Box ve Whisker Grafiği

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Box ve Whisker Grafiği"

Transkript

1 Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma ve yorumlama, Değşel avramıı alama ve verler değşelğ yorumlama, Değm Aralığı, varya, tadart apma, değşm (varyayo) atayııı taıma ve ullama, Verler çarpılığıı heaplama ve yorumlama. w.mehmetaaraylcom Taımlayıcı İtattler Bo ve Wher Grağ Yer Ölçüler (Merez Eğlm Ölçüler) Duyarlı Ortalamalar Artmet ort. Tartılı Artmet Geometr ort. Karel ort. Harmo ort. Duyarlı Olmaya Ort. Mod Medya Kartller Değşel Ölçüler Değşm Aralığı (Rage) Stadart apma Varya Mutla apma Değşel atayıı Kartl apma atayıı Ortalama apma atayıı Çarpılı Ölçüler Bowley ametr ölçüü Pearo ametr ölçüü Baılı Ölçüler w.mehmetaaraylcom 3 Bo ad Wher grağ verler merez dağılımıa göre götere br gratr. Eample: * * 5% 5% 5% 5% Sapa değerler Alt Lmt. Kartl Medya 3. Kartl Üt Lmt w.mehmetaaraylcom Bo ad Wher Grağ Yapıladırma Bo ve Wher Grağ Sel (Shape) * * Outler Lower t Meda 3rd Upper Lmt Quartle Quartle Lmt Eğer verler medya etraıa metr yayılmışlara; medya utuyu ortalamıştır. The lower lmt Q.5 (Q 3 Q ) Merez utu Q to Q 3 araıdadır Kutu ortaıda çzg medyadır, The upper lmt Q (Q 3 Q ) Wher heaplaa lmtlerde e üçü ve e büyü verler göterr, Sapa değerler grağ dışıda göterlmştr. w.mehmetaaraylcom 5 (Bo ad Wher grağ hem yatay hem de dey şelde göterleblr) w.mehmetaaraylcom 6

2 w.mehmetaaraylcom 7 Shape o a Dtrbuto (Ortalama ve Medyaa göre) Verler dağılımı aıl taımlaır? Smetrl veya Çarpılı Let-Sewed Sola çarpı Symmetrc Rght-Sewed Sağa çarpı Dtrbuto Shape ad Bo ad Wher Plot (Kartllere göre) Let-Sewed Sola Çarpı Symmetrc Rght-Sewed Sağa Çarpı Q QQ3 QQQ3 Q Q Q3 Mea < Meda Mea Meda Meda < Mea (Loger tal eted to let) Uzu uyru ola doğru (Loger tal eted to rght) Uzu uyru ağa doğru w.mehmetaaraylcom 8 Bo ve Wher Grağ Öreğ Değşel - Varyayo (Varato) Below a Bo-ad-Wher plot or the ollowg data: M Q Q Q 3 Ma Değşel ölçümü; verler yayılımı (pread) veya değşelğ (varablty) haıda blg verr. * Upper lmt Q (Q 3 Q ) 7 above the (6 ) upper lmt o how a a outler Bu verler ağa çarpıtır. Ayı merez, Farlı değşel w.mehmetaaraylcom 9 w.mehmetaaraylcom 0 Değşm Aralığı (Rage) E bat değşel ölçüüdür. E büyü ve e üçü gözlemler (obervato) araıda artır: Öre: D.A.Rage mamum mmum Rage - 3 Değşm Aralığıı Zayı Yöler Verler dağılımıı göz ardı eder Rage Rage Sapa değerler ç haatır.,,,,,,,,,,,,,,,,,,,3,3,3,3,,5 Rage 5 -,,,,,,,,,,,,,,,,,,,3,3,3,3,,0 Rage 0-9 w.mehmetaaraylcom w.mehmetaaraylcom

3 w.mehmetaaraylcom 3 Kartller Araı Değşm Aralığı (Iterquartle Rage) Kartller Araı Değşm Aralığı Öreğ: Bazı apa değer problemlere uygulaablr. Yüe ve düşü apa değerler date almada ala verlerle değşm aralığıı heaplar. Iterquartle rage 3 rd quartle t quartle Öre: Meda X mmum Q (Q) Q3 5% 5% 5% 5% Iterquartle rage X mamum w.mehmetaaraylcom Ortalama Mutla Sapma Varya Ortalama Mutla Sapma (MAD) : Br gözlem ortalamada ortalama olara e adar aptığıı ölçüüdür. Bat verler ç: MAD Grupladırılmış verler ç: MAD Ortalama mutla apmada ullaıla mutla değerl adeler le şlem yapmaı zor hatta bazı durumlarda maız olmaı ebebyle ye değşel ölçüüe htyaç bulumatadır. Mutla değer adede zorlu artmet ortalamada arları areler alımaıyla ortada almatadır. Ver etde her br gözlem değer artmet ortalamada arlarıı areler toplamıı öre hacm br eğe bölümede elde edle değşel ölçüüe öre varyaı adı verlr. w.mehmetaaraylcom 5 w.mehmetaaraylcom 6 Varya (Varace) Verler artmet ortalamada apmaıı ortalama ölçüüdür. Aatle varyaı: ( μ) σ Öre(Sample) varyaı: ( ) - w.mehmetaaraylcom 7 Bat erler İç: Populayo Varyaı: μ : Populayo Ortalamaı Öre Varyaı : Gruplamış Serler İç: Sıılamış Serler İç : ( μ) σ : Populayo Hacm ( ) ( m ) ( )

4 w.mehmetaaraylcom 9 ( ) ade tattte br ço ormülde ullaılır ve areler toplamı olara adladırılır. Matematel olara heaplama olaylığı ağlamaı açııda ormüllerde areler toplamıı açılımı ola aşağıda eştl ullaılablr. ( ) ( ) Bat Serler İç: Gruplamış Serler İç: Sıılamış Serler İç : ( ) ( ) m m Stadart Sapma (Stadard Devato) Stadart apma: σ E yaygı ullaıla değşe ölçüüdür, Ortalama değşelğ göterr, Orjal verler ayı ölçü brme ahptr. Aatle tadard devato: σ ( μ) Br dz ölçümü göterdğ değşm e güvelr ölçüüdür. Dağılım azlaya tadart apma büyü, dağılım dar alada e üçütür. Öre tadard devato: ( ) - w.mehmetaaraylcom w.mehmetaaraylcom Stadart Sapmaları Karşılaştırma Ver A Ver B Data C Ortalama ayı, aat tadart apmaları arlı: ortalama ortalama ortalama w.mehmetaaraylcom 3 Öre verler ç tadart apma heaplama: Öre Verler (X ) : (0 6) Ortalama 6 (0 ) + ( ) + ( ) + L + ( ) + ( 6) ( 6) 8 + L + ( 6) w.mehmetaaraylcom

5 Bat erler İç: Populayo Stadart Sapmaı: μ : Populayo Stadart Sapmaı Öre Stadart Sapmaı : Gruplamış Serler İç: Sıılamış Serler İç : σ ( μ) : Populayo Hacm ( ) ( ) ( m ) Bat verler ç: - ( - ) / 5 5 ( ) w.mehmetaaraylcom 6 Grupladırılmış ve ııladırılmış verler ç tadart apma: ( ) ( ) Top ( ) Sııladırılmış verler ç tadart apma: Öre: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı varyaıı ve tadart apmaıı heaplayıız. Sıılar m ( m v ) da az 33 (33-6,6) 36- de az (39-6,6) m -8 de az 0 5 0(5-6,6) 8-5 da az 7 5 7(5-6,6) 6, de az 57 (57-6,6) de az 63 (63-6,6) Toplam , ( m ) 579, 5,6 30 5,6 7,38g. g. Varyayo - Değşel Katayıı (Coecet o Varato) Görel (relatve) değşelğ ölçer (%) olara youmlaır İ veya daha azla ver et ç arşılaştırmada ullaılır. Öre: İtabul da ve Aara da yaşaya aleler aylı gelrler değşeller arşılaştırılmaı CV Populato σ μ 00% Sample CV 00% w.mehmetaaraylcom 9 Değşel Katayıı Öreğ: He eed A: Geçe yıl ortalama yat $50 Stadart apma $5 $5 CV A 00% 00% 0% $50 He eed B: Geçe yıl ortalama yat $00 Stadart apma $5 $5 CV B 00% 00% 5% $00 Her he eed de ayı tadart apmaya ahp, aat he eed B daha az görel değşelğe ahptr. w.mehmetaaraylcom 30

6 w.mehmetaaraylcom 3 Çarpılı (Ametr) Ölçüler Öre: Buca ve Alaca ç gelr dağılımıyla lgl verler aşağıda gbdr: Populayoları brbrde ayırma ç her zama yalızca yer ve yayılım ölçüler yeterl olmayablr. Aşağıda arlı populayoda alımış öreler ç oluşturula htogramlar verlmştr. X Buca Alaca Yorum: Buca da gelr dağılımı Alaca tae göre daha değşedr. 0 μ A A C v B 0 μ Β w.mehmetaaraylcom 3 Ametr Ölçüler Şelde görüleceğ üzere A ve B öreler ayı ortalamaya ve yalaşı olara ayı değşelğe ahp olmalarıa rağme bu öreğ açıça ayı populayoda gelmedğ öyler. Ametr (çarpılı) ade metr olmaya alamıı taşımatadır. Şellere baıldığıda reaları A da daha ço ol tarata (üçü değerlerde), B de e daha ço ağ tarata (büyü değerlerde), topladığı görülmetedr. w.mehmetaaraylcom 33 PEARSO ÇARPIKLIK ÖLÇÜSÜ mod S p veya 3( X med) S p BOWLEY ÇARPIKLIK ÖLÇÜSÜ ( Q S b Q Q 3 Q) ( Q Q ) 3 S p < --- Az çarpı dağılım S p > --- Çarpı dağılım S P < 0 egat çarpı(sola) S P > 0 Pozt Çarpı(Sağa) S P 0 e dağılış metr S b < 0 egat çarpı(sola) S b > 0 Pozt Çarpı(Sağa) S b 0 e dağılış metr w.mehmetaaraylcom 3 Öre: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımıda elde edle bazı taımlayıcı tattler verlmştr. Bua göre pearo ve bowley ametr ölçüler heaplayıp yorumlayıız. Artmet Ort. Mod Medya Q Q 6,6 5, 6,,5 5,9 5,6 3( X med ) 3(6,6 6,) S p 0,6 > 0 5,6 mod 6,6 5, S p 0,6 > 0 5,6 ( Q3 Q ) ( Q Q ) (5,9 6,) (6,,5) S b Q Q 5,9,5 3 0,0 > 0 0, Sağa Çarpı, Pozt Ametr Sağa Çarpı, Pozt Ametr Sağa Çarpı, Pozt Ametr Smetr Dağılım Sağa çarpı dağılım Sola çarpı dağılım A.O Med Mod A.O > Med > Mod A.O < Med < Mod İ modlu metr dağılım Modu olmaya dağılım Tedüze dağılım

7 w.mehmetaaraylcom 37 Baılı Ölçüü Aşağıda A ve B dağılımlarıı ortalamaları, değşel ölçüler ayı olmaıda dolayı ve hatta de metr olmalarıda dolayı bu dağılışı ayırt etme ç Baılı Ölçüü ullaılır. A Herhag br olaılı oyouu şel le lgl parametrelerde br tae de baılı ölçüüdür. Baılı Ölçüü ortalamaya göre dördücü momette gdlere heaplaır ve α olara göterlr. μ α σ Bat Ser İç μ ( μ ) B α 3 e Ser ormal α α < 3 e Ser Baı < 3 e Ser Svr Ya da Yüe A B w.mehmetaaraylcom 38 Mcroot Ecel le taımlayıcı tattler heaplama: Ecel Kullaımı Decrptve Stattc are eay to obta rom Mcroot Ecel Meüde: Data / data aaly / decrptve tattc Açıla pecerede gerel verler gr: Seç: Data / data aaly / decrptve tattc w.mehmetaaraylcom 39 w.mehmetaaraylcom 0 Ug Ecel Ecel Çıtıı Gerel verler gr ummary tattc butouu eç OK butou w.mehmetaaraylcom w.mehmetaaraylcom

8 w.mehmetaaraylcom 3 Öreler Öre : Gruplamış Serler İç Artmet Ortalama Grup Frea w.mehmetaaraylcom : rea : grup ayıı,,3,., Öre: Yada tabloda br Samug bayde LCD televzyoları era boyutlarıa göre atış mtarları verlmştr. Frea dağılımıı artmet ortalamaıı heaplayıız. 5() + 66(3) (7) ,5 0 Öre : Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı artmet ortalamaıı heaplayıız. Sıılar m m da az de az de az da az de az de az Toplam m 33 () + 39 (6) () ,6 g. Öre 3: Aşağıda tabloda 30 gülü üre çde br retoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı moduu heaplayıız. Sıılar da az 36- de az 6-8 de az da az de az de az Toplam 30 Mod Lmod Δ +. Δ + Δ Mod ııı (0 6) +.6 5, g. (0 6) + (0 7) w.mehmetaaraylcom 6 Öre : Br tecere pazarlama rmaıa bağlı çalışa 50 atış peroel aylı tecere atışları aşağıda gbdr. Bu verler ullaara htogramı çzz, artmet ortalama, mod, medya ve artller heaplayara yorumlayıız. ıılar m Σ m Σ toplam X m r Htogram ıılar m Σ m Σ toplam Q 50 l Med LQ + Q Δ Mod L Δ + Δ + 5 mod 5.

9 ıılar m Σ m Σ toplam Q Med5 Q Q L Q l LQ 3 Q3 + l. Q r Htogram %5 %5 %5 %5 Q 0.5 Q 5 Q 3 6. A.O5. Mod. Yorumlama: Q : Gözlemler %5 0.5 te daha üçütür. Yorumlama: Q : Gözlemler %50 5 te daha üçü, %50 5 te daha büyütür. Yorumlama: Q 3 : Gözlemler %5 6. de daha büyütür. Öre 5: İtatt I der ala 0 öğrec vze otları aşağıda gb ıralamıştır. Bua göre vze otları ç varya ve tadart apmayı heaplayıız. Ayı oru areler ortalamaıı açılımı ullaılara çözüldüğüde ayı ouçları verecetr. 30,,53,6,68,79,8,88,90, ( ) ( 30 69) ( 69)... ( 98 69) , 9 50, 50, İtatt I vzede alıa otları ortalama etraıda yalaşı olara pua değştğ görülmetedr. w.mehmetaaraylcom 5 69,5 30,,53,6,68,79,8,88,90, , ,, ( ) ( ) w.mehmetaaraylcom 5 Öre 6 : Yada tabloda br Samug bayde LCD televzyoları era boyutlarıa göre atış mtarları verlmştr. Frea dağılımıı varya ve tadart apmaıı heaplayıız. Grup Frea ( ) ( 605) ,67 7,67,5 Öre 7 : Kuruyemş ata br düada br hatalı ürede atıla lebleb, ıtı ve bademler ortalamaları ve tadart apmaları aşağıda verlmştr. Bua göre uruyemşler değşeller açııda arşılaştırıız ve uruyemş değşelğ daha azla olduğuu belrtz. Lebleb 30 g. 5 g. Fıtı 0 g. g. Badem 0 g. 3 g. CV lebleb CV ııtı CVBADEM 5 * 00 *00 6,67 %6,67 X 30 * 00 *00 0 %0 X 0 3 * 00 *00 30 %30 X 0 Üç uruyemş değşeller arşılaştırıldığıda e üçü tadart apma değer bademde olmaıa rağme e büyü varyayo atayııa ahp olduğuda e azla değşelğ bademde olduğu görülür. Artmet ortalamalar çerde tadart apma yüzdelere baıldığıda e büyü yüzde bademdedr.

10 GRAFİKLER Score Plot o y y y3 y v 3 Score Plot o y y y3 y v 3,00,00,3,3 y y y3 y 0,5 y y y3 y 0,5-0,63-0,63 -,50 -,00 -,3-0,5 0,63,50 -,50 -,00 -,00 0,00,00, Score Plot o y y y3 y v 33 Score Plot o y y y3 y v 3,00,50,3 0,38 y y y3 y 0,5 y y y3 y -0,75-0,63 -,88 -,50 -,00 -,00 0,00,00,00-3,00 -,00 -,3-0,5 0,63,

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Meta-analizinde kategorik verilerin birleştirilmesinde kullanılan istatistiksel yöntemler: Aktif ve pasif sigara içicilerin değerlendirilmesi

Meta-analizinde kategorik verilerin birleştirilmesinde kullanılan istatistiksel yöntemler: Aktif ve pasif sigara içicilerin değerlendirilmesi İtabul Üverte İşletme Faülte Derg Itabul Uverty Joural o the School o Bue Admtrato lt/vol:38, Sayı/No:2, 2009, 34-46 ISSN: 303-732 - www.derg.org 2009 Meta-aalzde ategor verler brleştrlmede ullaıla tattel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Dr. Mehmet AKSARAYLI MERKEZİ EĞİLİM ve DEĞİŞKENLİK ÖLÇÜLERİ Ders / Tanımayıcı İstatstker Yer Öçüer (Merkez Eğm Öçüer) Duyarı Ortaamaar Artmetk ort. Tartıı Artmetk Geometrk ort. Kare ort. Harmonk ort. Duyarı

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır.

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır. .GİRİŞ Güümüde hıla gelşe eolo ve blg brm saesde her geçe gü e elero chalar ürelmee ve mevcu freas badıı eers alması edele ürecler üse freaslara öelmeedrler. Yüse freas ullaıldığıda se chaları bouları

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

GIDA SEKTÖRÜNDE İSTATİSTİKSEL KALİTE KONTROL GRAFİKLERİNİN BİR UYGULAMASI

GIDA SEKTÖRÜNDE İSTATİSTİKSEL KALİTE KONTROL GRAFİKLERİNİN BİR UYGULAMASI GIDA SEKTÖRÜNDE İSTATİSTİKSEL KALİTE KONTROL GRAFİKLERİNİN BİR UYGULAMASI Aytaç PEKMEZCİ * Özet Kalte kontrol grafkler üreç kontrolü ve yleştrlmende öneml br yere ahptr. İşletmelerdek ürünlern kalte düzeylernn

Detaylı

İstatistiksel Proses Kontrol - Seminer Notları -

İstatistiksel Proses Kontrol - Seminer Notları - MÜSEM - KALİTE YÖNETİCİLİĞİ UZMANLIK SERTİFİKA PROGRAMI 06 Nisa 00 İstatistisel Proses Kotrol - Semier Notları - Marmara Üiversitesi, Tei Eğitim Faültesi e-posta eoer@marmara.edu.tr GSM 053 910016 - Telefo

Detaylı

ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı

ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ü Ğ Ğ ş üş ü ş ğ ş ü ğ ş ü ç Ö Ö Ü ü ü ş Ş ğ ş Ü üç ü ü ü ü ş ç ş ğ üş ğ ü ü ü ş ş ü ş ğ ç ş ğ ğ ş ş ş ü ü ü ğ ü ü ü üç ğ ü ç ş ü ğ Ç ğ ç ş ü ü ü ğ ü ğ ü Ü ü ü Ö ç ü ü ü üğ ş ş ç ğ ç ü ü ü üğ ş ş ç ğ ü

Detaylı

İ Ö Ö Ü Ü İ İ İ Ç İ «Ö Ç İ İ Ö İ Ç Ç Ç İ Ö İ İ Ü Ü Ç Ğ Ö Ç Ü Ğ Ö İ Ç Ü Ü Ü Ü Ü Ç İ İ İ Ö Ö Ç Ç İ Ç Ü İ İ Ç Ç Ç Ç Ö Ö Ç Ü Ö Ç Ç Ö Ö Ö Ö Ö Ö ÜĞ Ü Ö Ç Ç İ Ç Ç İ İ Ü Ö Ç Ç İ

Detaylı

İSTATİSTİKSEL HİPOTEZ TESTLERİ

İSTATİSTİKSEL HİPOTEZ TESTLERİ İSTATİSTİKSEL İPOTE TESTLERİ (t z tetleri Doç. Dr. Mehmet AKSARAYLI www.mehmetakarayli.com ipotez Nedir? İPOTE, parametre hakkıdaki bir iaıştır. Bu ııfı ot ortalamaıı 75 olduğua iaıyorum. Parametre hakkıdaki

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

1. KODLAMA KURAMINA GİRİŞ 1

1. KODLAMA KURAMINA GİRİŞ 1 ÖNSÖZ Bu çalışmaı oluşumu esasıda emeğ, blgs ve sosuz desteğyle baa yol göstere değerl hocam Prof. Dr. Erol BALKANAY a; alayışı, desteğ ve atılarıda ötürü değerl hocam Yrd. Doç. Dr. Recep KORKMAZ a teşeürlerm

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Ölçme Hataları ve Normal Dağılım

Ölçme Hataları ve Normal Dağılım Ölçme Hataları ve Normal Dağılım Yıl 967. Fzk ders mekak laoratuarıda rc laoratuar. Kousu: Ölçme ve çft kefel terazler hassasyet. Mesaj: ey ölçerse ölç, ölçmek stedğ şey ulamazsı, ölçü alet hassasyet sıırları

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:-Sayı/No: : 355-366 (9) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE TEK DEĞİŞKENLİ KARARLI DAĞILIMLAR,

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

Okan Yurduseven 1, Ahmet Serdar Türk 2. Marmara Üniversitesi oyurduseven@marmara.edu.tr. Yıldız Teknik Üniversitesi asturk@yildiz.edu.tr.

Okan Yurduseven 1, Ahmet Serdar Türk 2. Marmara Üniversitesi oyurduseven@marmara.edu.tr. Yıldız Teknik Üniversitesi asturk@yildiz.edu.tr. Mkrodalga Radar Stemler İç Koekat-Kare Işıma Deel Dışbükey Parabolk Yaıtıcı Ate Taarımı Covex Parabolc Reflector Atea Deg Wth Coecat-Squared Radato Patter For Mcrowave Radar Sytem Oka Yurdueve, Ahmet Serdar

Detaylı

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ BĠR GRAFIN TERS WIENER ENERJĠSĠ VE TERS WIENER-ESTRADA ĠNDEKSĠ Sez ÇĠZMECĠ YÜKSEK LĠSANS TEZĠ Matemat Aablm Dalı OCAK-0 KONYA Her Haı Salıdır TEZ BĠLDĠRĠMĠ

Detaylı

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

Veri zarflama analizi (VZA) ile Türkiye deki vakıf üniversitelerinin etkinliğinin ölçülmesi

Veri zarflama analizi (VZA) ile Türkiye deki vakıf üniversitelerinin etkinliğinin ölçülmesi İtabul Üvete İşlete Faülte Deg Itabul Uvety Joual of the School of Bue Adtato Clt/Vol:37, Sayı/No:2, 2008, 167-185 ISSN: 1303-1732 - www.fdeg.og 2008 Ve zaflaa aalz (VZA) le Tüye de vaıf üvetele etlğ ölçüle

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

TC Çanakkale Onsekiz Mart Üniversitesi Mühendislik Mimarlik Fakültesi JEOFIZIK MÜHENDISLIGI BÖLÜMÜ VERI ISLEM I- DERS NOTLARI

TC Çanakkale Onsekiz Mart Üniversitesi Mühendislik Mimarlik Fakültesi JEOFIZIK MÜHENDISLIGI BÖLÜMÜ VERI ISLEM I- DERS NOTLARI C Çaakkale Oek Mar Üvere Mühedlk Mmarlk Faküle JEOFIZIK MÜHENDISLIGI BÖLÜMÜ VERI ISLEM I- DERS NOLARI Yrd. Doç. Dr. olga Bekler Öeml No: Der Nolar am ve çerg le düeleme aamadadr. Sadece ÇOMÜ jeok ögrecler

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C

BLAST A C G T T A A A C T C G G C I I I I I I I I I A C T T T A A G C C A A G C BLS Öcei erste; DN izilerie,,g, bazlarıı izilişi, RN izilerie,,g,u bazlarıı izilişi ve protei izilerie amio asitleri izilişi baımıa, orta bir alfabe ile yazılmış izileri hizalaması üzerie urulu. Hizalamış

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

2011-2012 Öğretim Yılı Bahar Yarıyılı Karayolu Dersi (0423412) Grup 4 Uygulama-I -Çözümler

2011-2012 Öğretim Yılı Bahar Yarıyılı Karayolu Dersi (0423412) Grup 4 Uygulama-I -Çözümler 011-01 Öğreti Yılı Bahar Yarıyılı Karayolu Der (04341) Grup 4 Uygulaa-I -Çözüler Soru 1 (MSY-3+4)- Topla kütle 1,5 ton olan bir otoobil 80 k/a hızla %6,5 eğili bir yol keinde eyrederken yarıçapı 350 olan

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Parçacık Sürü Optimizasyonu ile DWT-SVD Tabanlı Resim Damgalama

Parçacık Sürü Optimizasyonu ile DWT-SVD Tabanlı Resim Damgalama Parçacı Sürü Optmzasyou le DW-SVD abalı Resm Damgalama Veysel Aslataş, Abdullatf Doğa, Rfat Kurba Özet Multmedya eseler ç telf haı ve erşm otrolü amacıyla çeştl damgalama teler gelştrlmştr. Bu çalışmada

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM Electroc Joural of Vocatoal Colleges December/Aralı 20 İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ Hade GÜNAY AKDEMİR, Fatma TİRYAKİ 2 Özet Bu çalışmada, müşter talepler stoast, özellle esl rassal değşeler

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ BÖÜ ŞĞ RAS DE SRU - DEİ SRUAR ÇÖZÜERİ Sell bağıtısıda, si si olur i i sıvısı 0 0 sıvısıı ışığı kırma idisi, h si h si si si0 yasıya ıflı k r la ıflı c si ic h si ih c si 0 si c olur c 0 r cam olur δ açısı,

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

OLGUN-13 EKMEKLİK BUĞDAY ÇEŞİT ADAYININ TESCİLİ HAKKINDA RAPOR

OLGUN-13 EKMEKLİK BUĞDAY ÇEŞİT ADAYININ TESCİLİ HAKKINDA RAPOR OLGUN-13 EKMEKLİK BUĞDAY ÇEŞİT ADAYININ TESCİLİ HAKKINDA RAPOR Güneydoğu Anadolu Bölgesi suluda ekmeklik buğday tarımsal değerleri ölçme denemelerinde Olgun-13 çeşit adayı 2 yıl süreyle yer almıştır. Bu

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı