BIL222 Veri Yapıları ve Algoritmalar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BIL222 Veri Yapıları ve Algoritmalar"

Transkript

1 BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı veya alt ağaç sayısı en fazla iki olur). V V L sol ağaç V R sağ ağaç Şekil 1 Basit bir ikili ağaç İkili ağacın önemli özelliklerinden birisi de ortalama bir ikili ağacın derinliğinin den küçük olmasıdır. Bazen derinlik -1 gibi çok büyük bir değer de olabilir. A B C E Şekil 2 En kötü durumlu ikili ağaç Şekil 3 te, 3 tane ikili ağacın olası durumu verilmiştir. a da ağacın oluşması istenen ideal durumdur denilebilir. Ancak b ve c deki ikili ağaçlar oluşması istenmeyen durumlardır. Çünkü bir ikili ağacın b ve c deki gibi serpilmesi bağlantılı liste anlamına gelir ve ağaç modelinden uzaklaşılmış olur. 1

2 a) engeli b) engesiz c) engesiz Şekil 3 İkili Ağaçların Olası urumları Şekil 3.a daki gibi dengeli bir ağacın oluşması için sayılar olası olarak 9,5,14,2,7,13,38,25 ve 39 sırasıyla gelmiş olabilir. b deki gibi oluşması için 9,14,38,39, c deki gibi oluşması için 9,5,7,6 gibi gelmesi gerekir. b ve c deki ağaç şekli istenmeyen durumlardır. c deki durum yaprak düğümün bir sağına bir soluna eklenecek biçimde gelirse oluşur. a da gösterilen ağaç şekli ideal duruma yakın olup dengeli ağaç olarak adlandırılır. engeli ağaçlarda yaprakların düzeyleri arasında en kötü durumda 1 fark olur. engeli ikili ağaç üzerine arama yapma zamanı O( log 2 ) iken, b ve c deki gibi bir ağacın üzerinde ise O( ) e doğru kayar. İkili ağaçlar, daha çok ikili arama ağacı, bağıntı ağacı, kümeleme ağacı gibi uygulamalarda karşımıza çıkmaktadır. Elemanları rasgele yerleştirilmiş, yani sıralı olmayan ikili ağaçlar pek uygulanmamaktadır. 2

3 1.1 Tanımlamalar İkili ağaçtaki bir düğüme ait veri yapısında bilgiye ek olarak iki tane işaretçi tutulur. Biri sol diğeri sağ olarak adlandırılan bu işaretçiler düğümlerin çocuklarını/altağaçlarını bağlamak içindir. Böyle bir veri yapısının olası tanımı aşağıdaki gibi yapılır. struct Treeode { int data ; struct Treeode * lchild ; struct Treeode * rchild ; } ; Program 1 İkili ağaç için düğüm tanımlamaları Treeode adında bir yapı tanımlanır. Bu yapının data, birer işaretçi olan lchild ve rchild olmak üzere üç tane üyesi vardır. Eğer bir düğümün sol tarafına bir başka düğüm veya bir altağaç bağlıysa lchild adlı işaretçide bağlı olan düğümün adresi bulunur; aksi durumda boş/bağlantı yok anlamında ULL değeri bulunur. Benzer durum rchild için de geçerlidir. 2. ĠKĠLĠ ARAMA AĞAÇLARI (BIARY SEARCH TREES) Bir ağacın kurulmasında/düğüm eklenmesinde, anahtar veriye bağlı olarak küçük olan sola, büyük olan sağa şeklinde bir kurala uyulursa ağaç, ikili arama ağacı (binary search tree) olarak adlandırılır. Aralarında büyüklük küçüklük gibi bir ilişki olan veriler ikili arama ağaçlarında kullanılabilir. İkili arama ağaçlarında bir değerden iki defa kullanılmasına izin verilmez ve her düğümün en fazla iki çocuğu vardır. İkili arama ağacı üzerinde dolaşma birçok şekilde yapılabilir. Ancak, rastgele dolaşmak yerine, önceden belirlenmiş bir yöntem/kurala uyulması ikili arama ağçlarında tanımlanacak algoritmik ifadeleri kolaylaştırır. Tekrarlamalı (recursive) fonksiyon yapısı kullanılırsa ağaç üzerinde işlem yapan algoritmaların tasarımı kolaylaşır. Önce-kök (preorder), ortada-kök (inorder), sonra-kök (postorder) olarak adlandırılan üç değişik dolaşma şekli çeşitli uygulamalara çözüm olmaktadır. Önce-kök (Preorder) : Kök, Sol, Sağ Ortada-kök (Inorder) : Sol, Kök, Sağ Sonra-kök (Postorder) : Sol, Sağ, Kök 3

4 Önce-kök yaklaşımında önce ağacın kökü, sonra sol altağaç ve ardından sağ altağaç dolaşılır. Ortada-kökte, önce sol altağaç, kök ve sağ altağaç, sonra-kökte ise, önce sol altağaç, sağ altağaç ve kök dolaşılır. Aşağıda her üç yaklaşım bir ikili arama ağacında gösterilmiştir. Şekil 4 te görüldüğü gibi önce-kökte çıkan bilgi diğerlerinde farklı olmaktadır. A B E C F G Şekil 4 İkili ağaçta çeşitli dolaşma şekilleri Önce-kök : ABCEFG Sonra-kök : CBFGEA Ortada-kök : CBFGEA 2.1 Ağaç erinliği İkili arama ağaçları üzerinde yapılan bütün işlemler ağacın derinliğiyle alakalıdır ve kurulabilecek bütün ikili arama ağaçlarında herhangi bir düğümün derinliği ortalama O(log ) olur. Ġspat: Internal Path Line (IPL) : Ağaç üzerindeki bütün düğümlerin köke olan uzaklıkları toplamıdır. Şekil 5 elemanlı bir ağaç 4

5 Şekil 5 teki elemanlı ağacın toplam derinliği () olur. ortalama IPL IPL 1 den e kadar olan sayıları içeren bir ikili arama ağacımız olsun Bu sayılardan bir tanesini k yı düğüm olarak seçelim: 1 den k ya kadar k dan e kadar (k-1) eleman var (-k) eleman var Şekil 6 İki altağaçlı bir ikili ağaç Şekil 6 dan k k 1 + k 1 denklemini elde ederiz. k-1 tane eleman için k ya olan yolları da sayarız Her bir elemanın kök düğüm olma ihtimalini eşit varsayarsak; 1 Pr Pr Pr 1 2 k1 1 k O zaman Şekil 6 dan elde ettiğimiz denklemi k de yerine koyarsak k 1 k 1 k 1 k , 2,... olarak bulunur. O log i e bölersek olur. Buradan da ortalama derinlik = O(log ) olarak bulunur. 5

6 k1 k 1 k k1 k k1 k O halde elimizde iki tane denklem olur: k 0 k k 0 k 2 enklemlerin sol taraflarını pay ve paydadaki ve -1 değerleriyle çarpalım: k 1 k 1 2 k k denklemden 2. yi çıkaralım: => bunu +1 e bölersek ; S 1 olsun. S S S i toplam ifadesi biçiminde yazalım: S 1 k 1 2k k 1 k 2 S 0 0 0) ( S 6

7 S 1 k1 S 1 2k 1 k 1 k 2 k 1 k 2 O log Ortalama derinlik = 1 O log k O log Olog olarak bulunur. Eğer ikili ağaç sıralı değilse, ağaç üzerinde koşacak olan ekleme, listeleme, arama, silme gibi işlemler hep ağaç üzerinde dolaşmayı gerektirir. Çünkü, ağaç üzerindeki tüm düğümlere bakılması gerekebilir. Örneğin bir düğümün silinmesi için önce ağaç üzerinde varlığı ve yeri araştırılmalıdır. Bu nedenle sıralı olmayan ikili ağaçlar üzerinde işlem yapacak algoritmaların zaman karmaşıklığı, genel olarak, toplam düğüm sayısı olmak üzere, O() olur. Zaman karmaşıklığını azaltmak için sıralı özelliğinden dolayı ikili arama ağaçlarının kullanılması yaygındır. Bu durumda ağaç üzerinde arama işleminin ve silme, ekleme gibi, temelde, aramaya dayanan işlemlerin maliyetleri O(log 2 ) mertebesine iner. üğümleri listeleme, ağacı dosyaya yazma gibi işlemleri maliyeti ise, yine O() de kalır. Ağaç uygulamasında daha çok arama, ekleme ve silme işlemlerinin yapıldığı göz önüne alınırsa, uygulamalarda sıralı ikili ağaç kullanılmasının kaçınılmaz olduğu aşikardır. 2.2 ĠKĠLĠ ARAMA AĞAÇLARI ĠÇĠ ALGORĠTMALAR Ġkili Arama Ağacı Ġçin Tanımlamalar struct Treeode; typedef struct Treeode *Position; typedef struct Treeode *SearchTree; SearchTree MakeEmpty( SearchTree T ); Position Find( ElementType X, SearchTree T ); Position FindMin( SearchTree T ); Position FindMax( SearchTree T ); SearchTree Insert( ElementType X, SearchTree T ); SearchTree elete( ElementType X, SearchTree T ); ElementType Retrieve( Position P ); struct Treeode { ElementType Element; SearchTree Left; SearchTree Right; }; Program 2 İkili Arama Ağacı İçin Tanımlamalar 7

8 Tanımlanan Treeode yapısının tipinde Position ve SearchTree adlarında iki tane işaretçi tanımlanmıştır. Her fonksiyonun hangi tipte argüman alıp hangi tipte değer döndürecekleri deklarasyonlarında belirtilmiştir MakeEmpty SearchTree MakeEmpty( SearchTree T ) { if( T!= ULL ) { MakeEmpty( T->Left ); MakeEmpty( T->Right ); free( T ); } return ULL; } Program 3 MakeEmpty fonksiyonunun tanımı MakeEmpty fonksiyonu bir T ağacı alır ve T ağacı boş değilse T yi free ile boşaltır ve sürekli tekrarlamalı (recursive) olarak aynı fonksiyon çağırılarak bütün T ağacı silinmiş olur ve boş ağacı döndürür. Eğer T ağacı boşsa hiçbir şey yapmaz ve ULL döndürür. O(1) zamanda çalışır Find Position Find( ElementType X, SearchTree T ) { if( T == ULL ) return ULL; if( X < T->Element ) return Find( X, T->Left ); else if( X > T->Element ) return Find( X, T->Right ); else return T; } Program 4 Find Fonksiyonunun Tanımı 8

9 Find fonksiyonunda bir T ağacında X değeri aranmaktadır. Eğer T ağacı boşsa işlem yapılmaz ve fonksiyon ULL değerini döndürür. Eğer aranan X değeri T ağacının ilk elemanından küçükse sol altağaca geçilir ve tekrarlamalı (recursive) olarak X değeri bulunana kadar sol altağaçta arama yapılır. Eğer aranan X değeri T ağacının ilk elemanından büyükse sağ altağaca geçilir ve tekrarlamalı (recursive) olarak X değeri bulunana kadar sağ altağaçta arama yapılır. Tworst = O(), Tbest = O(1), Taverage = O(log) süre alır FindMin Position FindMin( SearchTree T ) { if( T == ULL ) return ULL; else if( T->Left == ULL ) return T; else return FindMin( T->Left ); } Program 5 FindMin Fonksiyonunun Tanımı FindMin fonksiyonu ağaçtaki en küçük elemanı bulur ve pozisyonunu döndürür. Eğer T ağacı boşsa ULL döndürür, boş değilse ve sol düğümü boşsa T ağacını aynen döndürür, çünkü sol altağaç olmayacağı için küçük değerler de olmayacaktır. Eğer sol altağaç mevcutsa FindMin fonksiyonu rekürsif olarak en küçük elemanı bulana kadar devam eder. FindMin : Tworst = O(), Tbest = O(1), Taverage = O(log) süre alır. 9

10 2.2.4 FindMax Position FindMax( SearchTree T ) { if( T!= ULL ) while( T->Right!= ULL ) T = T->Right; return T; } Program 6 FindMax Fonksiyonunun Tanımı FindMax fonksiyonu ağaçtaki en büyük elemanı bulur ve pozisyonunu döndürür. Eğer T ağacı boş değilse ve sağ düğüm boş değilken T ağacı T nin sağ altağacına eşitlenir. Yani, fonksiyon artık sağ altağaç için çalışır. FindMax : Tworst = O(), Tbest = O(1), Taverage = O(log) süre alır. 10

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree Genel Kavramlar Bir ağaç yapısı

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

Ağaçlar (Trees) Ağaçlar (Trees)

Ağaçlar (Trees) Ağaçlar (Trees) Giriş Binary Trees (İkilik Ağaçlar) Full Binary Trees Proper Binary Trees Complete Binary Trees Heap Binary Trees Balanced Binary Trees Binary Search Trees (İkilik Arama Ağaçları) Yrd.Doç.Dr. M. Ali Akcayol

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 VERİ YAPILARI Sunu Planı Kendini-gösteren Yapılar Dinamik Bellek Tahsisi Bağlı Listeler Yığınlar Kuyruklar Ağaçlar 1 Veri Yapıları Şu ana kadar, diziler, matrisler ve yapılar

Detaylı

AĞAÇLAR. Doç. Dr. Aybars UĞUR

AĞAÇLAR. Doç. Dr. Aybars UĞUR AĞAÇLAR TREES Doç. Dr. Aybars UĞUR Giriş Bağlı listeler, yığıtlar ve kuyruklar doğrusal (linear) veri yapılarıdır. Ağaçlar ise doğrusal olmayan belirli niteliklere sahip iki boyutlu veri yapılarıdır (Şekil

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1

Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1 Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1 İçerik Temel Kavramlar Ağaçlarda Dolaşım İkili Ağaçlar (Binary Trees) İkili Arama Ağacı (Binary Search Tree ve Temel İşlemler Kütük Organizasyonu 2

Detaylı

Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste Liste birbiriyle ilişkili verileri içeren bir kümedir, programlama açısından liste en basitinden bir dizi üzerinde tutulur. Dizi elemanları

Detaylı

AĞAÇLAR TREES. Doç. Dr. Aybars UĞUR

AĞAÇLAR TREES. Doç. Dr. Aybars UĞUR AĞAÇLAR TREES Doç. Dr. Aybars UĞUR Giriş Bağlı listeler, yığıtlar ve kuyruklar doğrusal (linear) veri yapılarıdır. Ağaçlar ise doğrusal olmayan belirli niteliklere sahip iki boyutlu veri yapılarıdır (Şekil

Detaylı

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ VERİ YAPILARI LİSTELER Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ Bağlı Listeler Aynı kümeye ait veri parçalarının birbirlerine bellek üzerinde, sanal olarak bağlanmasıyla

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda

Detaylı

Veri Yapıları. Ağaçlar. Ağaçlar genel bilgi

Veri Yapıları. Ağaçlar. Ağaçlar genel bilgi Veri Yapıları Ağaçlar Dr. Sinan TUNCEL Ağaçlar genel bilgi Ağaçlar, fizikçi Gustava Kirşof tarafından 1847 de kablo ağlarındaki elektrik akışını formülize etmek için kullanılmıştır. Kirşof yasaları olarak

Detaylı

Veri Yapıları Laboratuvarı

Veri Yapıları Laboratuvarı 2013 2014 Veri Yapıları Laboratuvarı Ders Sorumlusu: Yrd. Doç. Dr. Hakan KUTUCU Lab. Sorumlusu: Arş. Gör. Caner ÖZCAN İÇİNDEKİLER Uygulama 1: Diziler ve İşaretçiler, Dinamik Bellek Ayırma... 4 1.1. Amaç

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. DERS İÇERİĞİ VE KAYNAKLAR Veri Yapıları (VY) dersinde görülmesi muhtemel

Detaylı

AHMET YESEVİ ÜNİVERSİTESİ BİLİŞİM SİSTEMLERİ VE MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ LİSANS DÖNEM ÖDEVİ

AHMET YESEVİ ÜNİVERSİTESİ BİLİŞİM SİSTEMLERİ VE MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ LİSANS DÖNEM ÖDEVİ AHMET YESEVİ ÜNİVERSİTESİ BİLİŞİM SİSTEMLERİ VE MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ LİSANS DÖNEM ÖDEVİ TBIL-303-01 Veri Yapıları ve Algoritmalar İki Yönlü Bağlantılı Liste Uygulaması HAZIRLAYAN

Detaylı

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme Algoritmalar DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme October 19, 2005 Copyright 2001-5 by Erik D. Demaine and

Detaylı

Binary Tree nedir?uygulamas nasl yaplr?

Binary Tree nedir?uygulamas nasl yaplr? Yazar : Tu çe Kalkavan Web : tugcekalkavan.net admin@tugcekalkavan.net Bili³im Blo u Binary Tree nedir?uygulamas nasl yaplr? Bu bölümde veri yaplarnda önemli bir konu olan binary tree konusunu anlatmaya

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15.

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15. Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15 Problem Seti 4 Okumalar: Bölüm 12 13 ve 18 Hem egzersizler

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

Dosyalarda Farklı Yaklaşımlar. Kütük Organizasyonu 1

Dosyalarda Farklı Yaklaşımlar. Kütük Organizasyonu 1 Dosyalarda Farklı Yaklaşımlar Kütük Organizasyonu 1 Giriş Şimdiye kadar öğrendiğimiz temel dosyalama komutlarıyla (fopen,flclose, fputs vb..) dosya oluşturabilmekte, kayıt ekleyebilmekte ve her bir kaydın

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2014-2015 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 2. Ara Sınav 09.04.2015 Sınav Süresi: 90 dakika

Detaylı

enum bolumler{elektronik, insaat, bilgisayar, makine, gida};

enum bolumler{elektronik, insaat, bilgisayar, makine, gida}; BÖLÜM 12: Giriş C programlama dilinde programcı kendi veri tipini tanımlayabilir. enum Deyimi (Enumeration Constants) Bu tip, değişkenin alabileceği değerlerin belli (sabit) olduğu durumlarda programı

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER Veri Yapıları Yrd. Doç. Dr. Şadi Evren ŞEKER Not: Bu sunumun amacı, İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü, Bilgisayar Mühendisliğine Giriş Dersi için genel amaçlı veri yapıları hakkında

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 DOSYALAMA Sunu Planı Rasgele Erişim (Random Access) Dosyaları Rasgele Erişim Dosyalarına Veri Yazma Rasgele Erişim Dosyalarından Veri Okuma 1 Sıralı Erişim Dosyası Bir

Detaylı

BAĞLAÇLI LİSTELER LINKED LISTS

BAĞLAÇLI LİSTELER LINKED LISTS BAĞLAÇLI LİSTELER LINKED LISTS Liste Günlük yaşamda listeler pek çok yerde kullanılmaktadır. Alışveriş listeleri, adres listeleri, davetli listeleri gibi. Bilgisayar programlarında da listeler yararlı

Detaylı

YMT219 VERİ YAPILARI ÖDEV-1

YMT219 VERİ YAPILARI ÖDEV-1 YMT219 VERİ YAPILARI ÖDEV-1 1. İkiliBul yordamı aşağıda verilmiştir. İkiliBul yordamı A dizisi içerisinde 2 tane eşit sayı bulursa true bulamazsa false döndürmektedir. public boolean ikilibul(int[] A){

Detaylı

Eln 1002 Bilgisayar Programlama II

Eln 1002 Bilgisayar Programlama II Eln 1002 Bilgisayar Programlama II Recursive Fonksiyonlar Ne ÖĆreneceĆiz? Recursion nedir? Recursive Fonksiyon tanımı Uygulama ve Örnekler Recursive Çözüm Tasarlama Recursion Nedir? Birçok problem, kendisinin

Detaylı

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree !" #$% &'#(# Konular Progressive Overflow Buckets Linear Quotient Brent s Method Progressive overflow Coalesced hashing temel dezavantajı linkler için ek yer gerektirmesidir Progressive overflow (linear

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Diziler ile Pointer Arası İlişki Bir dizi adı sabit bir pointer gibi düşünülebilir. Diziler ile pointer lar yakından ilişkilidir. Pointer lar değişkenleri gösterdikleri gibi,

Detaylı

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama Bölüm 39 Binary Search (Yarılama) 39.1 Dizide Bir Öğe Arama İkil aramayı (yarılama yöntemi) sıralı veri kümelerinde sık sık kullanırız. Örneğin, sözlükte bir sözcüğü ararken, sözlüğün bütün sayfalarını

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Çok Yollu Ağaçlar (Multi-Way Trees)

Çok Yollu Ağaçlar (Multi-Way Trees) Çok Yollu Ağaçlar (Multi-Way Trees) B-Trees B*-Trees B+-Trees Yrd.Doç.Dr. M. Ali Akcayol Çok Yollu Ağaçlar (Multi-Way Trees) Disk üzerindeki bilgilerin elde edilmesinde kullanılır. 3600 rpm ile dönen bir

Detaylı

1 PROGRAMLAMAYA GİRİŞ

1 PROGRAMLAMAYA GİRİŞ İÇİNDEKİLER IX İÇİNDEKİLER 1 PROGRAMLAMAYA GİRİŞ 1 Problem Çözme 1 Algoritma 1 Algoritmada Olması Gereken Özellikler 2 Programlama Dilleri 6 Programlama Dillerinin Tarihçesi 6 Fortran (Formula Translator)

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

ALGORİTMA İ VE PROGRAMLAMA

ALGORİTMA İ VE PROGRAMLAMA ALGORİTMA İ VE PROGRAMLAMA II Öğr.Gör.Erdal GÜVENOĞLU Hafta 2 Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ 2 Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1 Sıralı Erişimli Dosyalar Kütük Organizasyonu 1 Dosya Fiziksel depolama ortamlarında verilerin saklandığı mantıksal yapılara dosya denir. Dosyalar iki şekilde görülebilir. Byte dizisi şeklinde veya Alanlar

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ

BİLGİSAYAR PROGRAMLAMAYA GİRİŞ BİLGİSAYAR PROGRAMLAMAYA GİRİŞ 5. ders notu Örnek program yazılımları İlişkisel operatörler Mantıksal operatörler Şartlı deyimler İf deyimi Kaynak: Dr.Deniz DAL ders sunumları Örnek : Dışarıdan girilen

Detaylı

Skip List veri yapısında Seviye Optimizasyonu

Skip List veri yapısında Seviye Optimizasyonu 38 Skip List veri yapısında Seviye Optimizasyonu 1 Mustafa AKSU, 2 Ali KARCI ve 1 Şaban YILMAZ *1 Kahramanmaraş Meslek Yüksek Okulu, Sütçü İmam Üniversitesi, Kahramanmaraş, Türkiye 2 Mühendislik Fakültesi,

Detaylı

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf İçindekiler 1. Giriş... 1 1.2. c++ Programı Yapısı... 2 1.3.Using Direktifi... 5 Bölüm 2. Veri türleri, değişken kavramı, sabit ve değişken bildirimleri ve c++ da kullanımı 7 2.1. Temel veri türleri...

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

BLG 312 Bilgisayar İşletim Sistemleri 2006 BLG 312. Bilgilerin Uzun Vadeli Saklanması. Dosya Sistemi Görevleri. Dosya Sistemi Özellikleri

BLG 312 Bilgisayar İşletim Sistemleri 2006 BLG 312. Bilgilerin Uzun Vadeli Saklanması. Dosya Sistemi Görevleri. Dosya Sistemi Özellikleri Bilgilerin Uzun Vadeli Saklanması Bilgisayar İşletim Sistemleri BLG 312 Dosya Sistemi saklanacak veriler çok fazla olabilir veriler proses sonlandıktan sonra da kaybolmamalı bilgiye prosesler ortak olarak

Detaylı

Göstericiler (Pointers)

Göstericiler (Pointers) C PROGRAMLAMA Göstericiler (Pointers) C programlama dilinin en güçlü özelliklerinden biridir. Göstericiler, işaretçiler yada pointer adı da verilmektedir. Gösterici (pointer); içerisinde bellek adresi

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Standard Template Library

Standard Template Library Standard Template Library Uluslararası Bilgisayar Enstitüsü Ege Üniversitesi Ahmet Bilgili & Serkan Ergun STL ANSI/ISO Standard C++ ın içerdiği algoritmalar ANSI/ISO Standard C++ ın içerdiği algoritmalar

Detaylı

FONKSİYONLAR. Gerçek hayattaki problemlerin çözümü için geliştirilen programlar çok büyük boyutlardadır.

FONKSİYONLAR. Gerçek hayattaki problemlerin çözümü için geliştirilen programlar çok büyük boyutlardadır. C PROGRAMLAMA FONKSİYONLAR Gerçek hayattaki problemlerin çözümü için geliştirilen programlar çok büyük boyutlardadır. Daha büyük programlar yazmanın en kolay yolu onları küçük parçalar halinde yazıp sonra

Detaylı

Öğrenci İşleri Bilgi Sistemi Yaz Öğretimi Süreci Eş Değer Ders Tanımlama

Öğrenci İşleri Bilgi Sistemi Yaz Öğretimi Süreci Eş Değer Ders Tanımlama Öğrenci İşleri Bilgi Sistemi Yaz Öğretimi Süreci Tanımlama Yaz öğretiminde açılacak dersler; enstitülerde anabilim dalının olumlu görüşü üzerine, fakülte, konservatuar ve yüksekokullarda ise ilgili birim

Detaylı

Programlama Dilleri. C Dili. Programlama Dilleri-ders08/ 1

Programlama Dilleri. C Dili. Programlama Dilleri-ders08/ 1 Programlama Dilleri C Dili Programlama Dilleri-ders08/ 1 Yapısal Veri Tipleri C dili genişletilebilen bir dildir. Var olan veri tipleri kullanılarak yeni veri tipleri tanımlanıp kullanılabilir. Programlama

Detaylı

ELN1001 BİLGİSAYAR PROGRAMLAMA I

ELN1001 BİLGİSAYAR PROGRAMLAMA I ELN1001 BİLGİSAYAR PROGRAMLAMA I DEPOLAMA SINIFLARI DEĞİŞKEN MENZİLLERİ YİNELEMELİ FONKSİYONLAR Depolama Sınıfları Tanıtıcılar için şu ana kadar görülmüş olan özellikler: Ad Tip Boyut Değer Bunlara ilave

Detaylı

Bilgilerin Uzun Vadeli Saklanması

Bilgilerin Uzun Vadeli Saklanması 8 DOSYA SİSTEMS STEMİ Bilgilerin Uzun Vadeli Saklanması saklanacak veriler çok fazla olabilir veriler proses sonlandıktan sonra da kaybolmamalı bilgiye prosesler ortak olarak ulaşabilmeli 424 Dosya Sistemi

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 5 QUEUE (KUYRUK) Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 5 QUEUE (KUYRUK) Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 5 QUEUE (KUYRUK) Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. Tanım Kuyruk, eleman eklemelerin sondan (rear) ve eleman çıkarmaların

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Ders 4: Diziler (Arrays( Arrays) barisgokce.com

Ders 4: Diziler (Arrays( Arrays) barisgokce.com Ders 4: Diziler (Arrays( Arrays) Hazırlayan : Öğr. Grv.. Barış GÖKÇE Đletişim im : www.barisgokce barisgokce.com Diziler Aynı tipteki bir veri gurubunun bir değişken içinde saklanmasıdır. Veriler Hafızada

Detaylı

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları Giriş 1) Algoritma geliştirme üzerine temel kavramlar 2) Veri modelleri 3) Veri yapıları 4) Algoritma veya yazılım şekilsel gösterimi

Detaylı

HSancak Nesne Tabanlı Programlama I Ders Notları

HSancak Nesne Tabanlı Programlama I Ders Notları DİZİLER Bellekte ard arda yer alan aynı türden nesneler kümesine dizi (array) denilir. Bir dizi içerisindeki bütün elemanlara aynı isimle ulaşılır. Yani dizideki bütün elemanların isimleri ortaktır. Elemanlar

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek

Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek BÖLÜM 8 Tanım 8.1.1:Bir T (serbest) ağacı aşağıdaki özelliğisağlayan bir basit çizgedir: Tçizgesindeiki köşevvewise, bu durumdavd köşesinden w köşesine tek birbasit yol vardır. Bir kkl köklü ağaçğ ise,

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 1 hafta Ödev No : 5 1. Aşağıdaki programların çıktısı

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Algoritma Geliştirme ve Veri Yapıları 8 Kuyruk ve Yığın Yapısı. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 8 Kuyruk ve Yığın Yapısı. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 8 Kuyruk ve Yığın Yapısı Yığın ve kuyruk modelleri verinin geçici olarka saklandığı, davranışları birbirinin tamamen tersi olan ve bellek üzerinde kurulmuş birer saklama

Detaylı

5.HAFTA. Sınıf ve Nesne Kavramı, Metot Oluşturma, Kurucu Metot, this Deyimi

5.HAFTA. Sınıf ve Nesne Kavramı, Metot Oluşturma, Kurucu Metot, this Deyimi 5.HAFTA Sınıf ve Nesne Kavramı, Metot Oluşturma, Kurucu Metot, this Deyimi Sınıf Kavramı: Sınıf (class) soyut bir veri tipidir. Nesne (object) onun somutlaşan bir cismidir. Java da sınıf (class) kavramını

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

Bütün XML dökümanlarının bir kök elemanı olmalıdır. Diğer bütün elemanlar kök elemanı tarafından kapsanır.

Bütün XML dökümanlarının bir kök elemanı olmalıdır. Diğer bütün elemanlar kök elemanı tarafından kapsanır. XML Genişletilebilir İşaretleme Dili (extensible Markup Language), hem insanlar hem bilgi işlem sistemleri tarafından kolayca okunabilecek dokümanlar oluşturmayı sağlamaktadır W3C tarafından tanımlanmış

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

ALGORİTMA VE PROGRAMLAMA II

ALGORİTMA VE PROGRAMLAMA II ALGORİTMA VE PROGRAMLAMA II Yrd. Doç. Dr. Deniz KILINÇ deniz.kilinc@cbu.edu.tr YZM 1102 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Bellek ve Adresleme Dinamik Bellek

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

1 APACHE SERVER KURULUMU 1 Kurulum 1 Apache Ayarları (httpd.conf) 6 PHP Ayarlaları (php.ini) 7 PHP5.4 Yükseltme 8 phpmyadmin Yükseltme 10

1 APACHE SERVER KURULUMU 1 Kurulum 1 Apache Ayarları (httpd.conf) 6 PHP Ayarlaları (php.ini) 7 PHP5.4 Yükseltme 8 phpmyadmin Yükseltme 10 İÇİNDEKİLER V İÇİNDEKİLER 1 APACHE SERVER KURULUMU 1 Kurulum 1 Apache Ayarları (httpd.conf) 6 PHP Ayarlaları (php.ini) 7 PHP5.4 Yükseltme 8 phpmyadmin Yükseltme 10 2 PHP 13 PHP Nedir? 13 PHP ile Neler

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr. İ. Hakkı CEDİMOĞLU S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı