik porföy seçimi problemlerie cevap verememekedir. Bu çalışmada, porföy seçimi problemii e şekilde diamik hale döüşürülebileceği İsabul Mekul Kıymeler Borsası verileri kullaılarak göserilmeye çalışılacakır. Bu okada diamik porföy seçimii geirdiği faydaları araşırılması hedeflemekedir. Ele alıa modelleri ürkiye piyasalarıa uyguluğuu irdelemesi amaçlamakadır. Buu yaıda, Markowiz modeli ile de porföy seçimi yapılarak bu sayede ileride gözöüe alıacak modeller ile karşılaşırma imkaı sağlamakadır. Bir soraki adımda, porföy seçimi problemii diamik hale döüşürülmesi ile yaırım kararlarıda meydaa gelecek değişiklikler ve bu değişiklikleri yaırım periyodu souda beklee geiri ve risk paramerelerie ekileri sorgulamakadır. 6 Diamik porföy seçimi üzerie yapıla ilk çalışmalarda, ek periyolu porföy seçimi problemii döem sayısıı arırılarak yaırım ufkuu geişleilmesi üzerie yoğulaşılmışır. Çok döemli porföy seçim problemii aaliik olarak çözümü üzerie yapıla çalışmaları birçoğuda araç olarak diamik programlama kullaılmışır. Durağa porföy seçimi problemii aalizi ile yola çıka Mossi(968, döemsel geiri oraıı emel alarak diamik programlama yaklaşımı ile modeli çok döemli porföy seçimi problemie uyarlamışır. Mossi, çok döemli porföy seçimi problemide modeli doğru bir biçimde kurulabilmesi içi yaırımcıı döemsel oplam varlığıı göz öüde buludurulması gerekliliğii vurgulamışır. Belirli bir varlık mikarıı farklı hisse seelerie yaırılması ile başlaya süreçe ikici döemde geçerli olacak porföy sraejisi gerçekleşe varlık seviyesi göz öüde buludurularak kararlaşırılmakadır. Ayı zamada, her bir porföy sraejisi dizisii bir öceki döemde alıa yaırım kararı ve gelecekeki olasılık dağılımlarıa bağlı olduğuu alıı çizmekedir. So döeme ulaşılması ile birlike porföy sraejisi, klasik ek döemli oralamavaryas porföy seçim modeli ile elde edilmekedir. Farklı periyolardaki döemsel geiri oralarıı isaisiksel olarak bağımsız olması ve işlem maliyelerii göz ardı edilmesi halide, süreç geriye doğru çalışırılarak ilk döem içi opimum porföy sraejisi elde edilmekedir. Çok döemli oralama-varyas porföy seçimi modelii formülasyou ve çözümü kousuda Samuelso(969, kişileri uzu vadede bekledikleri faydayı maksimize edecek biçimde yaırım ve harcama kararlarıı modellemişir. Samuelso, buluula okada büü bir haya boyu harcama ve yaırım içi verilecek kararları uzu vadede riski arırıcı herhagi bir ekisi bulumadığıı gösermişir. Daha sora bu çalışma Mero(969 arafıda sürekli-zamalı ükeim ve yaırım kararlarıı alıabildiği biçimde gelişirilmişir. Samuelso arafıda gelişirile çok döemli yaklaşımda, ardışık olarak her döem içi yaırım ve ükeim kararlarıı alıabildiği sokasik programlama problemi üreilmişir. Model opimal kararları başlagıç yaırımıı bir foksiyou biçimide elde edilmesie olaak sağlamakadır. Oluşurula model çözülerek her döem içi riskli ve risksiz varlığa e kadar yaırım yapılacağı ve her döem içi opimum ükeim mikarı elde edilebilmekedir. Che, Je ve Zios(97 değişe iç ve dış fakörlere bağlı olarak porföy ağırlıklarıı döemsel olarak yeide gözde geçirildiği bir yaklaşım oraya koymuşlardır. Her bir döem piyasaya yei bilgii

3 ulaşması ile so bulmakadır. Modeli işlerliği, yei bilgii maliyeii olmaması ve işlem maliyelerii sıfır olması varsayımlarıa dayamakadır. Yazarlara göre porföy ağırlıklarıı değişirilmesie, gözde geçirmei marjial faydası gözde geçirmei marjial maliyeie eşi olucaya dek devam edilebilmekedir. Durağa porföy seçimide olduğu gibi, çok döemli porföy seçimide de işlem maliyelerii opimum porföy sraejisii belirlemeside büyük ekileri olmakadır. Dumas ve Luciao(99 arafıda gerçekleşirile çalışmada işlem maliyelerii opimum çözüme ekileri irdelemişir. Bu çalışmada belirli bir okaya kadar elideki varlığı harcamaya bir yaırımcı göz öüe alımışır. Yaırımcı o okaya ulaşıldığıda elideki üm varlığı yaırım kararlarıa döüşürerek beklee faydayı maksimize emekedir. ükeimi gecikirilerek porföy sraejisie döüşürülmesii erelemeside emel hedef, mümkü olduğuda durağa bir yaırım kararı elde emedir. Ayı zamada çalışmada sürekli- zamalı model içi de çözüm öerisi gelişirilerek her iki durumda meydaa gele yaırım kararları karşılaşırılmakadır. Çok döemli oralama-varyas porföy seçimi kousuda yapıla bir diğer çalışmada Elo ve Gruber(97, çok döemli geiri oralarıı beklee faydasıı gelecekeki çok döemli geiri oralarıı geomerik oralaması ile karşılaşırmışlardır. Yie belirli bir okada yaırımcıı beklee faydasıı maksimize edilmesi hedeflemiş ve geirileri belirli bir dağılıma bağlı olarak değişiği ve değişmediği durumlar içi beklee fayda icelemişir. Opimalliği elde edilebilmesi içi geomerik oralamaı maksimum değeri ile ihai varlığı beklee faydasıı birbirie yakısaması gerekliliği soucua ulaşılmışır. Hakasso(97 ise durağa oralama-varyas porföy seçimii çok döemli oralama-varyas porföy seçimie geişleilmesii, herhagi bir yaırımcıı çok döemli beklee oralama bileşik geiri oraıı maksimize emek isemesi halide bu amaç ile uarlı ek bir vo Neuma-Morgeser fayda foksiyouu buluduğuu ispalayarak geelleşirmişir. Elde edile fayda foksiyou mooo ara olmakla birlike, ek periyolu yaklaşımda oralama-varyas eki bir porföy oluşurmamakadır. Hakasso çalışmasıda riski dağıılmasıı çok döemli opimum souca ulaşmada bir zorululuk olduğuu vurgulamışır. So olarak Li ve Ng( yie diamik programlama yaklaşımıı kullaarak ve döemsel geiri oralarıı isaisiksel olarak bağımsız olduğu varsayımı alıda çok döemli oralama-varyas porföy seçimi problemi içi bir aaliik çözüm elde emiş ve eki sıır elde edilmişir. Li ve Ng, oralama-varyas formulasyouu çözümü daha kolay ola bir yardımcı probleme döüşürerek her bir döem içi opimum porföy sraejisii elde emekedir. Öcelikle riskli varlıklarda oluşa porföy göz öüe alıırke, porföye risksiz varlığı da eklemesi ile birlike problem daha geelleşirilmiş bir hale döüşmekedir. Bu çalışma kapsamıda da Li ve Ng arafıda gelişirile diamik programlama yaklaşımı beimseeceğide modeli ayrııları akip ede bölümlerde açıklaacakır.. MODELİN OLUŞURULMASI Çok döemli porföy seçimide emel amaç yaırımcıı uzu vadede yaırımda beklediği faydayı maksimize edecek yaırım sraejisi dizisii belirlemekir. Başka bir deyişle, döemsel olarak her bir hisse seedide elde e kadar buludurulacağıı hesaplamasıdır. Eldeki varlığı döemsel olarak hisse seelerie aamasıda modeli yaklaşımı, yaırımcıı alepleri doğrulusuda, varyası miimize edilmesi, beklee geirii maksimize edilmesi veya beklee geiri oraı ve varyası lieer kombiasyouu maksimize edilmesi olarak üç farklı biçimde ele alıabilmekedir (Li ve Ng,,s.88. Bu bölümde çok döemli oralama-varyas formülasyou açıklaarak modeli ek periyolu durağa Markowiz oralama-varyas porföy seçim modeli ile karşılaşırılması üzeride durulacakır. Bu amaçla (+ riskli hisse seedide oluşa bir sermaye piyasası göz öüe alıarak, her bir hisse seedii döemsel geiri oraıı rassal olduğu varsayılmakadır. Başlagıç varlığı x olarak kabul edilerek (+ riskli hisse seedie aaacakır. Mevcu varlık birbirii akip ede (- döem süresice (+ hisse seedie kararlaşırıla porföy sraejisi uyarıca dağıılacakır. Belirile (+ ade hisse seedii periyodik geiri oraı, i e i.ici hisse seedi içi aıda rassal geiri [ ] oraı olmak üzere e e,e, L, e biçimide aımlamakadır. Döemsel geiri oraı, her bir hisse seedii göz öüe alıa döem içerisideki oralama geirisie karşılık gelmekedir. Hisse seelerii döemsel oralama geirileri birbiride bağımsız olmak E( e E(e,E(e, L,E( e olarak üzere [ ] göserilebilir. Bezer biçimde kovaryas marisi aşağıdaki gibi aımlamakadır. σ, L σ, Cov( e M O M ( σ, L σ, 7

4 Kovaryas mariside yer ala σ, ifadesi ile aıda ici hisse seedii kedi fiya harekeleride kayaklaa değişimi, başka bir deyişle varyası göserilmekedir. x,.ici döemi başlagıcıda yaırımcıı oplam varlığı olmak üzere, ;i,, L, i.ici hisse seedie.ici u i döemi başlagıcıda yaırıla varlığı mikarıı emsil emekedir. ade hisse seedie ayrıla varlık mikarı böylelikle aımlamış olmakadır. Sıfır ideksi ile aımlaa diğer hisse seedie.ici döem başlagıcıda ayrıla mikar ise, u x u ( i i şeklide aımlaır. Çok döemli oralama-varyas porföy seçimi ile araa, u [ u,u, L,u ] ;,,,, L aımlaa yaırım sraejisidir. Bu yaırım sraejisi iki farklı maemaiksel formda göserilebilir. (i Birici formda, varyas ( Var(x öcede belirlee bir seviyeyi geçmeyecek biçimde ihai varlığı beklee değerii ( E(x maksimize edilmesi söz kousudur. Model aşağıdaki gibi aımlaabilir. { } Problem(σ : max E(x Var( x σ i i i + + i i Pu L x eu x u e ile ex+,,,, ( (ii İkici formda, ihai varlığı beklee değeri ( E(x öcede belirlee belirli bir seviyede daha küçük olmayacak biçimde ihai varlığı varyasıı ( Var(x miimize edilmesi söz kousudur. Model aşağıdaki gibi aımlaabilir. { } Problem( : mi Var( x E( x x eu x u e i i i + + i i ex+ Pu,,, L, ( Her iki durumda da P simgesi ile göserile vekör, risksiz faiz oraıı aşa geiri oraıı emsil emekedir ve aşağıdaki gibi aımlaır. L L P P,P,,P (e e,(e e,,(e e (5 Bu okada, E( ee Cov( e + E( e E( e özelliği dikkae alıarak E( e e marisi hesaplaabilir. Her döem boyuca poziif semi-defiilik koşulu göz öüde buludurulmalıdır. Poziif semi-defiilik aşağıda belirildiği biçimde aımlaabilir. E(( e E( ee L E( ee E( ee E(( e E( ee E( L ee ;,, L, L L L L E( ee E( ee L E(( e (6 (5 ve (6 umaralı eşilikler bir arada düşüülecek olursa (6 eşiliği aşağıdaki gibi düzeleebilir. Bu ise E( P P soucua varmamıza yol açacakır. E((e E(e P E(e P E( PP L L L E( ee ( L,, L, LLLL LLLL L L (7 E( P P marisi ek döemli durağa porföy seçimide yer ala kovaryas marisii çok döemli diamik porföy seçimideki karşılığıdır ve zama içeriside hisse seelerii birbirie bağımlı değişimlerii emsil emekedir. Yie (7 eşiliğii sol arafı dikkae alıarak, başka bir deyişle, burada görüle marisi deermiaı alıarak aşağıda verile souca ulaşmak mümkü olacakır. E(( e E( e P E ( PP E( e P >,, L, (8 Problemi ( veya ( gibi iki farklı formda verilmesii yaırımcı açısıda e öemli faydası, ihai varlığı beklee değerii maksimize edilmek isediği durumlarda yaırımcıı karşılayabileceği varyas seviyesii belirlemesi veya riski miimize edilmek isediği durumlarda yaırımcıı beklediği geiri seviyesii espi edilmesie olaak sağlamasıdır. 8

5 Yaırımcı açısıda, modeli fayda maksimizasyou yerie bu şekilde kurulması daha kolaydır ve yaırımcıı amacıı daha subjekif olarak karşılamasıı sağlamakadır. Acak bahsedile formlar dışıda çok döemli oralama-varyas porföy seçim modeli yaırımcıı beklediği faydayı maksimize edecek biçimde aşağıda belirile formda da kurulabilir. { } E( w: max E( x wvar( x x e x + Pu,, L, + (9 Her üç modeli de opimum çözümü çok döemli bir porföy sraejisidir ve her döem başıda alıması gereke yaırım kararları dizisii emsil emekedir. Çok döemli porföy sraejisi aşağıdaki gibi aımlaabilir. { μ, μ, μ, L, μ } μ μ μ μ μ μ μ μ,,, L, M M M M μ μ μ μ ( Başka bir deyişle, ici döem başıda mevcu varlığı (x o döem boyuca geçerli olacak porföy kararıa ( karşılık gele yaırım sraejisidir. μ u μ (x u μ (x M M u μ (x ( Herhagi bir çok döemli porföy sraejisii ( eki olabilmesi içi, E(x E(x veya Var(x Var(x koşullarıda e az bir aesii kesi olarak sağlaya bir porföy sraejisi var olmamalıdır. ( ile verile problemde yer ala σ veya ( ile verile problemde yer ala paramereleri içi değişik değerler verilerek eki sıırı elde edilmesi mümkü olacakır. (9 ile verile modeldeki w parameresi riske kaçıma kasayısıı emsil emekedir. Yukarıda bahsedile eki porföy sraejisi (9 ile verile problemi çözdüğü gibi, σ Var(x kısıı alıda ( ile verile problemi ve E(x kısıı alıda ( ile verile problemi çözmekedir. w parameresi ile 9 emsil edile riske kaçıma kasayısı aşağıdaki gibi aımlamakadır. E(x w ( Var(x Riske kaçıma kasayısı, ihai varlığı beklee değerii ihai varlığı varyasıa göre kısmi ürevi alıarak elde edildiğide dolayı, bir alamda yaırımcıı riske karşı duyarlılığıı gösermekedir. Başka bir ifadeyle, yaırımcıı bir birim riske daha kalamak içi beklediği ek geiri oraı olarak da adladırılabilir. Dolayısıyla, yaırımcı hakkıda bu bilgii ediilebildiği durumlarda çok döemli oralama-varyas porföy seçimi problemii opimum çözümü, (9 ile verile problemi çözülmesi eiceside elde edilebilecekir. Bu çalışma kapsamıda problemi opimal çözümüde çok uygulamadaki ekileri göz öüe alıacağıda (9 problemii opimal çözümü EK- de açıklamakadır.. VERİLER ve MODELİN ES EDİLMESİ ümü riskli varlıklarda oluşa porföy seçimie örek olarak kullaıla beklee geiri ve kovaryas marisi verileri, İMKB de işlem göre hisse seeleride Akbak(A, Garai(B, Migros(C ve üpraş(d ı arihleri arasıda gülük kapaış fiyalarıda yola çıkılarak elde edilmişir. Başlagıça yaırımcıı bir birim varlığı olduğuu varsayarak öümüzdeki dör gü içeriside oluşacak ( opimum porföyleri elde edilmesi hedeflemekedir. Amaç yaırımcıı ihai varlığıı beklee değerii, porföy riski değerii aşmayacak biçimde maksimize emekir.( σ Her bir hisse seedii bahsedile döem içerisideki oralama geirisi sırasıyla, A B E(e,76, E(e, 566, E(e C,6 ve E(e D,679 olarak hesaplamışır. Belirile döem içi kovaryas marisi aşağıda verilmekedir., 75, 8 6., 7 8, 85,, 86, Cov( e ;,,,, 6,, 78, 997, 7, 86, 997, 699 Öreği yukarıda kovaryas mariside görüle,7 değeri A hisse seedi ile D hisse seedi arasıdaki kovaryas erimii belirmekedir. Başka bir deyişle bu değer, A hisse seedii fiya harekeleride meydaa gele değişimi, D hisse seedii fiya harekeleride kayaklaa kısmı olarak yorumlaabilir. E düşük oralama geiri oraıa sahip ola hisse seedii baz kabul ederek geiri vekörü aşağıdaki gibi oluşurulur. Öreği geiri vekörüü

6 birici bileşei; A hisse seedii beklee geiriside, baz hisse olarak seçile C hisse seedii beklee geirisii çıkarılması ile elde edilecekir. E( P A C B C D C [ e e ;e e ;e e ] [,6 ;, ;,],,, P vekörü kullaılarak E( P P E( P P marisi elde edilebilir. marisi ek döemli durağa porföy seçimide yer ala kovaryas marisii çok döemli diamik porföy seçimideki karşılığıdır ve zama içeriside hisse seelerii birbirie bağımlı değişimlerii emsil emekedir. e e E( PP E e e e e e e e e A C B C A C B C D C ( D C e e E ee e e A A C A B A C A D A C ( e e e ee ee ee ee C B C C D C C + ( e ee + ( e ee + ( e A B A C B B C B D B C ee ee ( e e e ee ee B C C ( C C D C + + ( e e + ( e ee ee ee ee ( e e e D C C C D C e ( ( C e + e e e + e + ( e, 6, 78, 7, 78, 57, 5 ;,,,, 7, 5, 9 Yukarıda açıklaa hesaplamalar gerçekleşirilirke E( e e Cov( e + E( E( bağıısı göz C A C C B C C D C C E(e P E e e e e e e e e e, 9, 79, 5,,,, A D A C B D B C D D C e e öüde buludurulmalıdır. Bezer biçimde vekörü aşağıdaki gibi elde edilir. ( ( ( [ ] E(e C P Döemsel olarak opimum porföyü ve eki sıırı elde edilebilmesi içi μ, ν, τ ve a, b, c paramerelerii hesaplaması gerekmekedir. Bu amaçla ilk öce B, A, A, B ve B paramereleri elde edilmelidir. ( ve ( deklemleri ile aımlaa A, A paramereleri, ( deklemi ile aımlaa B ile birlike yaırımcıı varlık mikarıda meydaa gele değişimi simgelemekedir. Yukarıda sıralaa paramereler, herbir döem içi yaırımcıı döem sou varlığıı kalaılacak risk seviyesi göz öüe alıarak ilgili döemde varlık mikarıı maksimize edecek biçimde yaırım sraejisii belirlemeside kullaılmakadır. Dolayısıyla her bir döem içi ilgili opimum yaırım sraejisii elde edilmesi, ardışık olarak ( veya ( deklem akımı ile aımlaa problemi diamik programlama aracılığıyla çözümlemesi ile mümkü olmakadır. Diamik programlama ile her döem souda elde edile opimum yaırım sraejisi eiceside yaırımcıı elde edeceği ihai varlık, bir soraki döemde yei yaırım sraejisii belirlemede kullaılmakadır. B E( P E ( P P E( P [, 6,, ] 598, 78 67, 7 6, 6, 6 67, 7, 8 8, 7,, 689 6, 6 8, 7 79, 86, A E(e E( P E ( PP E(e P C C, 6 [ 775,, 77, 9, 6 ], 79, 5, 8 A E( e E( e P E ( PP E( e P C C C, 7, 7, 6 A A Hesaplaa ve paramereleri büü döemler B B içi birbirie eşiir. Acak ayı durum ve içi geçerli değildir. Dolayısıyla, bu paramereleri her bir döem içi ayrı ayrı hesaplaması gerekmekedir. ( k+ ( k+ k k, içi B B A / A,, B (,8 (,689 (,6 içi,869 (,8 B (,689,895 (,6 (,8 içi B (,689, 8 (,6

7 içi B (,689(,5, 85 B Bezer biçimde parameresi de aşağıdaki gibi elde edilebilecekir. İfadeleri zamaa bağlı olması, her bir döem souda elde edile aki akımlarıı bugüe idirgemesi olarak yorumlaabilir. ( ( B B A / A,, k+ k k+ k, içi (,8 B (,689 (,6 içi (,8 B (,689 (,6 içi (,8 B (,689 (,6 içi B (,689 (,5,,5,7, ν + Ak B Ak B Ak B k+ k k + + Ak B Ak B k k (, (, + (, (, + (, 8 (, 8 + (, 85, 6 ν,6 a ν (,6 μν (,(,6 b a (,67,5 c τ μ ab, (, (, (,, 85, Verile problem içi oralama-varyas eki sıır aşağıdaki biçimde elde edilebilecekir. Ek olarak döem sayısıı arırılması ile birlike eki sıırda meydaa gele değişimleri icelemesi de mümküdür. Var(x ( a / ν [ E(x ( μ + bνx ] E(x ( μ + bν x ( 67 ( 6 Var( x, /, + cx ( 5 6 E(x, + (, (, +, 85 ( 5 6 E( x, + (, (, A A B B B,,, ve paramerelerii elde edilmesi ile birlike μ, ν, τ ve a, b, c paramereleri aşağıdaki biçimde hesaplaabilir. Yukarıda sıralaa paramereler sırasıyla (6 ve (7 deklemleri ışığıda, yaırımcı sraejisi soucu elde edilecek beklee geiri ve kalaılacak risk paramerelerii hesaplamasıda kullaılır. Dikka edilecek olursa her iki deklem de yaırımcıı riske karşı uumuu simgeleye w parameresii içermekedir. Gerekli sadeleşirmeler gerçekleşirildiği akdirde eki sıır elde edilmiş olur. Böylece yaırımcı, belirli bir risk seviyeside elde edebileceği e yüksek geiri oraıı veya belirli bir geiri seviyeside elde edebileceği e düşük riski hesaplayabilecekir. Var(x 7,66 E(x [ E(x,7],7 +,85 μ A A A A A (,8, Şimdi eki sıırı grafik üzeride gösermeye çalışalım. Grafike y-eksei ihai varlığı beklee değerii emsil ederke x-eksei varyası emsil emekedir. τ A A A A A (,6,

8 Geir Eki Sıır Risk Şekil : Riskli Varlıklar Oralama-Varyas Eki sıır ( Eki sıırı elde edilmesi ile birlike sadece her bir döem içi opimal porföy sraejisii belirlemesi kalmakadır. Opimal porföy sraejisii belirlemesi ile birlike, döemsel olarak her bir varlıka hagi mikarda elde buludurulacağı belirlemiş olur. u K x + v, 99 C K E ( PP E(e P, 97,,,,, 689 ν A k v (bx + E ( PP E( P,,,, wa k+ Ak Hesaplaa K vekörü büü döemler içi sabiir. Acak ayı durum v vekörü içi geçerli değildir. Dolayısıyla her bir döem içi ayrı ayrı hesaplaması gerekmekedir. Her bir döem içi ayrı ayrı hesaplaa opimal porföy sraejisi aşağıda verilmekedir., 5, v, 98, v, 959, 7, 78 7, 75, 679, 58 v, 9677, v, 985 7, 77 7, 797 Yukarıda verile vekörler her bir döem içi sırasıyla Akbak, Garai ve üpraş hisse seelerie yaırıla varlık mikarlarıdır. üpraş içi verile mikarı egaif olması açığa saışı varolduğuu gösermekedir. Açığa saış eiceside elde edile varlık, diğer hisse seelerii fiase emede kullaılmakadır. Açığa saış mikarı içi herhagi bir kısılama bulumamakadır. Başlagıça baz hisse olarak seçile Migros içi ayrıla varlık mikarı ise yie her bir döem içi ( i x u bağıısı kullaılarak elde edilebilecekir. Bu bağıı, Migros hisse seedi içi yapılacak yaırımı başlagıç varlığı ile açığa saış eiceside elde edile oplam varlıka diğer seelere yapıla yaırımı çıkarılması ile elde edilebileceğii söylemekedir. Buu yaıda çok döemli porföy sraejisii uygulaması eiceside karşılaşıla beklee geiri ve varyas değeri aşağıdaki biçimde hesaplamakadır. ν E( x ( μ + b ν x + wa (, + (, 5 (, 6, 6 +, ( (, 67 ν Var( x + cx aw (, 6 +, 85 (, 67 (, 9 Zae haırlaacak olursa problem formulasyouda amaç yaırımcıı ihai varlığıı beklee değerii, risk değerii aşmayacak biçimde maksimize emeki. Yukarıda elde edile Var(x değeri bir alamda yapıla işlemleri ve elde edile paramereleri doğrulamakadır.

9 SONUÇ ve YORUMLAR Bu çalışma kapsamıda, porföy seçimi problemii e şekilde diamik hale döüşürülebileceği İsabul Mekul Kıymeler Borsası verileri kullaılarak göserilmeye çalışılmışır. Yukarıda, v vekörü ile aımlaa döemsel opimal porföy sraejisi gülük kapaış fiyalarıda yola çıkılarak hesapladığıda, ilgili işlem güüü akip ede dör gü içi alıacak opimal yaırım sraejisii belirmekedir. v vekörü ile verile poziif değerler ilgili yaırım aracıa belirile mikar kadar varlığı yaırıldığıı göserirke, egaif değerler ilgili yaırım aracıda belirile mikar kadar açığa saış olduğua işare emekedir. Açığa saış eiceside elde edile varlık, başlagıç varlığı ola bir para birimie ekleerek da görüle porföy sraejisi oluşurulmakadır. Öreği, v vekörüde yer ala,5 değeri başlagıç aşamasıda Akbak hisse seedie yaırılması gereke mikarı emsil ederke,,98 değeri Garai hisse seedie yaırılması gereke varlık mikarıı gösermekedir. Acak dikka edilecek olursa, yaırımcıı başlagıça elide bir birim varlık bulumakadır. Dolayısıyla, ilgili hisse seelerie yapılacak yaırım diğer hisse seelerii açığa saışıda elde edilecekir. üpraş hisse seedi içi hesaplaa değeri olması, bu mikarda açığa saışı olacağıı belirmekedir. Buu yaıda v vekörüde baz hisse olarak seçile Migros a ayrılacak varlık mikarı ile ilgili herhagi bir bilgi bulumamakadır. Acak bu mikar, başlagıç yaırımıa açığa saış eiceside elde edile varlık ekleip, diğer hisse seelerie yapıla oplam yaırım çıkarılarak hesaplaabilir. Bu durumda Migros hisse seedi içi -7,56 değeri elde edilir. Bu ise Migros hisse seedide de ilgili mikarda varlığı açığa saışıı gerçekleşirileceğii belirmekedir. Dikka edilecek olursa meo, beklee geirisi düşük hisse seelerii açığa saışıda elde eiği varlığı, geirisi daha yüksek ola diğer hisse seelerie yaırmaka, böylelikle de daha yüksek beklee geiri elde edilmekedir. Bilidiği gibi İsabul Mekul Kıymeler Borsası da açığa saış işlemie izi verilmemekedir. Bu durumda modeli içerisie risksiz varlık da ekleerek, hisse seedi açığa saışı yerie, bakada borçlaarak fiasma yolua gidilebilecekir. So olarak ele alıa modeli risk ve geiri paramereleri, Markowiz modeli ile hesaplaa souçlar ile karşılaşırılabilir. Çok döemli opimal porföy sraejisii beklee geirisi, olarak hesaplaırke, porföy riski olarak elde edilmekedir. Dolayısıyla yaırımcıı başlagıça elide bulua birim varlık, yaırım döemi souda, değerie çıkmakadır. Markowiz modeli ile ayı risk seviyeside gerçekleşirile hesaplama içi,75 soucu elde edilmekedir. İşlem maliyelerii çıkarılması ile birlike çok döemli opimal sraejisi soucu elde edile mikarda azalma olacağı açıkır. Acak yie de Markowiz modelide daha yüksek bir geiri elde edilmekedir. EK-: Modeli Aaliik Çözümüü Elde Edilmesi Problemi opimum çözümü içi başvurulacak yöem, çözümü kolaylaşırmak adıa bir yardımcı problem işa emekir. Yardımcı problem diamik programlama alamıda ayrılabilir olmalıdır. Primal problem E(w ile yardımcı problemi çözüm kümeleri arasıdaki ilişkiler kullaılarak, yardımcı problemi opimum çözümü araşırılacak ve yardımcı problemi opimum çözümü kullaılarak E(w i opimum çözümü elde edilecekir. Riske kaçıma kasayısı w i bir foksiyou olarak elde edile fayda foksiyouu maksimizasyou problemii(e(w opimum çözümleride oluşa çözüm kümesii E ( w ile göserelim. Ayrılabilir formdaki yardımcı problem aşağıdaki gibi aımlamakadır. ~ U(E(x, E(x E(x wvar(x E(x w{ E(x E (x } { E (x E(x } + + w E(x w ( U ~ foksiyouu E(x ve E(x i koveks bir foksiyou olduğu açıkır. (9 bağıısı ile verile, beklee faydaı maksimizasyou içi oluşurula yardımcı problem aşağıdaki biçimde aımlamakadır. { + λ } (A( λ,w: max E wx x x e x + Pu,,, L, + ( Bezer biçimde, ( A( λ, w problemii opimum çözümleride oluşa çözüm kümesi A ( λ, w ile göserilebilir. Yardımcı problemi opimum çözümüü elde edilmeside kullaılmak üzere fayda foksiyouu ihai varlığı beklee değerie göre kısmi ürevii d(, λ olarak aımlayalım. ~ U(E(x,E(x d(, λ E(x (5 + we(x eorem : (9 ile verile primal problemi opimum çözümü, ayı zamada ( ile verile

10 yardımcı problemi de opimum çözümüdür (Li ve Ng,,s:9. ( w (d(, w, w E İspa: Çelişki yaramak amacıyla A ( d(, w, w olduğuu varsayalım. Bu durumda aşağıdaki bağııyı sağlayacak bir çözümü buluabilir. E( x E( x w,d(,w > w,d(,w (6 E( x E( x Yukarıda belirile vekörel çarpımı (5 eşiliği ile birarada düşüülmesi eiceside riske kaçıma kasayısı aşağıdaki gibi elde edilir. ~ U(E(x,E(x w (7 E(x U ~ foksiyouu E(x ve E(x i koveks bir foksiyou olduğuda aşağıda verile özellik sağlaır. U(E( % x,e( x U(E(x %,E( x E( x E( x + w,d(,w E( x E( x (6 ve (8 bağıılarıı birleşirilmesi eiceside başlagıç varsayımı E ( w ile çelişki yaraa aşağıdaki souç elde edilir. ~ ~ U E(x, E(x > U E(x, E(x (9 ( ( ڤ Böylelikle çözülmesi güç beklee fayda maksimizasyou problemi, çözülebilir A( λ, w problemie döüşürülmüş olacakır. Yardımcı problemi çözüme ulaşırılabilmesi içi A( λ, w problemii çözümüü hagi koşullar alıda E(w içi opimal çok döemli porföy sraejisi oluşurduğuu belirlemesi gerekmekedir (Li ve Ng,,s:9. eorem :, yardımcı problemi bir opimum çözümü olsu ( A ( λ, w. Bu problemi ayı zamada primal problemi de opimum çözümü olabilmesi içi gerek koşul, λ ı aşağıda verile formda olmasıdır. λ + w E(x İspa: Verile herhagi bir riske kaçıma kasayısı(w içi A( λ, w problemi λ ı bir foksiyou olarak elde edilebilir. Diğer bir deyişle, A (8 A ( λ, w içerisideki her oka { E( x ( λ, w, E( x ( λ, w } biçimide λ ı bir foksiyou olarak yazılabilir. (9 problemii opimum çözüm kümesi ola E ( w, (9 problemii opimum çözüm kümesi ola A ( λ, w i al kümesi ( E ( w A ( λ, w olduğuda, (9 ile verile beklee faydaı maksimizasyou problemi aşağıda verile basi forma idirgeebilir. Max U(E % ( x( λ,w,e ( x ( λ, w λ Max E ( x ( λ,w wvar ( x( λ,w λ Max E( x( λ,w we x( λ,w E ( x( λ,w λ we ( x ( λ,w { we ( x ( λ,w E x ( λ, w } { ( } Max λ ( + + ( Opimal λ ı elde edilmesi amacıyla, λ ya göre kısmi ürevi alıması ile birlike birici derece opimallik koşulu elde edilmiş olur. E( x ( λ,w E( x( λ,w w we(x λ + + λ ( Diğer yada (5 eşiliği göz öüde buludurulması ile birlike ifadei so haliaşağıdaki gibi elde edilir.(reid ve Ciro,97,s:-8 E(x ( λ, w E(x ( λ, w w + λ λ λ ( Böylelikle, λ + we(x soucu elde edilmiş olur. ڤ Yukarıda ispalaa eoremler ışığıda opimal çok döemli oralama-varyas porföy sraejisii elde edilebilmesi içi ( ile verile yardımcı problemi çözümlemesi gerekmekedir. - ici döemde başlaya diamik programlama algoriması, x - içi aşağıdaki gibi aımlamakadır (Li ve Ng, 998, s: Max J ( u x Max wx + λx { } ( + Pu λ ( P e x + e x + u { we ( e x ( } + λe e x Max E w Max { } + λe( P wx E( e P u wu E( P P u ( problemi içi opimum porföy sraejisii buluabilmesi acak - ici döem içi porföy (

11 sraejisie göre (u - ürevii sıfıra eşileerek çözülmesi ile mümkü olacakır. dj (u du x ( ürev alma işlemii gerçekleşirilmesi ve deklemi u - değişkeii ifade edecek biçimde düzelemesi ile birlike - ici döem içi opimal porföy sraejisi aşağıdaki gibi elde edilir. ( λ ( u E P P E( P E e P x w (5 (5 ile elde edile opimum porföy sraejisii ( ile verile yaırımcıı beklee faydasıı aımladığı J - (x - foksiyouda yerie koulması ile birlike beklee faydaı maksimum değeri J -(x - aşağıdaki biçimde elde edilebilecekir. ( ( P ( P P ( P J (x w E e E e E E e x ( P ( P P ( P ( P ( P P ( P + λ E e E( E E e x + ( λ / we E E (6 Beklee fayda foksiyouu daha sade bir biçimde ifade edebilmek amacıyla çeşili aımlamaları yapılması mümküdür. ( ( ( w w E(e E e P E P P E e P (7 λ ( ( ( λ E e E( P E P P E e P (8 α λ / w (9 Bu aımlamalar ile birlike (6 bağıısı kullaılarak hesaplaa yaırımcıı beklee faydasıı maksimum değeri ( J (x, aşağıdaki gibi daha sade bir formda yazılabilir. J (x w x+ λ x + α E P E P P E P ( ( ( ( ( PP ( E( e k E( Pk E ( PkPk E( e kpk λ k+ P E E( w E(e E(e P E P P E(e ( k k k ( k k kpk k+ E ( PP E(e P x ( k ( bağıısı verile yardımcı problemi çözümü olmakla birlike, (, ( ve (9 problemleri içi de aaliik bir çözüm oluşurmakadır. Böylelikle, uygu aımlamaları yapılması ile birlike çok döemli oralama-varyas porföy seçimi gerçekleşirilebilir.problemi çözümü içi yapıla aımlamalar aşağıdadır. ( ( P PP P L ( B E(P E ( PP E( P,, L, A E(e E( P E ( PP E(e P,, L, A E(e E(e E ( E(e,,, ( k+ ( k+ ( ( k+ k+ B B A / k A k,, L, (5 L B B A / k A k,,, μ ν (6 A ( 7 k + A A k B (8 τ (9 ν a ν ( μν b a ( c τ μ ab ( Bu aımlamalar ışığıda ( bağıısı ile verile döemsel opimal porföy sraejisi aşağıdaki gibi aımlaacakır. ( eşiliği ihai döeme gelidiğide alıa porföy sraejisii opimum değerii emsil emekedir. Acak, geriye döük işlemler gerçekleşirilerek aralığıdaki her döem içi bezer biçimde opimum porföy sraejisi elde edilebilir. E geel halde aralığıdaki her döem içi opimal porföy sraejisi aşağıdaki biçimdedir. λ + u (x E ( P P E( P E(e P x w+ 5 u E ( PP E(e P x u ν A k + (bx + E ( PP E( P,,, L wa k+ Ak E ( P P + (bx E(e P ν + w a x E ( P P ( E( P (

12 So olarak verile problem içi oralama-varyas eki sıır verile aımlamalar ile birlike aşağıda verile biçimde elde edilir. a Var (x + [ E(x ( μ+ bνx ] cx ν (5 E(x ( μ+ bν x Eki sıır, verile herhagi bir risk seviyesi içi beklee geirii veya am ersie herhagi bir geiri seviyesie karşılık gele riski hesaplamasıda kullaılabilmekedir. Acak çok döemli opimal porföy sraejisii ihai beklee değeri ve varyası aşağıdaki gibi hesaplamakadır. ν E(x ( w ( μ + bνx + (6 wa Var (x ( w ( ν / aw + cx (7 ( ile verile bağııı öemli bir özeliği, bağııı yaırımcıı riske karşı uumu ve mevcu varlığı gibi iki farklı erimde oluşmasıdır.bu öemli özelliği vurgulamak adıa ( ile verile çözüm riske karşı uum ve mevcu varlığı oplamı biçimide de ayrı ayrı ifade edilebilmekedir. u (x; γ Kx + v( γ,,, L (8 γ λ / w (9 K E ( P P E(e P (5 γ A k PP P ( γ E ( k E( + Ak,, L, (5 v ( γ ( γ / E ( P P E( P (5 KAYNAKÇA ALAY Erdiç,, Sermaye Piyasasıda Varlık Fiyalama eorileri, Deri Yayıları:, İsabul CHEN A., JEN F., ZIONS S., 97, he Opimal Porfolio Revisio Policy, Joural of Busiess, Vol: No., s. 5-6 DUMAS B., LUCIANO E., 99, A Exac Soluio o Dyamic Porfolio Choice uder rasacio Coss, Joural of Fiace, Vol:6 No., s ELON E. J., GRUBER M. J., 97, O he Opimaliy of Some Muliperiod Porfolio Selecio Crieria, Joural of Busiess, Vol:7 No., s.- HAKANSSON N.H.,97, Muliperiod Mea- Variace Aalysis: oward a Geeral heory of Porfolio Choice, Joural of Fiace, Vol:6 No., s LI Dua, NG Wa-Lug,, Opimal Dyamic Porfolio Selecio: Muliperiod Mea- Variace Porfolio Selecio, Mahemaical Fiace, Vol: No., s.87-6 LI Dua,CHAN.F., NG W.L., 998, Safey-firs dyamic porfolio selecio, Dyamics of Coiuous, Discree ad Impulsive Sysems, Vol:, s MARKOWIZ Harry, 95, Porfolio Selecio, Joural of Fiace, Vol.7., s.77-9 MERON Rober C., 969, Lifeime Porfolio Selecio Uder Uceraiy: he Coiuous- ime Case, Reviews of Ecoomical Saisisics, Vol:5, s.7-57 MOSSIN J., 968, Opimal Muliperiod Porfolio Policies, Joural of Busiess, Vol: No., s.5-9 OBERUC Richard,, Dyamic Porfolio heory ad Maageme, Mc Graw Hill, USA PEDRON Nieves Hicks,998, Model-Based Asse Liabiliy Maageme: A Comparaive Sudy, Cambridge Üiversiesi, Dokora ezi REID R.W.,CIRON S.J.,97, O Noiferior Performace Idex Vecor, Joural of Opimizaio heory ad Applicaios, Vol:7, s. -8 SAMUELSON P.A.,969, Lifeime Porfolio Selecio by Dyamic Sochasic Programmig, he Review of Ecoomics ad Saisics, Vol: No., s. 9-6 YAO David, ZHANG Hagi, ZHOU Xu Yu,, Sochasic Modellig ad Opimizaio, Spriger-Verlag New York Ic., USA 6

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

ARMAX Modelleri ve Porsuk Barajı Su Seviyesinin Öngörüsü. ARMAX Models and Forcasting Water Level of Porsuk Dam

ARMAX Modelleri ve Porsuk Barajı Su Seviyesinin Öngörüsü. ARMAX Models and Forcasting Water Level of Porsuk Dam ARMAX Modelleri ve Porsuk Barajı Su Seviyesii Ögörüsü Hülya Şe a ve Özer Özaydı a a Eskişehir Osmagazi Üiversiesi, Fe-Edebiya Fakülesi, İsaisik Böl., 26480, Eskişehir e-posa: hse@ogu.edu.r, oozaydi@ogu.edu.r

Detaylı

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi Teksil Tekolojileri Elekroik Dergisi Cil: 3, No: 1, 009 (31-37) Elecroic Joural o Texile Techologies Vol: 3, No: 1, 009 (31-37) TEK OLOJĐK ARAŞTIRMALAR www.ekolojikarasirmalar.com e-issn:- Makale (Paper)

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DURAĞAN OLMAYAN ZAMAN SERİLERİNDE KOİNTEGRASYON VEKTÖRÜNÜN TAHMİNİ ÜZERİNE BİR ÇALIŞMA Yudum BALKAYA İSTATİSTİK ANABİLİM DALI ANKARA 006 Her

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi)

YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oranı ve Net Bugünkü Değer Yöntemlerinin İncelenmesi) YATIRIM PROJELERİNİN HAZIRLANMASI VE DEĞERLENDİRİLMESİ (İç Karlılık Oraı ve Ne Bugükü Değer Yöemlerii İcelemesi) Tarık GEDİK, Kadri Cemil AKYÜZ, İlker AKYÜZ KTÜ Orma Fakülesi 680 TRABZON ÖZET Ulusal kalkımaı

Detaylı

Türkiye de Turizm ve İhracat Gelirlerinin Ekonomik Büyüme Üzerindeki Etkisinin Testi: Eşbütünleşme ve Nedensellik Analizi

Türkiye de Turizm ve İhracat Gelirlerinin Ekonomik Büyüme Üzerindeki Etkisinin Testi: Eşbütünleşme ve Nedensellik Analizi Süleyma Demirel Üiversiesi, Fe Bilimleri Esiüsü Dergisi, 6-2 ( 202), 20-2 Türkiye de Turizm ve İhraca Gelirlerii Ekoomik Büyüme Üzerideki Ekisii Tesi: Eşbüüleşme ve Nedesellik Aalizi Esra POLAT, Süleyma

Detaylı

STOKASTİK (R,s,S) ve STOKASTİK (R,S) STOK KONTROL POLİTİKALARININ POLİÜRETAN SEKTÖRÜNDE MARKOV KARAR SÜRECİ YARDIMIYLA KARŞILAŞTIRILMASI

STOKASTİK (R,s,S) ve STOKASTİK (R,S) STOK KONTROL POLİTİKALARININ POLİÜRETAN SEKTÖRÜNDE MARKOV KARAR SÜRECİ YARDIMIYLA KARŞILAŞTIRILMASI Yöeim, Yıl: 8, ayı: 56, Şuba 27 TOKATİK (R,s,) ve TOKATİK (R,) TOK KONTROL POLİTİKALARININ POLİÜRETAN EKTÖRÜNDE MARKOV KARAR ÜRECİ YARDIMIYLA KARŞILAŞTIRILMAI Doç. Dr. Necde ÖZÇAKAR Arş. Grv. İbrahim Zeki

Detaylı

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi Yöetim, Yil: 6 Sayi: 21 Hazira 1995, s. 55-60 SHARPE TEK indeks MODELi ile PORTFÖY SEciMi, Dr. Erha Özdemir I.Ü. Tekik Bilimler MY.O. Dr. I.Müfit GIRESUNLU i'ü. Tekik Bilimler M.Y.O. Bu çalismada her bir

Detaylı

Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama

Olasılıksal Oynaklık Modellerinin Bayesci Çözümlemesi ve Bir Uygulama SDU Joural of Sciece (E-Joural), 0, 6 (): 6-7 Olasılıksal Oyaklık Modellerii Bayesci Çözümlemesi ve Bir Uygulama Derya Ersel,*, Yasemi Kayha Aılga, Süleyma Güay Haceepe Üiversiesi, Fe Fakülesi, İsaisik

Detaylı

Bankacılık Sektörü Hisse Senedi Endeksi İle Enflasyon Arasındaki İlişki: Yedi Ülke Örneği

Bankacılık Sektörü Hisse Senedi Endeksi İle Enflasyon Arasındaki İlişki: Yedi Ülke Örneği YÖNETİM VE EKONOMİ Yıl:213 Cil:2 Sayı:2 Celal Bayar Üiversiesi İ.İ.B.F. MANİSA Bakacılık Sekörü Hisse Seedi Edeksi İle Eflasyo Arasıdaki İlişki: Yedi Ülke Öreği Doç. Dr. Aslı YÜKSEL Bahçeşehir Üiversiesi,

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA Cemil ÖZ 1, Raşi KÖKER 2, Serap ÇAKAR 1 1 Sakara Üiversiesi Mühedislik Fakülesi Bilgisaar Mühedisliği Bölümü, Eseepe, Sakara 2 Sakara Üiversiesi Tekik

Detaylı

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries ÇÜ Fe ve Mühedislik Bilimleri Dergisi Yıl:0 Cil:6-3 TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Pricile Comoe Aalysis Use i Fisheries Leve SANGÜN Su Ürüleri Aabilim Dalı Musafa AKAR Su Ürüleri

Detaylı

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA Filiz KARDİYEN (*) Özet: Portföy seçim problemi içi klasik bir yaklaşım ola karesel programlama yötemi,

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

SANAL HESAPLAR EMEKLİLİK SİSTEMİ ve SSK UYGULAMASI

SANAL HESAPLAR EMEKLİLİK SİSTEMİ ve SSK UYGULAMASI SANAL HESAPLAR EMEKLİLİK SİSTEMİ ve SSK UYGULAMASI UMUT GÖÇMEZ SSK Başkalığı S. S. Uzma Yardımcılığı ve Uzmalığı Aama, Görev ve Çalışma Yöemeliğii Sosyal Sigora Uzmalığı içi Ögördüğü YETERLİK TEZİ olarak

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY

ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY ZONGULDAK KARAELMAS ÜNİVERSİTESİ ZONGULDAK KARAELMAS UNIVERSITY ISSN: 1302-0056 ORMAN FAKÜLTESİ DERGİSİ JOURNAL OF FACULTY OF FORESTRY Cil/Volume 7 Yıl/Year 2005 Sayı/Number 7 hp://bof.karaelmas.edu.r/joural

Detaylı

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri 31 Ocak 2013 Perşembe Gülük Bülte İMKB verileri İMKB 100 78,982.9 Piyasa Değeri-TÜM ($m) 315,056.7 Halka Açık Piyasa Değeri-TÜM ($m) 90,359.1 Gülük İşlem Hacmi-TÜM ($m) 2,603.21 Turizm gelirleri 2012 yılıda

Detaylı

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi 06 Şubat 2013 Çarşamba Gülük Bülte İMKB verileri İMKB 100 80,309.9 Piyasa Değeri-TÜM ($m) 321,722.1 Halka Açık Piyasa Değeri-TÜM ($m) 92,241.7 Gülük İşlem Hacmi-TÜM ($m) 1,673.26 Yurtdışı piyasalar Borsalar

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve DĐŞLĐLER Diş Boyuları Taba Kavisi (Fille Radius) Diş başı yüksekliği (Addedum) Taba yüksekliği(dededum) Diş yüksekliği (Addedum +Dededum) Taksima (Circular pich) Diş kalılığı (Tooh Thickess) Dişler arasıdaki

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

ÜSTEL VE LOGARİTM FONKSİYONLAR

ÜSTEL VE LOGARİTM FONKSİYONLAR ÜSTEL VE LOGARİTM TMİK FONKSİYONLAR Şekil 5.1a Üsel Fonksiyonlar 2 y 10 8, 1 y = f = b b> 6 4 2-3 -2-1 1 2 3 Şekil 5.1b Üsel Fonksiyonlar 3 y 50 2 y = f = 2 40 30 20 y = f = 2 10-2 -1 1 2 3 4 Şekil 5.1c

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

TÜRKİYE DE EKONOMİK BÜYÜME, BEŞERİ SERMAYE VE İHRACAT ARASINDAKİ İLİŞKİLERİN EKONOMETRİK ANALİZİ: 1970 2005

TÜRKİYE DE EKONOMİK BÜYÜME, BEŞERİ SERMAYE VE İHRACAT ARASINDAKİ İLİŞKİLERİN EKONOMETRİK ANALİZİ: 1970 2005 TÜRKİYE DE EKONOMİK BÜYÜME, BEŞERİ SERMAYE VE İHRACAT ARASINDAKİ İLİŞKİLERİN EKONOMETRİK ANALİZİ: 970 2005 Halil ALTINTAŞ * Haka ÇETİNTAŞ ** ÖZ Bu çalışma, 970 2007 döemi yıllık veriler kullaarak Türkiye

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI Türkiye Cumhuriye Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI TCMB Faiz Kararlarının Piyasa Faizleri Ve Hisse Senedi Piyasaları Üzerine Ekisi Mura Duran Refe Gürkaynak Pınar Özlü Deren

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Bilgisayar Destekli Fen Bilgisi Öğretiminin Öğrencilerin Fen Ve Bilgisayar Tutumlarına Etkisi

Bilgisayar Destekli Fen Bilgisi Öğretiminin Öğrencilerin Fen Ve Bilgisayar Tutumlarına Etkisi The Turkish Olie Joural of Educaioal Techology TOJET Ocober 2003 ISSN: 1303-6521 volume 2 Issue 4 Aricle 12 Bilgisayar Desekli Fe Bilgisi Öğreimii leri Fe Ve Bilgisayar Tuumlarıa Ekisi Yrd. Doç.Dr. Nilgü

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

A Signal Timing Model for Ankara: Case Study at Beşevler Intersection

A Signal Timing Model for Ankara: Case Study at Beşevler Intersection Süleyma Demirel Üiversitesi, Fe Bilimleri Estitüsü Dergisi, -(008),49-57 kara İçi Bir Siyal Zamalaması odeli: Beşevler Öreği Ebru rıka ÖZTÜRK *, ustafa Kürşat ÇUBUK, Seda HTİPOĞLU Gazi Üiversitesi Trafik

Detaylı

DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI. BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġstenecek Veriler

DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI. BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġstenecek Veriler DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġsenecek Veriler BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç ve kapsam Madde

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme Dağıtım Ağı Tasarımı Seçimi Uygu ağ seçimide ürü karakteristiklerii yaısıra dağıtım ağıı güçllü ve zayıf yöleri de göz öüüe alımalıdır. Geçe hafta ele aldığımız tasarımları hem güçlü hem de zayıf yöleride

Detaylı

Kırgızistan da İthalatın Belirleyicilerinin Modellenmesi

Kırgızistan da İthalatın Belirleyicilerinin Modellenmesi SESSION C: Uluslararası Ticare I 259 Kırgızisa da İhalaı Belirleyicilerii Modellemesi Assoc. Prof. Dr. Ebru Çağlaya (Kyrgyzsa-Turkey Maas Uiversiy, Kyrgyzsa) Ph.D. Cadidae Zamira Oskobaeva (Kyrgyzsa-Turkey

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 19, Sayı 2, 2013, Sayfalar 76-80 Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi Pamukkale Uiversity Joural of Egieerig Scieces TEK MAKİNELİ

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ

TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ TÜRKİYE İÇİN SERMAYE STOK VERİLERİ GÜNCELLENMESİ VE BÜYÜME ORANIYLA İLİŞKİSİ: 1972-2008 DÖNEMİ Updatig Capital Stock Data for Turkey ad Its Relatioship with Growth Rate: The Period of 1972-2008 Dr. Ahmet

Detaylı

Halloween Etkisinin İstanbul Menkul Kıymetler Borsasında Geçerliliğinin Testi. The Validity of the Halloween Effect in the Istanbul Stock Exchange

Halloween Etkisinin İstanbul Menkul Kıymetler Borsasında Geçerliliğinin Testi. The Validity of the Halloween Effect in the Istanbul Stock Exchange Halloween Ekisinin İsanbul Menkul Kıymeler Borsasında Geçerliliğinin Tesi Öze Halloween Ekisinin İsanbul Menkul Kıymeler Borsasında Geçerliliğinin Tesi Dr. Veli YILANCI İsanbul Üniversiesi İkisa Fakülesi

Detaylı

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor.

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor. Üsel Dağılım Babam: - Şu ampulleri hagisii ömrüü daha kısa olduğu hiç belli olmuyor. Baze yei alıalar eskilerde daha öce yaıyor. Hele şuradaki bildim bileli var. Evde yedek ampul yokke, gerekirse ou söküp

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Likidite Azlığı Priminin Menkul Kıymet Getirileri Üzerinde Etkileri ve Avrasya İçin Önemi

Likidite Azlığı Priminin Menkul Kıymet Getirileri Üzerinde Etkileri ve Avrasya İçin Önemi 30 INTERNATIONAL CONFERENCE ON EURASIAN ECONOMIES 0 Likidie Azlığı Priminin Menkul Kıyme Geirileri Üzerinde Ekileri ve Avrasya İçin Önemi Serdar Kuzu (Isanbul Universiy, Turkey) The Effecs of he Illiquidiy

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

Electronic Letters on Science & Engineering 2(2) (2006) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 2(2) (2006) Available online at www.e-lse.org Elecroic Leers o Sciece & Egieerig () (6) Available olie a www.e-lse.org Puma 56 Robo Arm Maipulaor B. Durmus 1, H. Temuras, N. Yumusak, F. Temuras 1 Sakarya Üiversiesi, Elekrik - Elekroik Mühedisligi

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

ĐSTA BUL TEK ĐK Ü ĐVERSĐTESĐ FE BĐLĐMLERĐ E STĐTÜSÜ ELEKTROMEKA ĐK SĐSTEMLERĐ MODEL PARAMETRELERĐ Đ KESTĐRĐMĐ. YÜKSEK LĐSA S TEZĐ Ufuk TUR

ĐSTA BUL TEK ĐK Ü ĐVERSĐTESĐ FE BĐLĐMLERĐ E STĐTÜSÜ ELEKTROMEKA ĐK SĐSTEMLERĐ MODEL PARAMETRELERĐ Đ KESTĐRĐMĐ. YÜKSEK LĐSA S TEZĐ Ufuk TUR ĐSTA UL TEK ĐK Ü ĐVERSĐTESĐ FE ĐLĐMLERĐ E STĐTÜSÜ ELEKTROMEKA ĐK SĐSTEMLERĐ MODEL PARAMETRELERĐ Đ KESTĐRĐMĐ YÜKSEK LĐSA S TEZĐ Ufuk TUR Aabilim Dalı : Mekaroik Mühedisliği Programı : Mekaroik Mühedisliği

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ 30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM

Detaylı

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI 1/9 Hazırlaya Oaylaya Yürürlük Tarihi Revizyo Tarihi Mehmet ÜVEY Mehmet ÜVEY 06.04.2011 05.06.2014 Gözde Geçire Gözde

Detaylı

DÖVĠZ KURU DALGALANMALARININ TARIMSAL DIġ TĠCARETE ETKĠSĠ: TÜRKĠYE ÖRNEĞĠ. Doç. Dr. ErĢan SEVER Aksaray Üniviversitesi ĠĠBF Ġktisat Bölümü

DÖVĠZ KURU DALGALANMALARININ TARIMSAL DIġ TĠCARETE ETKĠSĠ: TÜRKĠYE ÖRNEĞĠ. Doç. Dr. ErĢan SEVER Aksaray Üniviversitesi ĠĠBF Ġktisat Bölümü DÖVĠZ KURU DALGALANMALARININ TARIMSAL DIġ TĠCARETE ETKĠSĠ: TÜRKĠYE ÖRNEĞĠ THE EFFECT OF EXCHANGE RATE VOLATILITY ON AGRICULTURAL FOREIGN TRADE: THE CASE OF TURKEY Doç. Dr. ErĢa SEVER Aksaray Üiviversitesi

Detaylı

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL.

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL. TEMEL BANKACILIK HİZMEERİ TALEP ve BİLGİ FORMU ÜRÜNÜN /TANIMI : Katılım Fou (/Yabacı Para) Süresi (Vadesi) : Süresiz TAHSİL EDİLECEK ÜCRET, MASRAF VE KOMİSYON; Özel Cari Hesap İşletim Ücreti Hesap Özeti

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI Uludağ Üiversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Cilt XXIV, Sayı 1, 2005, s. 101-114 TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI Uludağ Üiversitesi ühedislik-imarlık Fakültesi Dergisi, Cilt 3, Sayı, 008 YENĐ BĐR ADAPĐF FĐLRELEE YÖNEĐ: HĐBRĐD GS-NLS ALGORĐASI Sedat ĐRYAKĐ * eti HAUN ** Osma Hilmi KOÇAL ** Özet: Bu makalede, adaptif

Detaylı

Veteriner İlaçları Satış Yetkisinin Veteriner Hekimliği Açısından Değerlendirilmesi: II. İlaç Satış Yetkisinin Vizyon ve Bilanço Üzerine Etkileri [1]

Veteriner İlaçları Satış Yetkisinin Veteriner Hekimliği Açısından Değerlendirilmesi: II. İlaç Satış Yetkisinin Vizyon ve Bilanço Üzerine Etkileri [1] Kafkas Uiv Vet Fak Derg 6 ():, 00 DOI:0./kvfd.00.6 RESEARCH ARTICLE Veterier İlaçları Satış Yetkisii Veterier Hekimliği Açısıda Değerledirilmesi: II. İlaç Satış Yetkisii Vizyo ve Bilaço Üzerie Etkileri

Detaylı

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ

İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Sosyal Bilimler Dergisi 2010, (4), 25-32 İMKB NİN LATİN AMERİKA BORSALARIYLA İLİŞKİSİ ÜZERİNE ÇOK DEĞİŞKENLİ GARCH MODELLEMESİ Özlem YORULMAZ - Oya EKİCİ İsanbul Üniversiesi İkisa Fakülesi Ekonomeri Bölümü

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

KIRILGAN BEŞLİ ÜLKELERİNİN HİSSE SENEDİ PİYASALARI ARASINDAKİ EŞBÜTÜNLEŞME ANALİZİ 1

KIRILGAN BEŞLİ ÜLKELERİNİN HİSSE SENEDİ PİYASALARI ARASINDAKİ EŞBÜTÜNLEŞME ANALİZİ 1 Uluslararası Yöetim İktisat ve İşletme Dergisi, Cilt 11, Sayı 24, 2015 It. Joural of Maagemet Ecoomics ad Busiess, Vol. 11, No. 24, 2015 KIRILGAN BEŞLİ ÜLKELERİNİN HİSSE SENEDİ PİYASALARI ARASINDAKİ EŞBÜTÜNLEŞME

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

Yetiştirici Elinde Bulunan Norduz Koyunlarının Laktasyon Süt Verimi ve Laktasyon Eğrisine Etki Eden Faktörler

Yetiştirici Elinde Bulunan Norduz Koyunlarının Laktasyon Süt Verimi ve Laktasyon Eğrisine Etki Eden Faktörler Kafkas Uiv Ve Fak Derg 8 (4): 677-684, 0 RESEARCH ARTICLE Yeişirici Elide Bulua Norduz Koularıı Lakaso Sü Verimi ve Lakaso Eğrisie Eki Ede Fakörler Serai KONCAGÜL * İrfa DAŞKIRAN ** Mehme BİNGÖL *** *

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

Piyasa Yorumu. Global Piyasalar:

Piyasa Yorumu. Global Piyasalar: 25 Ocak 2013 Cuma Gülük Bülte İMKB verileri İMKB 100 86,437.9 Piyasa Değeri-TÜM ($m) 341,167.9 Halka Açık Piyasa Değeri-TÜM ($m) 98,376.5 Gülük İşlem Hacmi-TÜM ($m) 2,354.65 Yurtdışı piyasalar Borsalar

Detaylı