Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde,

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde,"

Transkript

1 PERMÜTASYON ( SIRALAMA OLAYI ) Birbirinden farklı n tane nesnenin r tanesinin farklı her dizilişine (sıralanışına) n nesnenin r li permütasyonları denir ve P(n,r)= n! (r n) (n r)! biçim inde gösterilir. n elemanlı, sonlu bir A kümesinin bütün n'li permütasyonlarının sayısı P(n, n) = n! dir. Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde, a) a harfi bulunur? b) c bulunmaz fakat a bulunur? Örnek...1 : A = { a, b, c } kümesinin elemanlarının bütün perm ütas yo nlarını ya zınız. c) a ve ya c bulunur? Örnek...2 : P(n, 3) = 720 ise n değeri kaçtır? Örnek...3 : P(n+3, 2) = 72 ise P(n, n) kaçtır? Örnek...6 : 5 arkadaş yan yana durarak fotoğraf çektirecektir. Bu arkadaşlar kaç değişik poz verebilir? Örnek...4 : 4.P(n, 2) = P(2n, 2) 22 ise n değeri kaçtır? Örnek...7 : 3 edebiyat, 5 felsefe ve 7 tarih kitabı bir rafa yan yana kaç farklı şekilde dizilebilir? A) 3! 5! 7! B) 3! 5! 7! 3! C) 15! 3! D) 15! E) Sınıf Matematik Konu Anlatımı /6

2 Örnek...8 : Kalınlıkları farklı 6 kitap bir rafa yan yana dizilecektir. a) Kaç değişik biçim de dizilebilirler? Örnek...11 : 4 portre ile 6 naturmort resim bir sergide yan yana olacak şekilde aynı duvara asılacaktır. Portrelerin herhangi ikisinin yan yana gelmemesi koşuluyla resimler kaç farklı şek ilde sergilenebilir? b) En ince 2 kitap yan yana gelecek biçimde k aç değişik şek ilde dizil ebilirler? c) En ince 2 kitap yan yana gelmeyecek biçimde kaç değişik şek ilde di zilebilirler? Örnek...9 : ÖZGÜR kelimesinin harflerinin yerleri değiştirilerek kendisi dışında anlamlı ya da anlamsız 5 harfli k aç kelim e oluşturulabilir? Örnek...12 : ''salih'' kelimesinin harfleri yer değiştirilerek 5 harfli kelimeler yazılırsa silah kelimesi alfabetik sırada baştan kaçıncı olur? (ahils 1. sırad adır) Örnek...13 : A={1,2,3,4,5,6} kümesinin elemanlarını en çok bir defa kullanmak koşuluyla yazılan üç basamaklı sayılar küçükten büyüğe doğru dizilirse 452 baştan kaçıncı sırada olur? Örnek...10 : Yedi kişinin katıldığı 100 metre yarışında ilk 3 derece kaç fark lı şek ilde oluşabilir? 11. Sınıf Matematik Konu Anlatımı /6

3 DEĞERLENDİRME 1 (PERMÜTASYON) 1) A = {1, 2, 3, 4, 5,6,7} kümesinin üçlü permütasyonlarının kaç tanesinde 3 bulunur 5 bulunmaz? 5) A={0,1,2,3,4,5,6} kümesinin elemanlarını en çok bir defa kullanmak koşuluyla yazılan dört basamaklı sayılar küçükten büyüğe doğru dizilirse ortada kaç olur? 2) 5 kız, 3 erkek öğrenci bir sırada yanyana oturacaklardır. Kızlar kendi aralarında, erkekler kendi aralarındada oturmak koşuluyla kaç farklı biçimde oturabilirler? 6) Selin ile Merve nin de aralarında bulunduğu n kişi düz bir sıraya oturacaklardır. Selin ile Merve nin yan yana olmadığı 480 farklı dizilim olduğuna göre, n kaçtır? 3) 4 Matematik öğretmeni ve 4 Fizik öğretmeni aynı dersin öğretmenleri yanyana gelmemek koşuluyla kaç farklı şekilde düz bir sıra hailnde fotoğraf çektirebilirler? 7) A ={1,2,3,4, 5} kümesinin elemanları kullanılarak yazılabilecek beş basamaklı sayıların kaç tanesinde asal rakamlar soldan sağa artan sırada bulunur? 4) Burak, Ceyda ve Meltem'in de aralarında bulunduğu 7 kişilik bir kantin sırasında a) Burak en fazla kaç durumda Ceyda'nın önündedir? b) Burak en fazla kaç durumda Ceyda'nın önünde ama Meltem'in arkasında olabilir? 8) 1,2,3,4,5,6,7 sayılarıyla en az iki basamağındaki sayılar aynı olan 4 basamaklı kaç farklı sayı yazılır? 11. Sınıf Matematik Konu Anlatımı /6

4 DÖNEL (DAİRESEL) SIRALAMA Aşağıda bir masada kağıt oynayan dört kişi için iki farklı oturma düzeni verilm iştir İncele yi niz. 1. durum 2.durum Not: Anahtar, boncuk gibi nesnelerin dairesel sıralamasında bu sıralamaya iki yönden de bak ılabildiği için sıralama yarıya düşer (n > 2) Örnek...3 : 7 değişik anahtar, yuvarlak ve maskotsuz bir anahtarlığa k aç değişik biçim de tak ılabilir? Yukarıdaki iki durumda da bir dönme yönü seçilirse (saat yönü gibi) sıralamaların farklı olmadığı ortaya çıkar. Dolayısıyla basit bir kapalı eğri, örneğin bir çember üzerinde bulunan n tane nesnenin dönel sıralamalarının sayısını bulmak için nesnelerin bir tanesini sabitler diğer nesnelerin yerlerini değiştiririz Özetle n nesne çembersel bir eğri etrafına P(n-1,n-1)=(n-1)! sayıda sırala nır Örnek...1 : 5 kişi yuvarlak bir masada kaç farklı şekilde yemek yer? Örnek...4 : 7 değişik anahtar, yuvarlak ve maskotlu bir anahtarlığa kaç değişik biçimde tak ılabilir DEĞERLENDİRME 2 ( DAİRESEL PERMÜTASYON) 1) 3 çocuklu 5 kişilik bir aile yuvarlak bir masa etrafına a) koşulsuz b) anne ve baba yan yana gelecek şekilde c) sadece en küçük çocuk anne ve baba arasında olacak şekilde kaç farklı biçimde oturabilir Örnek...2 : 4 erkek, 4 kadın yuvarlak masa etrafında a) Hiçbir koşula bağlı olmadan, 2) Rakamlar kümesinin elemanları dairesel bir sıra ile dizilirse asal rakamların herhangi ikisinin yanyana olmadığı kaç durum vardır? b) Belli iki kadın yan yana olmak üzere c) Belli iki kadın yan yana olmamak üzere 3) 4 evli çift yanya oturduğunda çiftlerin hiçbirinin ayrılmadığı kaç durum vardır? d) Kadınlar bir arada olmak üzere e) Bir kadın bir erkek olmak üzere kaç değişik biçim de sırala nabilirler? 11. Sınıf Matematik Konu Anlatımı /6

5 TEKRARLI (YİNELEMELI) PERMÜTASYON n tane nesneden bazılarının yer değiştirmesi, değişik bir sıralanma oluşturm a yabilir. n nesnenin n 1 tanesi 1. çeşitten, n 2 tanesi 2.çeşitten, n 3 tanesi 3. çeşitten n k tanesi de k. çeşitten olsun. n 1 + n n k = n olmak üzere bu n nesnenin permütasyonlarının n! (dizilişlerinin) sayısı n 1!. n 2!...n k! dir. Örneğin ADA kelimesinin harflerinin yerleri değişmesi sonucu 6 farklı sıralama yerine 3 farklı sıralama elde edilir. Örnek...10 : Şekildeki çizgiler bir kentin birbirini dik kesen sokaklarını gösterm ektedir. a) A dan yola çıkan bir kişi, B ye en kısa yoldan kaç farklı şekilde gidebilir? b) A dan yola çıkan bir kişi, C ye uğramak koşuluyla B ye en kısa yoldan kaç farklı şek ilde gidebilir? A C B Örnek...5 : Özdeş 3 mavi, özdeş 4 kırmızı ve özdeş 5 yeşil kalem bir sırada yan yana kaç farklı biçimde dizilir? c) A dan yola çıkan bir kişi, C ye uğramamak koşuluyla B ye en kısa yoldan kaç farklı şek ilde gidebilir? Örnek...6 : MATEMATİK sözcüğündeki harfler yer değiştirildiğinde, anlamlı ya da anlamsız 9 harfli k aç değişik ya zıl ış olur? Örnek...7 : Bir para 8 kez atıldığında üçünün tura olduğu kaç farklı durum vardır? Örnek...11 : Şekildeki çizgiler bir kentin birbirini dik kesen sokaklarını gösterm ektedir. A dan yola çıkan bir kişi, yalnız sağ ve aşağı yönlerde giderek B ye en çok kaç fark lı yol dan gidebilir? Örnek...8 : 8,7,7,6,6,3 rakamları ile 6 ile başlayıp 3 ile biten 5 basamaklı kaç sayı yazılabilir? Örnek...12 : sayısının rakamlarının yeri değiştirilerek 8 basam ak lı a)kaç sayı Örnek...9 : BEMBEYAZ kelimesinin harflerinin yerleri değiştirilerek yazılabilen anlamlı ya da anlamsız 7 harfli kelimelerin kaç tanesinde B harflerini E harfleri takip eder? (Bu iki harfin aras ına başk a harf girmi yor) b)kaç farklı tek sayı yazılabilir? c)kaç farklı çift sayı yazılır? 11. Sınıf Matematik Konu Anlatımı /6

6 Örnek...13 : 5 özdeş oyuncak üç çocuğa a) kaç farklı biçimde verilebilir? 5) sayısının rakamlarının yeri değiştirilerek 9 basamaklı kaç çift sayı yazılır b)her çocuk en az bir oyuncak alacaksa kaç farklı biçimde verilebilir? Örnek...14 : 6) Şekildeki çizgiler bir kentin birbirini dik kesen A sokaklarını göstermektedir. a) A dan yola çıkan bir kişi, CD yolunu kullanmak koşuluyla B ye en kısa yoldan kaç farklı şekilde gidebilir? C D B Bir pastanede 5 çeşit pasta bulunmaktadır 10 tane pasta almak isteyen biri her çeşitten en az bir tane almak koşuluyla kaç farklı seçim yapar b) A dan yola çıkan bir kişi, CD yolunu kullanmamak koşuluyla B ye en kısa yoldan kaç farklı şekilde gidebilir? DEĞERLENDİRME 3 ( TEKRARLI PERMÜTASYON) 1) Kelebek sözcüğündeki harfler yer değiştirildiğinde, anlamlı ya da anlamsız 7 harfli kaç değişik yazılış olur? A 7) Şekildeki çizgiler bir kentin birbirini dik kesen sokaklarını göstermektedir.a dan yola B çıkan bir kişi, yalnız sağ ve aşağı yönlerde giderek B ye en çok kaç farklı yoldan gidebilir? 2) 8,7,7,6,6,3 rakamları ile 6 ile başlayıp 6 ile bitmeyen 5 basamaklı kaç sayı yazılabilir? 8) 'college' kelimesindeki harler kullanılarak 6 harfli kaç farklı kelime yazılır 3) 1,2,3,4,5,6,7 rakamlarıyla yazılacak 7 basamaklı rakam tekrarsız sayıların kaç tanesinde çift sayılar soldan sağa artan sıradadır. 4) Rakamları toplamı 8 olan kaç farklı 3 basamaklı sayı vardır? 9) Galatasaray kelimesinin harfleri yer değiştirildiği en çok kaç durumda a harleri yanyana değildir? 11. Sınıf Matematik Konu Anlatımı /6

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3)

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3) PERMÜTASYON DÜZEY: 1 TEST : 1 1. P(6, 2) + P(4, 3) işleminin sonucu kaçtır? A) 30 B) 44 C) 50 D) 54 5. P(6, n) = 6! eşitliğini sağlayan n doğal sayılarının kümesi aşağıdakilerden hangisidir? A) {7} B)

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

PERMÜTASYON. Örnek: Çözüm: Örnek: Çözüm: B) Çarpma Kuralı. Benzer şekilde, a 1

PERMÜTASYON. Örnek: Çözüm: Örnek: Çözüm: B) Çarpma Kuralı. Benzer şekilde, a 1 ERMÜTASYON SAYMANIN TEMEL KURALI A) Toplama Kuralı Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir. Sonlu ve ayrık iki küme A ve B olsun.

Detaylı

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS - - - ÖYS PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK TEMEL SAYMA KURALLARI Örnek ( ) adet hediyeden üçü üç kişiye, her birine birer hediye vermek kaydıyla kaç değişik

Detaylı

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ

1. BÖLÜM: PERMÜTASYON (SIRALAMA) BÖLÜM: KOMBİNASYON (SEÇME) A. SEÇME (KOMBİNASYON) B. KOMBİNASYON GEOMETRİ İLİŞKİSİ İçindekiler 1. BÖLÜM: PERMÜTASYON (SIRALAMA)... 10 A. SAYMA KURALLARI... 10 B. FAKTÖRİYEL... 14 C. n ELEMANLI BİR KÜMENİN r Lİ PERMÜTASYONLARI (Dizilişleri)... 17 Ölçme ve Değerlendirme...20 Kazanım Değerlendirme

Detaylı

Cebir Notları Mustafa YAĞCI, Tekrarlı Permutasyon

Cebir Notları Mustafa YAĞCI, Tekrarlı Permutasyon www.mustafayagci.com.tr, 01 ebir Notları Mustafa ĞI, yagcimustafa@yahoo.com ekrarlı Permutasyon G eçen dersimizde n kişinin n! kadar değişik şekilde sıralanabileceğini öğrenmiştik. Şimdiyse bu n kişinin

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

Cebir Notları. Permutasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com

Cebir Notları. Permutasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com www.mustafayagci.com, 005 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Matematikçiler üçe ayrılır: Sayı saymayı bilenler ve bilmeyenler Matematikle ilk tanışmamız sayı saymayla başlamıştır desek

Detaylı

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER MATEMATİK PROJESİ DANIŞMAN YASEMİN YAVAŞ İSTANBUL-2014 İÇİNDEKİLER AMAÇ... 3 GİRİŞ... 4 TEOREMLER...

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66...

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66... İÇİNDEKİLER Sayfa No Test No 3-PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 0-03 FAKTÖRİYEL...65-66...

Detaylı

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM)

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) Permütasyon Kombinasyon Binom Açýlýmý Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon Mustafa YAĞCI www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon K ombinasyon. n tane farklı elemandan oluşan bir kümenin altkümelerine birer kombinasyon denir.

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM 2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM DOĞAL SAYILAR ve DÖRT İŞLEM TEST 1 1) Güzelyurt ta oturan bir aile piknik için arabayla Karpaz a gidip, geri dönüyor. Bu yolculuk sonunda arabanın km göstergesini kontrol

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

MATEMATİK. Değerlendirme 1 A. 621 B. 612 C. 216 A. 232 B. 312 C. 322 A. 312 B. 302 C. 32 A. 25 B. 215 C. 205 A. 607 B. 760 C.

MATEMATİK. Değerlendirme 1 A. 621 B. 612 C. 216 A. 232 B. 312 C. 322 A. 312 B. 302 C. 32 A. 25 B. 215 C. 205 A. 607 B. 760 C. MATEMATİK Değerlendirme 1 MATEMATİK Doğal Sayılar Ad :... Soyad :... Sınıf/Nu. :... /... 1. 5. 2 1 6 Yukarıda modellenen sayı aşağıdakilerden A. 232 B. 312 C. 322 Yukarıdaki rakamlarla oluşturulabilecek

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

TEMEL SAYMA PROBLEMLERİ

TEMEL SAYMA PROBLEMLERİ TEMEL SAYMA PROBLEMLERİ Eşleme Yoluyla Sayma: Bir kümenin kaç elemanlı olduğunu S={1,2,3,,n,n+1, } kümesinden yararlanarak saptamaktır. *Örneğin: Bir okulun toplantı salonunda kaç oturma yerinin var olduğunu

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

MATEMATİK. Değerlendirme 1 A. 324 B C D

MATEMATİK. Değerlendirme 1 A. 324 B C D MATEMATİK Değerlendirme 1 MATEMATİK Doğal Sayılar Ad :... Soyad :... Sınıf/Nu. :... /... 1. 2416 Yukarıdaki televizyonunun fiyatının okunuşu aşağıdakilerden A. İki dört bir altı B. İki bin dört on altı

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi

Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi Mustafa YAĞCI www.mustafayagci.com.tr, 011 Cebir Notları Ali ERGİN, Mustafa YAĞCI, yagcimustafa@yahoo.com Saymanın Temel Prensibi M atematikle ilk tanışmamız sayı saymayla başlamıştır desek sanırım yanılmış

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1.

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1. TEOG ümeler ÜE VE EEN VRI Elemanları belirlenebilen, belirli bir anlam taşıyan canlı ya da cansız varlıkların veya kavramların oluşturduğu topluluğa küme denir. ümeyi oluşturan varlıkların, kavramların

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak kıl YGS MTEMTİK ENEME SINVI 040- Ortak kıl dem ÇİL yhan YNĞLIŞ arış EMİR elal İŞİLİR eniz KRĞ Engin POLT Ersin KESEN Eyüp ULUT Fatih SĞLM Fatih TÜRKMEN Hakan KIRI Kadir LTINTŞ Köksal YİĞİT Muhammet

Detaylı

ALES EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI. Kenan Osmanoğlu - Kerem Köker - Savaş Doğan. Eğitimde

ALES EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI. Kenan Osmanoğlu - Kerem Köker - Savaş Doğan. Eğitimde ALES 2017 EŞİT AĞIRLIK VE SAYISAL ADAYLAR İÇİN ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Eğitimde 30. yıl Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve Sayısal Soru

Detaylı

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI

BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI BİREYSELLEŞTİRİLMİŞ EĞİTİM PROGRAMI KİMLİK BİLGİLERİ Öğrencinin Adı Soyadı:. Doğum Tarihi,Yeri. Anne / Baba Adı :. Ev Adresi :. Engel Durumu: Hafif Düzeyde Zihinsel Yetersizlik R.A.M Kaynaştırma Dosya

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ales 2015 tarzına en yakın dört bin soru EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız.

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız. ONDALIK GÖSTERİM Paydası 10, 100, 1000 olan kesirlerin virgül kullanarak yazılışına ondalık gösterim denir. Ondalık gösterimlerde virgül tam kısım ile kesir kısmı ayırmak için kullanılır. ÖRNEK: Aşağıda

Detaylı

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

KOMBİNASYON - PERMÜTASYON Test -1

KOMBİNASYON - PERMÜTASYON Test -1 KOMİNSYON - PERMÜTSYON Test -. kişi arka arkaya sıralanacaktır. u kişiler kaç farklı sıra oluşturabilir?. kişilik bir sıraya, öğrenci kaç farklı dizilişte yan yana oturabilir?. farklı çatal, farklı kaşık

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 9 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 9 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 9 Mayıs 010 Matematik Soruları ve Çözümleri 1. 0,3 1 + 0,5 işleminin sonucu kaçtır? A) 0,1 B) 0,9 C) 1 D) 1,1 E) 10,1

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2)

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2) MATEMATİK 2. SINIF 1. 7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? 74 47 34 2) 3. 48 sayısının onluk ve birliklerine ayrılışı hangi seçenekte doğru verilmiştir? 4 onluk + 8 birlik 8 onluk

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ 3. ANKARA İLKÖĞRETİM MATEMATİK YARIŞMASI 30 MART 2013 4. SINIF B KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 120 dakikadır. Sınavla İlgili Uyarılar

Detaylı

Cebir Notları. Nesnelerin Dağılımları Mustafa YAĞCI,

Cebir Notları. Nesnelerin Dağılımları Mustafa YAĞCI, www.mustafayagci.com, 2006 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Nesnelerin Dağılımları Bu yazımızda, r ve n birer sayma sayısı olmak üzere, r tane nesneyi n farklı kutuya belli şartlar altında

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) <

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 16 Kasım Matematik Soruları ve Çözümleri 24 E) < Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 6 Kasım 2008 Matematik Soruları ve Çözümleri. Aşağıdaki kesirlerin en büyüğü hangisidir? 0 A) B) 2 2 C) 3 2 D) 22 24 E)

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki Test - 3 8.. adım 2. adım Yukarıdaki şekil örüntüsünün. adımında dört kibrit çöpü kullanılırken 2. adımında yedi kibrit çöpü kullanılmıştır. Buna göre. adımdaki şekil için kaç kibrit çöpü kullanılır? 0.,,

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10

MATEMATİK. Değerlendirme 1. Doğal Sayılar. Yukarıdaki kelebekler bir desteden ne kadar azdır? A. 3 B. 7 C. 10 MATEMATİK Değerlendirme 1 MATEMATİK Doğal Sayılar Ad :... Soyad :... Sınıf/Nu. :... /... 1. Yapbozlarımla n sayısının modelini oluşturdum. 5. Konuşma balonundaki n yerine aşağıdakilerden hangisi yazılmalıdır?

Detaylı

BİRİNCİ ADIYAMAN ZEKA OYUNLARI YARIŞMASI BİRİNCİ SEVİYE SORU KİTAPÇIĞI ADI SOYADI: SINIFI: 5 6 7 OKULUNUN ADI: 20 SAYFANIN 1.

BİRİNCİ ADIYAMAN ZEKA OYUNLARI YARIŞMASI BİRİNCİ SEVİYE SORU KİTAPÇIĞI ADI SOYADI: SINIFI: 5 6 7 OKULUNUN ADI: 20 SAYFANIN 1. ADI SOYADI: OKULUNUN ADI: SINIFI: 5 6 7 20 SAYFANIN 1. SAYFASI Sevgili öğrenciler... Bu sınavda toplam 24 soru vardır ama sizin tüm soruları çözmeniz şart değildir. 90 dakika süreniz vardır ve bu süreyi

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

DOĞAL SAYILAR , , bölük bölük bölük bölük bölük bölük bölük bölük bölük

DOĞAL SAYILAR , , bölük bölük bölük bölük bölük bölük bölük bölük bölük DĞAL SAILAR Günlük hayatta pek çok durumda sayıları kullanırız: Saymak, sıra belirtmek, saati okumak, telefon numaraları, T.C. kimlik numaraları, levha ve paralar vb. u sayılar 7, 8 veya 9 basamaklı olabilir.

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

BİRİNCİ ADIYAMAN ZEKA OYUNLARI YARIŞMASI İKİNCİ SEVİYE SORU KİTAPÇIĞI ADI SOYADI: SINIFI: 8 9 10 OKULUNUN ADI: 20 SAYFANIN 1.

BİRİNCİ ADIYAMAN ZEKA OYUNLARI YARIŞMASI İKİNCİ SEVİYE SORU KİTAPÇIĞI ADI SOYADI: SINIFI: 8 9 10 OKULUNUN ADI: 20 SAYFANIN 1. ADI SOYADI: OKULUNUN ADI: SINIFI: 8 9 10 20 SAYFANIN 1. SAYFASI Sevgili öğrenciler... Bu sınavda toplam 25 soru vardır ama sizin tüm soruları çözmeniz şart değildir. 90 dakika süreniz vardır ve bu süreyi

Detaylı

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

Sayı Kavramı ve Sayma

Sayı Kavramı ve Sayma Sayı Kavramı ve Sayma Örnek Olay Üzerinde 20 adet kare şeklinde halı resimleri olan bir tahta hazırladık. Henüz 25 aylık olan Spencer Mavi! diye bağırdı. Tahtanın yanına gidip her defasında mavi diyerek

Detaylı

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 9. Sınıf Matemat k Ders İşleme Defter KÜMELER - 1 Altın Kalem Yayınları Küme: B rb r nden farklı nesneler n oluşturduğu topluluklar küme şekl nde adlandırılır. Kümey oluşturan nesneler n y bel rlenm ş

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

Boş bırakılan soruların değerlendirmede olumlu ya da olumsuz bir etkisi olmayacaktır.

Boş bırakılan soruların değerlendirmede olumlu ya da olumsuz bir etkisi olmayacaktır. SINAVLA İLGİLİ UYARILAR Bu sınav 20 adet çoktan seçmeli ve 3 adet klasik sorudan oluşmakta ve 20 şer dakikalık iki kısımdan oluşmaktadır. İlk 20 dakika test aşaması, ikinci 20 dakika ise klasik sorular

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160 A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4 5. SINIF Soru 1 9, 0, 7, 4 rakamları kullanılarak elde edilen, rakamları birbirinden farklı dört basamaklı, en büyük çift doğal sayı ile en küçük çift doğal sayının farkı kaçtır? A)4950 B)4560 C)4260 D)4205

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade 6. Sınıf MATEMATİK ÜSLÜ SAYILAR TEST 1 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade aşağıdakilerden hangisidir? 5. A) 3. 3. 3 B) 4. 4. 4 C) 4. 4. 4. 4 D) 3. 3. 3. 3 Mert 100000000 2. 5. 5. 5 Yukarıda

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı