PROFİL EKSTRÜZYONUNDA KALIPTAN DENGELİ MALZEME ÇIKIŞI SAĞLAMAK İÇİN BİR YÖNTEM

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "PROFİL EKSTRÜZYONUNDA KALIPTAN DENGELİ MALZEME ÇIKIŞI SAĞLAMAK İÇİN BİR YÖNTEM"

Transkript

1 PROFİL EKSTRÜZYONUNDA KALIPTAN DENGELİ MALZEME ÇIKIŞI SAĞLAMAK İÇİN BİR YÖNTEM Oktay Yılmaz, Kadir Kırkköprü İstanbul Teknik Üniversitesi, Makina Fakültesi, Makina Mühendisliği Bölümü, İSTANBUL ÖZET Kesiti karmaşık profillerin ekstrüzyonunda polimer eriyiğin kalıptan dengesiz çıkması problemi vardır. Bu çalışmada bir profilin akış dengelenmesi problemine SAD (Sayısal Akışkanlar Dinamiği) yazılımı kullanılarak çözüm aranmıştır. Öncelikle, profil için yapılan deneme üretimi ile literatürden alınan bir HDPE (yüksek yoğunluklu polietilen) malzemenin Bird-Carreau viskozite modeli parametreleri kullanılarak gerçekleştirilen sayısal simülasyon sonuçları karşılaştırılmış ve kalıp çıkış kesitindeki hız dağılımında benzerlik olduğu görülmüştür. Daha sonra, kalıptaki eriyik akışını ayıran ince plakalar kullanılarak profilin 4 kanal ile beslenmesi sağlanmıştır. Sayısal simülasyonlar yardımı ile her bir kanaldaki ortalama hızın eşit olması için gerekli kanal boyları hesaplanmıştır. Bu kanal boyları ile akışın dengelenmesinde büyük ölçüde başarıya ulaşılmıştır. Anahtar Kelimeler: Polimer, Profil Ekstrüzyonu, Sayısal Akışkanlar Dinamiği 1. GİRİŞ Günümüzde polimer ekstrüzyonu ile profil üretimi oldukça yaygındır. Özellikle polimer esaslı pencere profillerinin üretimi ilk akla gelen uygulama sahasıdır. Profil ekstrüzyonunda önemli ve bir o kadar zor bir problem kalıp çıkış kesitinde dengeli malzeme çıkışının sağlanmasıdır. Özellikle bu durum et kalınlığının çok değiştiği kesite sahip profillerin üretiminde ortaya çıkmaktadır. Genelde fabrikalarda bu problem, deneyimler çerçevesinde kalıp geometrisinde ufak değişikliklere gidilerek deneme-yanılma yöntemi ile çözülmeye çalışılmaktadır. Bu yöntem oldukça zahmetli ve bir o kadar zaman alıcıdır. Ek olarak bu yöntem deneyimli olmayı gerektirir ve her zaman başarıya ulaşmak da mümkün değildir. Bu nedenle profil ekstrüzyonunda karşılaşılan akışın dengelenmesi problemine bilimsel yaklaşma gereği ortaya çıkmaktadır. Polimerlerin akış davranışlarını inceleyen kaynaklar yeterince vardır [1-2]. Bu kaynaklarda polimer eriyiklerin akışını karakterize eden denklemler tanıtılmaktadır ve basit geometriler için bir dizi kabul sonucu elde edilebilecek analitik sonuçlara yer verilmektedir [7]. Ancak bu analitik ifadeler oldukça sınırlı sayıda ekstrüzyon problemi çözümünde kullanılabilirler ve çoğu zaman problemin çözümünde ancak yön gösterici olabilirler. Günümüzde karmaşık geometriye sahip kalıp içi akışlarını simüle edebilen bir çok ticari yazılım mevcuttur. Bu yazılımlar aracılığı ile kalıp geometrileri iyileştirilebilir ve sonrasında yapılan denemelerle kalıba son şekli verilebilir. 2. MODEL ÇALIŞMA Bu çalışmada Şekil 1 de görülen profil, model profil olarak ele alınmıştır. Şekil 2 de bu tip profillerin üretiminde kullanılabilecek, tipik bir ekstrüder kafası görülmektedir ve kalıp düzlüğü adı verilen bölümde profilin kesiti sabittir. Şekil 1 deki profil homojen et kalınlığına sahip değildir. Kalıp düzlüğünde profil kesiti sabit tutulduğu taktirde polimer eriyiği ektrüder kalıp çıkış kesitinden dengesiz bir şekilde çıkacaktır. Başka bir deyişle kalıp çıkış kesitinde üniform hız dağılımı elde etmek mümkün olmayacaktır. 1

2 Şekil 1. Sayısal simülasyonlarda kullanılan örnek profil Şekil 2. Profil üretiminde kullanılan tipik bir ekstrüder kafası Şekil 2 deki ekstrüder kafası ile HDPE malzeme kullanılarak bir deneme üretimi gerçekleştirilmiştir. Bu deneme sonucunda kalıptan ilk çıkan malzemenin soğuduktan sonra çekilmiş bir fotoğrafı Şekil 3 te verilmiştir. Fotoğraftan eriyiğin kalıptan oldukça dengesiz çıktığı kolayca anlaşılmaktadır. Bu durum kalıptan çıkan profilin kesit geometrisinde deformasyonlara neden olduğu gibi, profilin içerisinde gerilmelerin oluşmasına neden olmaktadır. Şekil 3. Eriyik HDPE malzemenin kalıptan ilk çıkan kısmının soğuduktan sonra çekilmiş bir fotoğrafı Bu çalışmada sayısal simülasyonlar, Sonlu Elemanlar Yöntemi ni kullanan Polyflow 3.10 ticari yazılımı [4] ile yapılmıştır. Sayısal simülasyonlarda Kaynak 1 den alınan bir HDPE malzemeye ait 170 C deki Bird-Carreau Modeli parametreleri kullanılmıştır (Tablo 1 ve Şekil 4). Bird-Carreau Modeli, n 1 η η 2 2 = 1 + ( λγ ) (1) η η 0 2

3 şeklinde verilmiştir. Burada η, kayma şekil değiştirme hızı, γ sonsuza giderken viskozitenin aldığı değerdir. Polimer akışkanlar için η sıfır alınabilir [2]. λ, doğal zaman (natural time) olarak adlandırılır ve viskozitenin azalmaya başladığı kayma şekil değiştirme hızı değerinin tersidir, diğer bir deyişle -1. kuvvetidir. η 0, sıfır kayma viskozitesi olarak adlandırılmaktadır ve kayma şekil değiştirme hızı sıfıra yakın iken viskozitenin değeridir. n, kuvvet yasası indeksi olup Newton tipi davranıştan sapmanın derecesini göstermektedir. Tablo 1. Sayısal simülasyonlarda kullanılan polimer eriyiğine ait viskozite modelinin sabitleri Bird-Carreau Modeli 8920 Pa.s λ 1,58 s n 0,496 η 0 kayma viskozitesi (Pa.s) Bird-Carreau Modeli 1 0,01 0, Kayma şekil değiştirme hızı (1/s) Şekil 4. Sayısal simülasyonlarda kullanılan HDPE malzemenin kayma viskozitesinin kayma şekil değiştirme hızıyla değişimi 3. KALIP DÜZLÜĞÜ İÇERİSİNDEKİ ERİYİK AKIŞI İÇİN SAYISAL SİMÜLASYON Sayısal simülasyon sonuçlarına göre Şekil 2 deki gibi bir ekstrüder kafa geometrisinde kalıp düzlüğü girişinde basınç dağılımı yaklaşık üniformdur [3]. Bu nedenle bu sayısal simülasyonda yalnızca kalıp düzlüğü içerisindeki akış göz önünde bulundurulmuştur (Şekil 5). Şekil 6 da sayısal simülasyonda kullanılan çözüm ağı yapısı görülmektedir. Şekil 5. Kalıp düzlüğü içerisindeki akışkan hacmi 3

4 3.1. Kabuller ve Sınır Koşulları Ekstrüzyon işleminde çok yüksek basınç değerlerine ulaşılmadığı için akışın sıkıştırılamaz olduğu kabul edilir ve süreklilik denklemi, v v x y vz. V = + + = 0 x y z (2) şeklindedir. Şekil 6. Sayısal simülasyonda kullanılan geometri ve çözüm ağı yapısı Yerçekimi kuvveti ve düşük hızlar nedeniyle atalet kuvveti ihmal edilmiştir. Dolayısıyla hareket denklemi, akış esnasında viskoz kuvvetlerin basınç kuvvetleri ile dengelendiğini ifade eder: p = (3). τ ij Gerilme terimleri Genelleştirilmiş Newton Tipi Akışkan Modeli [2]: τ ij =η( γγ ) (4) ij ile modellenmiştir ve polimer malzemenin viskoelastik özellikleri göz ardı edilmiştir. η( γ ) terimi için Denklem (1) deki Bird-Carreau Modeli kullanılmıştır. γ ij, şekil değiştirme hızı tensörü bileşenleridir ve aşağıdaki gibidir: u u j i ij = + (5) xi x j γ γ skaler bir büyüklüktür ve şekil değiştirme hızı tensörü bileşenleri kullanılarak aşağıdaki şekilde hesaplanır. γ = I (6) Burada I 2, şekil değiştirme hızı tensörünün ikinci invaryantı olarak ifade edilir: (7) I = γ γ = γ + γ + γ + γ + γ + γ + γ + γ + γ ij ji xx xy xz yx yy yz zx zy zz i j 4

5 Bu model ekstrüzyon kalıbı içerisindeki akışlarda basınç dağılımını hesaplamada yeterli olmaktadır [5]. Akışın izotermal olduğu kabul edilmiştir. Yani enerjinin korunumu denklemi çözülmemiştir. Şekil 5 te hesaplama hacmini çevreleyen sınır yüzeyleri isimlendirilmiştir. Giriş kesitinden 5, m 3 /s değerinde hacimsel debi giriş yapmaktadır. Profilin kesit alanı 658,92 mm 2 dir. Dolayısıyla kesitteki ortalama hız, diğer bir deyişle üretim hızı 5 m/dk kadardır. Giriş kesitinde hız profili tam gelişmiş akış koşullarına sahiptir. Sayısal simülasyon sonucunda kalıp çıkış kesitindeki hız dağılımı Şekil 7 de görülmektedir. Dar bölgelerde hızın düşük, geniş bölgelerde hızın yüksek olduğu görülmektedir. Özellikle kesitin geçiş kısımlarında eriyik hızı en yüksek değerlerine ulaşmaktadır. Çünkü bu bölgelerde akışkanın sürtünme yüzeyleri oldukça azdır. Şekil 7 ye bakıldığında en düşük hız, en yüksek hızın 5 te 1 i kadardır. Hesaplanan hız dağılımının, Şekil 3 te gösterilen denemedeki ilk malzeme çıkışı ile uyum içinde olduğu görülmektedir. Şekil 7. Şekil 6 daki profilin çıkış kesitindeki hız dağılımı 4. AKIŞ AYIRMA YÜZEYLERİ KULLANARAK KALIPTAN DENGELİ ERİYİK ÇIKIŞININ SAĞLANMASI Bu yöntemde Şekil 1 deki profil, Şekil 8 de görüldüğü gibi, kendi içinde yaklaşık olarak homojen et kalınlığına sahip 4 parçaya ayrılmıştır. Böylece profilin dar kesitli kısımlarından geniş kesitli kısımlarına olan çapraz akışın önlenmesi [6] ve parçaların kendi bünyelerinde homojen hız dağılımı elde edilmesi amaçlanmıştır. Profil içerisindeki akış, Şekil 8 de görülen ayırma yüzeyleri ile birbirinden ayrılmıştır. Kalıp çıkış kesitine 5 mm kala bu dört farklı kanaldan gelen eriyiklerin birleşmeleri sağlanmıştır. Bu dört kanaldan gelen akışkanların ortalama hızlarının birbirine eşit olmasını sağlamak için gerekli kanal uzunlukları hesaplanmıştır. Akışa karşı direnci yüksek olan kanal kısa tutulurken, direnci düşük olan kanal uzun tutulmuştur Dört Kanal için Yapılan Simülasyonlar Şekil 8. Profilin 4 parçaya ayrılmış görünüşü Şekil 8 de görülen dört kanal için ayrı ayrı sayısal simülasyonlar gerçekleştirilmiştir. Buna göre her bir kanalda imalat hızının (ortalama hızın) 5 m/dk olması için gerekli hacimsel debi miktarları, kanalların 5

6 kesit alanları kullanılarak hesaplanmıştır (Tablo 2). Sayısal simülasyonlar aynı polimer eriyiği için yapılmıştır. Kabuller ve sınır koşulları Şekil 6 daki kalıp düzlüğü için yapılan sayısal simülasyonlarla aynıdır. Tablo 2. Kanalların kesit alanları ve hacimsel debi değerleri Kanal no A i (mm 2 ) Q i (m 3 /s) 1 83,90 0, ,04 0, ,08 0, ,66 3, Profil 658,92 5, Şekil 9. Kanallara ait hız dağılımı ve çözüm ağı (kanal boyu 20 mm) Sayısal simülasyon sonucu elde edilen hız dağılımı ve simülasyonda kullanılan sonlu eleman yapısı Şekil 9 da görülmektedir. Simülasyon sonucunda her bir kanalda meydana gelen birim boydaki basınç düşüşü Tablo 3 te verilmiştir. Buna göre 2 numaralı kanalın akışa karşı direnci en yüksek iken, 3 numaralı kanalınki en düşüktür. Tablo 3. Ortalama hızın 5 m/dk olması durumunda her bir kanala ait birim boyda meydana gelen basınç düşüşü Kanal no ΔP/L (Pa/mm) , , , ,3 6

7 4.2. Ayırma Yüzeyi Tekniği Kullanılarak Yeni Kalıbın Tasarlanması ve Bu Yeni Kalıp için Yapılan Sayısal Simülasyon Kalıbın tasarlanmasında en önemli nokta kanal uzunluklarının belirlenmesidir. Bu amaçla ilk olarak akışa karşı direnci en yüksek olan 2 numaralı kanalın uzunluğu 15 mm seçilmiştir. Bu durumda 5 m/dk imalat hızında bu kanalda oluşan basınç kaybı Tablo 3 teki değerlerden yararlanılarak 11,9 bar olarak hesaplanmıştır. Diğer üç kanalın 5 m/dk ortalama hızda bu basınç kaybını oluşturacak uzunlukları Tablo 4 te verilmiştir. Hesaplanan kanal uzunluklarına göre oluşturulan kalıp iç geometrisi Şekil 10 da görülmektedir. Kanal girişlerindeki basınçların birbirine yaklaşık eşit olabilmesi için kanallardan önceki kısımların kesitleri oldukça geniş tutulmuştur, böylelikle bu bölgelerdeki basınç düşüşlerinin kanallardaki basınç düşüşlerine oranla ihmal edilebilecek kadar az olması sağlanmıştır. Tablo 4. 5 m/dk ortalama hızda 11.9 bar basınç kaybını oluşturacak kanal uzunlukları Kanal no Kanal uzunluğu (mm) Kanal uzunluklarının 2 no. lu kanal uzunluğuna oranı 1 22,3 1,5 2 15,0 1,0 3 39,7 2,6 4 35,4 2,4 Tablo 4 te verilen dört kanala ait debi değerleri toplanarak Şekil 11 in giriş kesitine giren hacimsel debi olarak verilmiştir. Bu durumda çıkış profil kesitindeki üretim hızı 5 m/dk dır. Şekil 10. Ayırma yüzeyi tekniği ile kalıp çıkış kesitinden dengeli malzeme çıkışı sağlamak için tasarlanmış yeni kalıp ve oluşturulan çözüm ağı yapısı Sayısal simülasyon sonucunda oluşan basınç dağılımı Şekil 11 de görülmektedir. Şekil 11 deki 1, 2, 3, 4 numaralı kanal girişlerindeki basınç değerleri sırasıyla 11,803; 11,090; 12,227; 12,178 bar dır. Beklendiği gibi basınç değerleri birbirine yakındır. 7

8 Şekil 11. Simülasyon sonucu elde edilen basınç dağılımı Şekil 12 de kalıbın çıkış kesitindeki hız dağılımı görülmektedir. Akışın büyük oranda dengelenmiş olduğu görülmektedir. Ancak 3 ile 4 numaralı kanalların kesiştikleri bölgedeki hız, Şekil 12 de görüldüğü gibi maksimum hızın % 55 i kadardır. Şekil 12. Yeni tasarlanmış kalıbın çıkış kesitindeki hız dağılımı 5. SONUÇLAR VE ÖNERİLER Kalıp dizaynında akış ayırma yüzeyleri kullanıldığında eriyiğin çıkış hızının profil kesitinde büyük oranda dengelenmesi başarılabilmektedir. Ancak birbirinden ayrılmış kanalların kesişme bölgelerinde akış hızı biraz düşük kalmaktadır. Bu problem malzeme kalıptan çıktıktan sonra havada ilerlerken hız dağılımının yeniden düzenlenmesiyle azalabilir. Ayırma yüzeyi tekniği ile imal edilen profillerin mukavemeti, ayırma yüzeyi kullanılmayarak üretilenlere göre daha zayıf olabilir. Kalıp tasarımından önce dikkat edilmesi gereken nokta, daha işin başında kalıptan dengeli malzeme çıkışının sağlanabilmesi için, üretilecek profilin mümkün olduğunca homojen et kalınlığına sahip 8

9 olarak tasarlanmasıdır. Et kalınlıkları arasındaki fark fazla olmamalı ve profilin et kalınlıklarında ani değişmelerden kaçınılmalıdır. Et kalınlıklarındaki ani artma veya azalmalar çapraz akışa neden olmakta ve akışı dengelenmiş kalıp tasarımını güçleştirmektedir. 6. TEŞEKKÜR Bu çalışma kapsamında yapılan polimer ekstrüzyonu denemelerine verdiği destekten dolayı Dizayn Teknik Plastik Boru ve Elemanları San. Tic. A.Ş. firmasına ve çalışanlarına teşekkür ederiz. 7. KAYNAKLAR [1] Bird R. B., Armstrong R. C., Hassager O., Dynamics of polymeric liquids, Wiley-Interscience publication, New York, [2] Baird D.G. ve Collias, D.I., Polymer processing: principles and design, Wiley-Interscience publication, New York, [3] Yılmaz O., Polimer Malzemelerin Ekstrüzyonunun Deneysel ve Sayısal Olarak İncelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul, [4] Polyflow 3.10, Fluent Inc. (www.fluent.com) [5] Macosko C. W., Rheology: Principles, measurements and applications, Wiley-VCH, New York, [6] Nobrega J. M. ve Carneiro O. S., Strategies to Balance the Flow in Profile Extrusion Dies, ANTEC 2006, , [7] Michaeli W., Extrusion dies for plastics and rubber: design and engineering computations, Hanser, Münich,

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 31, 335-349, 2013 Research Article / Araştırma Makalesi THE SYSTEMATICAL DESIGN OF PLASTIC SPIRAL EXTRUSION DIES AND

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Bölüm 8: Borularda sürtünmeli Akış

Bölüm 8: Borularda sürtünmeli Akış Bölüm 8: Borularda sürtünmeli Akış Laminer ve Türbülanslı Akış Laminer Akış: Çalkantısız akışkan tabakaları ile karakterize edilen çok düzenli akışkan hareketi laminer akış olarak adlandırılır. Türbülanslı

Detaylı

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü AKIŞKANLAR MEKANİĞİ Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü İLETİŞİM BİLGİLERİ: Ş Ofis: Mühendislik Fakültesi Dekanlık Binası 4. Kat, 413 Nolu oda Telefon: 0264 295 5859 (kırmızı

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

Borularda Akış. Hesaplamalarda ortalama hız kullanılır. En yaygın karşılaşılan akış sistemi Su, petrol, doğal gaz, yağ, kan. Boru akışkan ile tam dolu (iç akış) Dairesel boru ve dikdörtgen kanallar Borularda Akış Dairesel borular içerisi ve dışarısı arasındaki

Detaylı

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz. Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal

Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal İğne Açısının Diş Kök Kanalı İçindeki İrigasyon Sıvısının Akışına Etkisinin Sayısal Analizi A.

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6 Şube NÖ-A NÖ-B Adı- Soyadı: Fakülte No: Kimya Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

Makina Mühendisliği Bölümü Makine Laboratuarı

Makina Mühendisliği Bölümü Makine Laboratuarı Makina Mühendisliği Bölümü Makine Laboratuarı Reynolds Sayısı ve Akış Türleri Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün akım çizgileriyle belirtilen

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

ANOVA MÜHENDİSLİK LTD. ŞTİ.

ANOVA MÜHENDİSLİK LTD. ŞTİ. ÇOK KADEMELİ POMPA PERFORMANSININ CFD YÖNTEMİYLE BELİRLENMESİ Ahmet AÇIKGÖZ Mustafa GELİŞLİ Emre ÖZTÜRK ANOVA MÜHENDİSLİK LTD. ŞTİ. KISA ÖZET Bu çalışmada dört kademeli bir pompanın performansı Hesaplamalı

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Akış Boru ve kanallardaki sıvı veya gaz akışından, yaygın olarak ısıtma soğutma uygulamaları ile akışkan

Detaylı

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 BERNOLLİ DENEYİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Yapılacak olan Bernoulli deneyinin temel amacı, akışkanlar mekaniğinin en önemli denklemlerinden olan, Bernoulli (enerjinin

Detaylı

VENTURİMETRE DENEYİ 1. GİRİŞ

VENTURİMETRE DENEYİ 1. GİRİŞ VENTURİMETRE DENEYİ 1. GİRİŞ Genellikle herhangi bir akış esnasında akışkanın tabakaları farklı hızlarda hareket ederler ve akışkanın viskozitesi, uygulanan kuvvete karşı direnç gösteren tabakalar arasındaki

Detaylı

REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ

REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ REOLOJĐ GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ 36 REOLOJĐ VE VĐSKOELASTĐSĐTE Reoloji cisimlerin gerilme altında zamana bağlı şekil değişimini (deformasyon) inceleyen bilim dalıdır. Genel olarak katıların

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma

Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma Kılavuz Rayları ve Emniyet Freni Mekanizmaları Üzerindeki Gerilmelere Dair Araştırma Dr. C. Erdem Đmrak 1, Said Bedir 1, Sefa Targıt 2 1 Đstanbul Teknik Üniversitesi, Makine Mühendisliği Fakültesi, Makine

Detaylı

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Bahar yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru Çözümleri 30.05.2017 Adı- Soyadı: Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ Hazırlayan : Kadir ÖZDEMİR No : 4510910013 Tarih : 25.11.2014 KONULAR 1. ÖZET...2 2. GİRİŞ.........3

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Yoğunluğu 850 kg/m 3 ve kinematik viskozitesi 0.00062 m 2 /s olan yağ, çapı 5 mm ve uzunluğu 40

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN İstanbul Üniversitesi Fen Fakültesi Giriş Bilimsel amaçla veya teknolojide gerekli alanlarda kullanılmak üzere, kapalı bir hacim içindeki gaz moleküllerinin

Detaylı

GEMİ DİRENCİ ve SEVKİ

GEMİ DİRENCİ ve SEVKİ GEMİ DİRENCİ ve SEVKİ 1. GEMİ DİRENCİNE GİRİŞ Geminin istenen bir hızda seyredebilmesi için, ana makine gücünün doğru bir şekilde seçilmesi gerekir. Bu da gemiye etkiyen su ve hava dirençlerini yenebilecek

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü BÖLÜM 3 Sürekli Isı iletimi Yrd. Doç.Dr. Erbil Kavcı Kafkas Üniversitesi Kimya Mühendisliği Bölümü Düzlem Duvarlarda Sürekli Isı İletimi İç ve dış yüzey sıcaklıkları farklı bir duvar düşünelim +x yönünde

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ ONDOKUZ MAYIS ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MM30 MAKİNA MÜHENDİSLİĞİ LABORATUARI DERSİ BORULARDA BASINÇ KAYBI E SÜRTÜNME DENEYİ Hazırlayan Yrd.Doç.Dr. Mustafa ÖZBEY SAMSUN

Detaylı

VİSKOZİTE SIVILARIN VİSKOZİTESİ

VİSKOZİTE SIVILARIN VİSKOZİTESİ VİSKOZİTE Katı, sıvı veya gaz halinde bütün cisimler, kitlelerinin bir bölümünün birbirine göre şekil ya da göreceli yer değiştirmelerine karşı bir mukavemet arz ederler. Bu mukavemet değişik türlerde

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No: Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 05.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı

Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı Doç. Dr. Ali KOÇAK Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı zaman kalıplara dökülebilir ve bu

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BORULARDA VE HİDROLİK ELEMANLARDA SÜRTÜNME KAYIPLARI DENEY FÖYÜ 1. DENEYİN AMACI Borularda

Detaylı

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ RAPOR 21.05.2015 Eren SOYLU 100105045 ernsoylu@gmail.com İsa Yavuz Gündoğdu 100105008

Detaylı

Mekanik Karıştırıcıların Hesaplamalı Akışkanlar Mekaniği ile Sayısal Modellenmesi

Mekanik Karıştırıcıların Hesaplamalı Akışkanlar Mekaniği ile Sayısal Modellenmesi Mekanik Karıştırıcıların Hesaplamalı Akışkanlar Mekaniği ile Sayısal Modellenmesi Mehmet TEKE (1) Melih APAYDIN (2) 1 FİGES A.Ş, Makina Mühendisi 2 FİGES A.Ş, Makina Mühendisi ÖZET Bu çalışmada kimya sanayinde

Detaylı

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMİ Sonlu Elemanlar (SE)Yöntemi, çesitli mühendislik problemlerine kabul edilebilir bir yaklasımla

Detaylı

Kovan. Alüminyum ekstrüzyon sisteminin şematik gösterimi

Kovan. Alüminyum ekstrüzyon sisteminin şematik gösterimi GİRİŞ Ekstrüzyon; Isı ve basınç kullanarak malzemenin kalıptan sürekli geçişini sağlayarak uzun parçalar elde etme işlemi olup, plastik ekstrüzyon ve alüminyum ekstrüzyon olmak üzere iki çeşittir. Biz

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TC ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DEBİ ÖLÇÜM DENEYİ Hazırlayan DoçDr Bahattin TOPALOĞLU SAMSUN DEBİ ÖLÇÜM DENEYİ DENEYİN AMACI Bu deneyin amacı dört farklı

Detaylı

SONLU ELEMANLAR YÖNTEMİ ESASLI MODELLEME YAZILIMI KULLANILARAK BORU EKSTRÜZYONU KALIBININ POLİMER MALZEME AKIŞI İÇİN TASARLANMASI VE OPTİMİZASYONU

SONLU ELEMANLAR YÖNTEMİ ESASLI MODELLEME YAZILIMI KULLANILARAK BORU EKSTRÜZYONU KALIBININ POLİMER MALZEME AKIŞI İÇİN TASARLANMASI VE OPTİMİZASYONU A-PDF Watermark DEMO: Purchase from www.a-pdf.com to remove the watermark T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SONLU ELEMANLAR YÖNTEMİ ESASLI MODELLEME YAZILIMI KULLANILARAK

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

SOLIDWORKS SIMULATION EĞİTİMİ

SOLIDWORKS SIMULATION EĞİTİMİ SOLIDWORKS SIMULATION EĞİTİMİ Kurs süresince SolidWorks Simulation programının işleyişinin yanında FEA teorisi hakkında bilgi verilecektir. Eğitim süresince CAD modelden başlayarak, matematik modelin oluşturulması,

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

Orifis, Nozul ve Venturi Tip Akışölçerler

Orifis, Nozul ve Venturi Tip Akışölçerler Orifis, Nozul ve Venturi Tip Akışölçerler Bu tür akışölçerlerde, akışta kısıtlama yapılarak yaratılan basınç farkı (fark basınç), Bernoulli denkleminde işlenerek akış miktarı hesaplanır. Bernoulli denkleminin

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v İÇİNDEKİLER ÖNSÖZ... iii İÇİNDEKİLER... v BÖLÜM 1.... 1 1.1. GİRİŞ VE TEMEL KAVRAMLAR... 1 1.2. LİNEER ELASTİSİTE TEORİSİNDE YAPILAN KABULLER... 3 1.3. GERİLME VE GENLEME... 4 1.3.1. Kartezyen Koordinatlarda

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Deneye Gelmeden Önce;

Deneye Gelmeden Önce; Deneye Gelmeden Önce; Deney sonrası deney raporu yerine yapılacak kısa sınav için deney föyüne çalışılacak, Deney sırasında ve sınavda kullanılmak üzere hesap makinesi ve deney föyü getirilecek. Reynolds

Detaylı

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008 Makina * Prof. Dr. İrfan AY Arş.Gör.T.Kerem DEMİRCİOĞLU * Balıkesir - 008 1 HİDROLİK VE PNÖMATİK 1.BÖLÜM HİDROLİK VE PNÖMATİĞE GİRİŞ TARİHÇESİ: Modern hidroliğin temelleri 1650 yılında Pascal ın kendi

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

ELYAF TAKVİYELİ KOMPOZİT MALZEMELER İÇİN MİKROMEKANİK ESASLI KIRIM KISTASI EMRE FIRLAR KAAN BİLGE MELİH PAPİLA 0º 90º 90º 0º

ELYAF TAKVİYELİ KOMPOZİT MALZEMELER İÇİN MİKROMEKANİK ESASLI KIRIM KISTASI EMRE FIRLAR KAAN BİLGE MELİH PAPİLA 0º 90º 90º 0º ELYAF TAKVİYELİ KOPOZİT ALZEELER İÇİN İKROEKANİK ESASLI KIRI KISTASI x z θ y 0º 90º 90º 0º ERE FIRLAR KAAN BİLGE ELİH PAPİLA UHUK-2008-074 II. ULUSAL HAVACILIK VE UZAY KONFERANSI 15-17 Ekim 2008, İTÜ,

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

XII. ULUSAL TESİSAT MÜHENDİSLİĞİ KONGRESİ ERGİN BAYRAK, NACİ ŞAHİN Nisan 2015, İZMİR

XII. ULUSAL TESİSAT MÜHENDİSLİĞİ KONGRESİ ERGİN BAYRAK, NACİ ŞAHİN Nisan 2015, İZMİR KANATLI BORULU EVAPORATÖRLERDE DEVRE TASARIMININ KAPASİTEYE ETKİSİNİN N DENEYSEL OLARAK İNCELENMESİ ERGİN BAYRAK, NACİ ŞAHİN Isı Değiştiricilerine Genel Bir Bakış Kanatlı Borulu Isı Değiştiricileri Problemler

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

SIZDIRMAZLIK ELEMANLARININ MONTAJI VE YÜKSEK BASINÇ ALTINDAKİ DAVRANIŞLARININ İNCELENMESİ

SIZDIRMAZLIK ELEMANLARININ MONTAJI VE YÜKSEK BASINÇ ALTINDAKİ DAVRANIŞLARININ İNCELENMESİ 323 SIZDIRMAZLIK ELEMANLARININ MONTAJI VE YÜKSEK BASINÇ ALTINDAKİ DAVRANIŞLARININ İNCELENMESİ S. Hakan OKA ÖZET Bu çalışmada, sızdırmazlık amacıyla kullanılan contaların montaj işleminin modellenmesi ve

Detaylı

MMU 402 FINAL PROJESİ. 2014/2015 Bahar Dönemi

MMU 402 FINAL PROJESİ. 2014/2015 Bahar Dönemi MMU 402 FNAL PROJESİ 2014/2015 Bahar Dönemi Bir Yarı eliptik yüzey çatlağının Ansys Workbench ortamında modellenmesi Giriş Makine mühendisliğinde mekanik parçaların tasarımı yapılırken temel olarak parça

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

BETON KARIŞIM HESABI (TS 802)

BETON KARIŞIM HESABI (TS 802) BETON KARIŞIM HESABI (TS 802) Beton karışım hesabı Önceden belirlenen özellik ve dayanımda beton üretebilmek için; istenilen kıvam ve işlenebilme özelliğine sahip; yeterli dayanım ve dayanıklılıkta olan,

Detaylı

Perçin malzemesinin mekanik özellikleri daha zayıf olduğundan hesaplamalarda St34 malzemesinin değerleri esas alınacaktır.

Perçin malzemesinin mekanik özellikleri daha zayıf olduğundan hesaplamalarda St34 malzemesinin değerleri esas alınacaktır. Kalınlığı s 12 mm, genişliği b 400 mm, malzemesi st37 olan levhalar, iki kapaklı perçin bağlantısı ile bağlanmıştır. Perçin malzemesi st34 olarak verilmektedir. Perçin bağlantısı 420*10 3 N luk bir kuvvet

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı AKM 205 - BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı 1. Bir arabanın 1 atm, 25 C ve 90 km/h lik tasarım şartlarında direnç katsayısı büyük bir rüzgar tünelinde tam ölçekli test ile

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Kütlenin korunumu: Kütle de enerji gibi korunum yasalarına uyar; başka bir deyişle, var veya yok edilemez. Kapalı sistemlerde: Sistemin kütlesi

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı