İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi"

Transkript

1 İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

2 Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı, dış yükleri dengelemede gerekli olan, eleman içine etkiyen yüklerin incelenmesini gerektirir. aşka bir deyişle, sözkonusu elemanın yapıldığı malzemenin, uygulanan kuvvetlere karşı dayanımını koruyup koruyamayacağının ortaya konması gerekir. Kesit yöntemi bu amaç için kullanılabilir. Şekildeki P ve P kuvvetlerine maruz konsol kirişi ele alalım. Eğer noktasında oluşan iç kuvvetleri bulmak istiyorsak kiriş eksenine dik hayali bir aa kesiti geçirmek gerekir, bu kesit ile kiriş iki parçaya ayrılır.

3 Kirişi noktasından kestiğimizde, iç kuvvetler her bir parçanın serbest cisim diyagramında dış kuvvet olarak gösterilir. u kuvvetler kesitin her iki tarafında büyüklükçe eşit ve zıt yönlü olmalıdır (Newton un üçüncü kanunu). u kuvvetler, parçaların birbirine göre relatif hareketini engellemektedir. N = kesite dik olarak etkiyen NORL KUVVE (eksenel kuvvet) V = kesite teğet olarak etkiyen KESE KUVVEİ = kesite etkiyen EĞİLE OENİ

4 kesitindeki iç kuvvetler, parçalardan herhangi birine üç denge denkleminin uygulanmasıyla belirlenebilir. Sağ parçanın serbest cisim diyagramını kullanalım: N V F Fy

5 İki boyutlu problemlerde, kesitte üç adet iç kuvvet oluşmaktadır. Üç boyutta ise kesitte, genel bileşke iç kuvvet ve kuvvet çifti momenti etki edecektir. u kuvvetlerin, y, z bileşenleri şekilde gösterilmektedir. boyutlu 3 boyutlu ir çok uygulamada, bu bileşke kuvvetler kesitin enkesit alanının geometrik merkezi veya ağırlık merkezinde etki edecektir. Her bir kuvvetin büyüklüğü, elemanın ekseni boyunca çeşitli noktalarda farklı olacaktır. u nedenle, kesit yöntemi bir elemana birden fazla kez uygulanacaktır.

6 İŞRE KULLERİ ühendislerin genellikle kullandığı N,V, kuvvetlerinin pozitif yönleri aşağıda gösterilmiştir : Pozitif kesme kuvveti Pozitif moment Pozitif normal kuvvet Normal kuvvet elemanda çekme etkisi yaratıyorsa, yönü pozitiftir. Kesme kuvveti elemanı saat yönünde döndürüyorsa, yönü pozitiftir. oment, elemanı aşağı doğru konkav şekle sokuyorsa, yönü pozitiftir. u yönlerin tersi yönünde etki eden kuvvetler negatif olarak ele alınacaktır.

7 NLİZDE İZLENECEK YOL ir eleman içinde belirli bir yerdeki iç kuvvetleri belirlemek için kesit yönteminin uygulanması aşağıdaki prosedür izlenerek yapılabilir. esnet epkileri: eleman parçalara ayrıldığı zaman, denge denklemlerinin sadece iç kuvvetleri bulmak için kullanılabilmesi için, kesilmeden önce mesnet tepkilerini belirlemek gerekebilir. Serbest Cisim Diyagramı: eleman üzerine etkiyen bütün dış kuvvetler (mesnet tepkileri dahil) eleman üzerinde etkidikleri yerler değiştirilmeden gösterilir. İç kuvvetlerin belirleneceği noktada eksene dik hayali bir kesit geçirilir. Parçalardan üzerinde en az kuvvet olan parçanın serbest cisim diyagramı çizilir. Kesitteki iç kuvvetler pozitif yönleriyle serbest cisim diyagramı üzerinde gösterilir. Denge Denklemleri: bilinmeyen iç kuvvetlerin bulunması için denge denklemleri uygulanır. Normal ve Kesme kuvvetlerini elimine etmek için, oment denge denklemi kesite göre alınmalıdır. Denge denklemlerinin çözümü negatif bir sayı verirse, seçilmiş olan yön yanlıştır, kuvvetin yönü serbest cisim diyagramı üzerinde gösterilene terstir.

8 İÇ ESİRLERİN KYNĞI DIŞ KUVVELERDİR! DIŞ KUVVELER N,, DİYGRLRI İÇ ESİRLER HESPLNIR ÇEŞİLİ HESPL YÖNELERİ SRI OYULNDIR

9 Kesme Kuvveti ve oment Diyagramları Ekonomik ve yapısal açıdan efektif bir tasarım yapılabilmesi için şekilde görülen kirişler açıklık boyunca farklı kesitlerde üretilmiştir. Çünkü kirişin ortasına kıyasla mesnetlerinde oluşan moment değeri daha büyük olacaktır. Kirişler, eksenlerine dik uygulanan yükleri taşımak için tasarlanan elemanlardır. Genelde, kirişler sabit enkesit alanına sahip uzun, doğrusal çubuklardır. esnetlenme durumlarına göre sınıflandırılırlar. Örn: basit mesnetli kiriş ( bir ucunda pimli diğerine kayar mesnet), ankastre kiriş (bir ucundan ankastre mesnetle sabitlenmiş, diğer ucu serbest) vb.

10 ir kirişin tasarımı, kirişin ekseni boyunca her bir noktada etkiyen iç kesme kuvvetinin (V) ve eğilme momentinin () değişiminin detaylı olarak bilinmesini gerektirir. Normal kuvvetin değişimi kirişlerin tasarımında dikkate alınmaz. Çünkü, genelde kuvvetler kiriş eksenlerine dik doğrultuda etkir ve bu kuvvetler sadece kesme kuvveti ve moment oluşturur. Ve tasarım açısından kirişlerin kesmeye ve eğilmeye karşı dayanımları eksenel yüke dayanımından çok daha önemlidir. Kuvvet ve eğilme momenti analizi tamamlandıktan sonra, kirişin gerekli enkesit alanını belirlemek için malzeme mekaniği teorisi ve uygun bir mühendislik tasarım standardı kullanılabilir.

11 Kirişin ekseni boyunca konumunun fonksiyonu olarak V ve nin değişimleri kesit yöntemi kullanılarak ele edilebilir. ununla birlikte, kirişi belirli bir noktadan kesmek yerine bir uçtan keyfi bir uzaklıktan (,, 3 gibi) kesmek gerekir. in fonksiyonu olarak V ve nin değişimlerini gösteren grafiklere, kesme kuvveti diyagramı ve eğilme momenti diyagramı denir. Genelde, yayılı yüklerin değiştiği ya da tekil kuvvet veya momentlerin uygulandığı noktalarda, iç kesme kuvveti ve eğilme momenti fonksiyonları veya bunların eğimleri süreksizdir. u nedenle, bu fonksiyonlar kirişin herhangi iki yükleme süreksizliği arasında yer alan her bir parçası için belirlenmelidir. Örn: şekildeki (Oa), (ab), (bl) parçaları için V ve fonksiyonları için ayrı ayrı hesaplanmalıdır.

12 V( ) ( ) a V( ) ( ) a b V( 3 ) ( 3 ) b 3 L

13 a) Yukarı yönlenmiş kuvvetler yukarı doğru ve aşağıya doğru yönlenmiş kuvvetler aşağı doğru çizilir. b)kuvvetlerin bulunmadığı aralıklarda kesme kuvveti eksenine paralel bir doğru, düzgün yayılı yük için lineer bir doğru ve üçgen yayılı yük için ikinci dereceden bir eğridir. c)ir noktadaki eğilme momenti, kendisinden bir önceki eğilme momentinden, bu iki nokta arasındaki kesme kuvvetinin alanın toplanması veya çıkarılmasıyla elde edilir. d) Eğilme momenti diyagramının derecesi kesme kuvvetinin derecesinden bir fazladır.

14 N,, DİYGRLRININ ÇİZİLESİ (KESE YÖNEİ) K q Öncelikle N,, diyagramı çizilecek kiriş üzerinde açıklık sayısı kadar kesim yapılır. Kesme yapılacak açıklık sayısını tekil yük ve momentler de etkiler. K L Sonrasında kesim yapılan noktaya soldan ya da sağdan yaklaşarak, kesim yapılan noktadaki 3 iç tesirine ait fonksiyonlar elde edilir (Denge denklemleri yazılarak hesap yapılır). Elde edilen fonksiyonların belli noktalar için aldığı değerler hesaplanır ve fonksiyon derecelerine bağlı olarak N,, diyagramları çizilir.

15 K q K L KESİ NOKSIN SOLDN YKLŞI: X q K N Denge denklemleri kesit için aşağıdaki gibi yazılır. u denklemler < <L arasında geçerlidir. N= q* = y q* /* = y

16 K q K L KESİ NOKSIN SĞDN YKLŞI: N K q Denge denklemleri kesit için aşağıdaki gibi yazılır. u denklemler < <L arasında geçerlidir. N= q* = y q* /=* y

17 q L K K q K y X N y N q K K K K Fy F N K K K Fy F N Kesitteki iç kuvvetler, parçalardan herhangi birine üç denge denkleminin uygulanmasıyla belirlenebilir.

18 İŞRE KULLERİ N Sol uç Sağ uç N

19 ÖRNEK 9 m 5 t m C Şekildeki basit mesnetli kirişin kesme kuvveti ve moment diyagramlarını çiziniz. üm kirişin serbest cisim diyagramından mesnet kuvvetlerini bulalım: 5t y C y

20 Çözüm için öncelikle mesnet reaksiyonları hesaplanmalı, daha sonra kaç kesim yapılacağına karar verilmelidir. çıklıkta adet tekil yük bulunmaktadır. Kiriş bu yükün solunda ve sağında olmak üzere iki parça halinde incelenmelidir. 5 t X C y m m C y y C y 5 y.5t Cy. 5t

21 Kesim mesneti tarafından tekil kuvveti dışarıda bırakacak şekilde yapılır. Kesilen sağ uca N,, işaret kuralına göre yerleştirilir:.5 t N F F y N.5.5t.5 < <m arasında geçerli bağıntılar:. 5 metre arasında sabit tm 5tm

22 İkinci kesim mesneti tarafından tekil kuvveti dışarıda bırakacak şekilde yapılır. Kesilen sol uca N,, işaret kuralına göre yerleştirilir: N C.5 t < <.5m arasında geçerli bağıntılar: F F y N.5.5t.5. 5 metre arasında sabit C 5tm

23 5 5 t Diyagramların çiziminde elde edilen bağıntılardan yararlanılır. asit yükleme durumlarında mesnet tepkileri ve yükleme durumuna bakılarak diyagramlar doğrudan çizilebilir. C m m.5 t.5 t Kesme kuvveti düşey yük ve tepkiler kullanılarak diyagrama işlenir. Kiriş üzerinde yük olmayan bölgelerde kesme kuvveti sabittir. Yük etkiyen noktalarda ani kesme kuvveti değişimi gözlenir. oment diyagramı kesme kuvveti diyagramı altında kalan alan (işaretine de bakılarak) kullanılarak çizilir. N (ton) (ton) (tm)

24 İkinci bir alternatif olarak sağdaki parçanın hesaplamaları soldan kadar kesilerek de yapılabilir. (5 kn luk kuvveti de içeriyor)

25 ÖRNEK şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t 3 5 t 4 3 m m 3 m

26 t 5 t X C D m m 3 m y y = y 3t y *3 6 4*5 8* y y 3.5t y. 75t

27 İlk kesim: 3 t N.75 t (C) < <3m arasında geçerli bağıntılar: F 3 N N 3t F y.75.75t tm C 8. 5tm

28 İkinci kesim: 3 t C t N.75 t 3 m (CD) < <m arasında geçerli bağıntılar: F F y 3 N N 3t.75.75t *.75*(3 ) C 8. 5tm D 9. 75tm

29 Son kesim: Kolaylık olması açısından diğer taraftan kesim yapılabilir. (D) N 3 D 3.5 t < 3 <3m arasında geçerli bağıntılar: F N F y t D tm tm 3

30 3 t t 4 t 3 5 t 4 3 t.75 t 3 m m 3 m 3.5 t N (ton) 3 3 (ton) (tm)

31 ÖRNEK 6 kn C 9 knm 6 kn luk kuvvetin hemen solundaki ve hemen sağında oluşan Normal kuvvet, Kesme kuvveti ve Eğilme momentini belirleyiniz.

32 ÇÖZÜ Çözüm için öncelikle mesnet reaksiyonları hesaplanmalı, daha sonra kaç kesim yapılacağına karar verilmelidir. çıklıkta adet tekil yük bulunmaktadır. Kiriş bu yükün solunda ve sağında olmak üzere iki parça halinde incelenmelidir. X 6 kn C 9 kn m 3 m 6 m y y y y 6 6*3 9 9* y y kn y 5kN

33 Kesim mesneti tarafından tekil kuvveti dışarıda bırakacak şekilde yapılır. Kesilen sağ uca N,, işaret kuralına göre yerleştirilir: N 5 t < <3m arasında geçerli bağıntılar: F N 3 metre arasında sabit F y 5 5kN knm C 5kNm

34 İkinci kesim mesneti tarafından tekil kuvveti dışarıda bırakacak şekilde yapılır. Kesilen sol uca N,, işaret kuralına göre yerleştirilir: N 9 kn m < <6m arasında geçerli bağıntılar: kn F F y N 3 metre arasında sabit kn kNm 6 C 5kNm

35 Kiriş noktasından ve C noktasından kesilir, serbest cisim diyagramı çizilir. parçası C parçası parçası C parçası

36 5 Diyagramların çiziminde elde edilen bağıntılardan yararlanılır. asit yükleme durumlarında mesnet tepkileri ve yükleme durumuna bakılarak diyagramlar doğrudan çizilebilir. X = 5kN 3 m 6 kn C 6 m kn 9 knm Kesme kuvveti düşey yük ve tepkiler kullanılarak diyagrama işlenir. Kiriş üzerinde yük olmayan bölgelerde kesme kuvveti sabittir. Yük etkiyen noktalarda ani kesme kuvveti değişimi gözlenir. oment diyagramı kesme kuvveti diyagramı altında kalan alan (işaretine de bakılarak) kullanılarak çizilir. ekil moment olan noktalarda moment diyagramında ani değişim olur. N (kn) (kn) 5 5 (knm) 9

37 ÖRNEK şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. 4 t 3 t/m C 3m 5m m

38 4 t 3 t/m C y 3m m C y F = 5m Fy y C y 4 t (3 t/m *5)= y C y = 9 t 4 t *3 m (3 t/m *5)*.5 m 5*C y = C y = 9.9 t ( ) y = 9. t ( )

39 4 t 3 t/m Kiriş noktasındaki tekil kuvvet nedeniyle iki bölgeden oluşmaktadır. C 9. t 3m m 9.9 t 5m () < <3m arası: 3 t/m (C) < <m arası: 3 t/m 9. t N N C 9.9 t

40 3 t/m () < <3m arası: 9. t N F F y N 9. 3* t 3. t.5.derece tm tm

41 3 t/m (C) < <m arası: N C 9.9 t F F y N 9.9 3* t 3. 9t.5.derece C tm 3. 8tm

42 4 t 3 t/m Yayılı yüklerin bulunduğu kiriş diyagramlarında yayılı yük alanı (şerit yük*etkidiği mesafe) kesme kuvvetindeki mesafe boyunca doğrusal değişimi gösterir. C 9. t 3m m 9.9 t oment diyagramı da kesme kuvveti diyagramı altında kalan alan (işaretine de bakılarak) kullanılarak çizilir. Kesme kuvvetinin sıfırdan geçtiği noktada eğilme momenti maksimum değerini alır. N (ton) (ton) (tm) o o 3.8

43 ÖRNEK 3 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. 8 t/m C 3 t 3m.5m

44 8 t/m C 3 t y 3m.5m C y F 3= =3 t Fy y C y (8 t/m *3)= y C y = 4 t (8 t/m *3)*.5 m 4.5*C y = C y = 8 t ( ) y = 6 t ( )

45 8 t/m () < <3m arası: 3 t 6 t N F F y 3 N N 3t 6 8* t 3 8t 4.derece tm 3 tm

46 Kolaylık olması açısından diğer taraftan (sağdan) kesim yapılabilir. N C 3 t (C) < <.5m arasında geçerli bağıntılar: 8 t F N 3 N 3t F y 8 8t C tm tm

47 8 t/m 3 t C 3 t 6 t 3m.5m 8 t Üçgen benzerliğinden kesme kuvveti diyagramında sıfır kesme kuvveti noktası bulunur. u soruda m oment denkleminde yerine konulursa: 6 4 6tm N (ton) (ton) (tm) 3 6 o m

48 ÖRNEK 4 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t/m 3 tm 6 tm 3m

49 t/m 3 tm 6 tm y 3m y F = Fy y y ( t/m *3)= y C y =6 t ( t/m *3)*.5 m 3* y 36= y = 4 t ( ) y = t ( )

50 t t/m N <<3m arası: () 3 3 * F N F y tm 3 tm 6 3 t t 4 3.derece 3 tm

51 t/m 3 tm 6 tm t 3m 4 t Üçgen benzerliğinden kesme kuvveti diyagramında sıfır kesme kuvveti noktası bulunur. u soruda m oment denkleminde yerine konulursa: 3 tm N (ton) (ton) (tm) 3 m o o 4 6

52 ÖRNEK 5 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t/m 5 t 4 C 3 tm m m

53 t/m 4t 5 t y C 3 4 3t tm m m F 3= =3 t Fy y ( t/m *)4= y =8 t ( t/m *)* m 4*3 m = = 8 tm ( )

54 t/m () < <m arası: 3 t 8 tm N 8 t F F y 3 N N 3t 8 * t 8 8 4t.derece 8tm 6tm

55 tm C 4 t 3 t N < <m arası: () t F t N N F y tm C tm 6

56 t/m 4 t 8 tm 3 t 8 t C 3 t tm m m N (ton) 3 3 (ton) (tm) 8 o 6

57 ÖRNEK 6 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t 5 t C D 3 tm m 3m m

58 t 5 t C D D 3 tm y m 3m m D y F D = Fy y D y 5= y D y =7 t * m 5*3 m 3D y *5 m = D y =.8 t ( ) y = 4. t ( )

59 t N < <m arası: () t F N F y tm 4

60 t N (C) < <3m arası: m 4. t F N F y 4..t * *. 4 4tm 3 C. 6tm

61 N D 3 tm (CD) < 3 <m arası: 3.8 t F F y C N.8.8t D 3tm 3 C. 6tm 3

62 t 5 t C 4. t.8 t m 3m m D 3 tm N (ton) (ton) (tm)

63 ÖRNEK 7 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t/m t 5m tm 5m 5 t C m 6m m ödev

64 t/m t tm 5 t C y 5m 5m y m 6m m F 5= =5 t Fy y y = y y = t (*5)*.5 m tm y * m = y = 3.5 t ( ) y = 6.5 t ( )

65 7.5 Keserek diyagramı kontrol ediniz. t/m tm 5 t C 5 t t 6.5 t 3.5 t 5m 5m m 3m 3m m N (ton) (ton) (tm)

66 ÖRNEK 8 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t/m t 5 tm t C 5m 5m m 6m m

67 t/m 5 tm t C y 5m t y 5m m 6m m F = = t Fy y y = y y = t (*5)*.5 m 5 tm y * m = y = 7.5 t ( ) y =.5 t ( )

68

69

70

71 t/m 5 tm t C t t.5 t 7.5 t 5m 5m m 3m 3m m N (ton) (ton) (tm)

72 ÖRNEK 9 şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. 5 kgm kg/m C D.m.3m.5m

73 kg/m 5 kgm C D y.m.3m.5m F = Fy y ( kg/m *.5)= y = kg 5 *.75= = 5 kgm ( )

74 5 kgm 5 kgm kg/m kg.m.3m C.5m D N (kg) (kg) 5 (kgm) o

75 ÖRNEK şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. t t/m C D tm m 4m m

76 t t/m C D tm m 4m m F = Fy y C y 4= y C y =6 t (4*)* m tm C y *4 m t * m = C y = t ( ) y = 4 t ( )

77 t t/m C D tm 4 t t m 4m m N (t) (t) m (tm)

78 ÖRNEK şağıda yükleme durumu verilen kirişin N,, diyagramlarını çiziniz. 3 t/m 4 t C D 3 o m 3m m

79 3 t/m t 4 t C D 3 o 3.46t y C y m 3m m F 3.46= =3.46t Fy y C y 6= y C y =8 t (3*)* m C y *5 m t *6 m = C y = 3.6 t ( ) y = 4.4 t ( )

80 3 t/m t 4 t 3.46 C m 3m m D 3 o 3.46t N (t). 47m (t) m.6.6 (tm) 3.3.8

81 ÖRNEK Şekildeki kirişin kesme kuvveti ve moment diyagramlarını çiziniz.

82

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 9 Kirişlerin Yer Değiştirmesi Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9.1 Giriş

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri

Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir.

Çatı katında tüm çevrede 1m saçak olduğu kabul edilebilir. Proje ile ilgili açıklamalar: Döşeme türleri belirlenir. Döşeme kalınlıkları belirlenir. Çatı döşemesi ve 1. kat normal döşemesinde döşeme yükleri belirlenmesi 1. katta döşemelerin çözümü ve çizimi Döşeme

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

Çerçeve ve Makineler

Çerçeve ve Makineler Çerçeve ve Makineler Hedefler Mafsal (pim) ile tutturulmuş çerçeve ve makine elemanlarına etki eden kuvvetlerin analizi. Çerçeve ve Makineler Çok kuvvet elemanı içeren mafsal ile tutturulmuş yapılardır.

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik)

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik) : 09/10 5.H 11 8. Hafta Kirişlerin Kesme Kuvveti ve Eğilme E oment Diyagramlarının Çizimi : 09/10 5.H Kiriş (beam Kiri beam) Nedir?; uzunluk boyutunun diğer en kesit boyutlarından (kalınlıkxgenişlik) görece

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER Dış Kuvvetler : Katı cisimlere uygulanan kuvvet cismi çekmeye, basmaya, burmaya, eğilmeye yada kesilmeye zorlar. Cisimde geçici ve kalıcı şekil değişikliği

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 1 Giriş-Gerilme Kavramı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 1.1 Giriş Cisimlerin

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

PARALEL KUVVETLERİN DENGESİ

PARALEL KUVVETLERİN DENGESİ ARALEL KUVVETLERİN DENGESİ aralel kuvvetler eğer aynı yönlü ise bileşke kuvvet iki kuvvetin arasında ve büyük kuvvete daha yakın olur. Bileşke kuvvetin bulunduğu noktadan cisim asılacak olursak cisim dengede

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir.

Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. 1 TEMEL HESABI Projemizde bir adet sürekli temel örneği yapılacaktır. Temel genel görünüşü aşağıda görülmektedir. Uygulanacak olan standart sürekli temel kesiti aşağıda görülmektedir. 2 Burada temel kirişi

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER İki doğrultuda çalışan plak (dikdörtgen) Dört tarafından kirişli plaklar aşırı yüklendiklerinde şekilde görülen kesik çizgiler boyunca kırılırlar. Yeter bir yaklaşıklıkla,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ İMALAT DALI MAKİNE LABORATUVARI II DERSİ TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ DENEY RAPORU HAZIRLAYAN Osman OLUK 1030112411 1.Ö. 1.Grup DENEYİN AMACI Torna tezgahı ile işlemede, iş parçasına istenilen

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR

MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR MÜHENDİSLİK YAPILARI ÇERÇEVELER VE MAKİNALAR ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR TABLALI KESİTLER Betonarme inşaatın monolitik özelliğinden dolayı, döşeme ve kirişler birlikte çalışırlar. Bu nedenle kesit hesabı yapılırken, döşeme parçası kirişin basınç bölgesine

Detaylı

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER

İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER İZOSTATİK (STATİKÇE BELİRLİ) SİSTEMLER Yapı Elemanları İnşaat Mühendisliği ile ilgili yapı sistemleri üç ayrı tipteki yapı elemanlarının birleşiminden oluşur. 1)Çubuk Elemanlar: İki boyutu üçüncü boyutuna

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

UYGULAMALI ELASTİSİTE TEORİSİ

UYGULAMALI ELASTİSİTE TEORİSİ KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI ELASTİSİTE TEORİSİ Prof.Dr. Paşa YAYLA 2010 ÖNSÖZ Bu kitabın amacı öğrencilere elastisite teorisi ile ilgili teori ve formülasyonu

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Deprem Etkisi Altında Tasarım İç Kuvvetleri

Deprem Etkisi Altında Tasarım İç Kuvvetleri Prof. Dr. Günay Özmen gunayozmen@hotmail.com Deprem Etkisi Altında Tasarım İç Kuvvetleri 1. Giriş Deprem etkisi altında bulunan çok katlı yapılarda her eleman için kendine özgü ayrı bir elverişsiz deprem

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İnşaat Mühendisliği Bölümü. KESME Kirişlerde Etriye Hesabı (TS 500:2000)

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İnşaat Mühendisliği Bölümü. KESME Kirişlerde Etriye Hesabı (TS 500:2000) ESKİŞEHİR OSMNGZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMRLIK FKÜLTESİ İnşaat Mühenisliği Bölümü KESME Kirişlere Etriye Hesabı (TS 500:2000) 184 Kesme çatlaklarıdeney kirişi Vieo http://mm2.ogu.eu.tr/atopcu Kesme

Detaylı

Kirişlerde sınır değerler

Kirişlerde sınır değerler Kirişlerde sınır değerler ERSOY/ÖZCEBE S. 275277 5 cm çekme tarafı (depremde çekme basınç) 5 cm 5 cm ρ 1 basınç tarafı s ρ φ s φ gövde s φw ρ φ φ w ρ w ρ gövde φ w ρ 1 çekme tarafı φ w basınç tarafı (depremde

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Betonarme Bina Tasarımı Dersi Yapı Özellikleri

Betonarme Bina Tasarımı Dersi Yapı Özellikleri 2016-2017 Betonarme Bina Tasarımı Dersi Yapı Özellikleri Adı Soyadı Öğrenci No: L K J I H G F E D C B A A Malzeme Deprem Yerel Zemin Dolgu Duvar Dişli Döşeme Dolgu Bölgesi Sınıfı Cinsi Cinsi 0,2,4,6 C30/

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 4 Basit Eğilme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4.1 Giriş Bu bölümde, eğilmeye

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve leri DĞHN MÜHENDİSLİK MEKNİĞİ STTİK MÜHENDİSLİK MEKNİĞİ STTİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boyutlu Kuvvet

Detaylı

STRAIN GAGE DENEY FÖYÜ

STRAIN GAGE DENEY FÖYÜ T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ STRAIN GAGE DENEY FÖYÜ HAZIRLAYAN Prof. Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ Yrd.Doç.Dr. Kemal YILDIZLI MAYIS 2011 SAMSUN

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli,

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü GİRİŞ: Betonarme yapılar veya elemanlar servis ömürleri boyunca gerek kendi ağırlıklarından gerek dış yüklerden dolayı moment,

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

ZEMİNLERİN KAYMA DİRENCİ

ZEMİNLERİN KAYMA DİRENCİ ZEMİNLERİN KYM İRENİ Problem 1: 38.m çapında, 76.m yüksekliğindeki suya doygun kil zemin üzerinde serbest basınç deneyi yapılmış ve kırılma anında, düşey yük 129.6 N ve düşey eksenel kısalma 3.85 mm olarak

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı