KESTİRİMCİ BAKIM KABUL TESTİ KALİTE KONTROL SIZINTI TESPİTİ UÇAK MOTORU ANALİZİ MAKİNA DİZAYNI VE MÜHENDİSLİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KESTİRİMCİ BAKIM KABUL TESTİ KALİTE KONTROL SIZINTI TESPİTİ UÇAK MOTORU ANALİZİ MAKİNA DİZAYNI VE MÜHENDİSLİK"

Transkript

1 Titreşim Aalizie Titreşim ölçümü ve aalizi, döe ekipmaları mekaik durumlarıı iceleme, kotrol etme ve makiala arızalarıı taımlama içi kullaıla metotlarda e etkilisidir. Titreşim aalizi, makialar üzeride titreşim ölçümü yaparak makiaı titreşim özelliklerie ait veri toplamak ve daha sora toplaa bu verileri aaliz ederek makiaları mekaik problemlerii tespit etmektir.

2 KESTİRİMCİ BAKIM KABUL TESTİ KALİTE KONTROL SIZINTI TESPİTİ UÇAK MOTORU ANALİZİ MAKİNA DİZAYNI VE MÜHENDİSLİK

3 Titreşim aalizi ile aşağıdaki arızalar taımlaabilir: Balas bozukluğu Mil eğriliği Şase zayıflığı Cıvata gevşekliği Kapli ayarsızlığı Rulma boşluğu Sürtüme Rezoas Kaymalı yatak aşıması Rulma arızası Rulma ömrü Dişli arızaları Elektriksel arızalar Hidrodiamik titreşimler

4 Titreşimle İlgili Terimler Titreşim edir? Bir sistemi dege koumu civarıda yapmış olduğu salıım hareketie titreşim deir. Eğer yapıla salıım hareketi T saiyede kedii tekrar ediyorsa böyle hareketlere peryodik hareket deir. E basit peryodik hareket harmoik hareket adıı alır. x(t)=x(t+t) x=yerdeğiştirme m, rad t=zama s T=Peryod s =Peryod sayısı adet

5 Titreşim Nedir?

6

7 Harmoik Hareket x=yerdeğiştirme (m,rad) A=Gelik (m,rad) t=zama (s) T=Peryot (s) t x=a si π T x A t T

8 Daire Üzeride Hareketli Bir Noktaı Harmoik Gösterimi O A P x p A Asi t t π ω= = π f T x=a si ωt x=ω A cos ωt=ω A si(ωt-π/) x=-ω Asiωt=ω Asi(ωt+π)

9 Euler Deklemi Yardımı ile Döer Bir Vektörü Gösterimi Euler Deklemi i ω t i θ z=a e =A e z=a cos ωt + i A si ωt z=x + iy i θ e =cosθ +i si θ θ=ω t A= x +y θ=ta -1 y x A θ i ω t z=a e

10 Harmoik Harekette Yerdeğiştirme Hız ve İvme Vektörlerii Gösterimi Aw x x Aw A t t x x

11 Frekasları Ayı Vektörleri Toplaması x(t)=x1cos(ωt-j 1)+Xcos(ωt-j ) Xcos(ωt-j ) x(t)= å Xicos(ωt-j i) i=1 cos(α-β)=cos α cos β+si α si β bağıtısı kullaılarak å x(t)= X (cosωt cosj +siωt sij ) i i i i=1 æ ö æ ö å å = X cosj cosωt+ Xsij siωt çè ø çè ø i i i i i=1 i=1

12 Burada, A= X cosj B= X sij i i i i i=1 i=1 å å yazılırsa, x(t)=a cos ωt+b si ωt buluur. æ ö æ ö X= A +B = Xicosj i + Xsij i i çå çå è i=1 ø è i=1 ø j=ta B =ta A -1-1 i=1 x(t)=x cos(ωt-j) å å i=1 Xsij i i X cosj i i

13 Frekasları Birbirie Yakı Vektörleri Toplaması ω 1»ω x(t)=x cos(ω t-j )+X cos(ω t-j ) Bu ifadeyi yeide düzeleyelim, X+X 1 X-X 1 x(t)= [ cos(ω1t-j 1)+cos(ωt-j ) ] + [ cos(ω1t-j 1)-cos(ωt-j ) ] α-β α+β α-β α+β cos α+cos β= cos cos ve cos α-cos β=- si si Trigoometrik bağıtılarıda yararlaarak, (ω 1+ω )t-(j1-j ) A(t)=(X 1+X )cos ve (ω 1+ω )t-(j1-j ) B(t)=-(X 1-X )si

14 Taımları altıda, ω 1+ω j+j 1 ω 1+ω j+j 1 x(t)=a(t) æ ö æ ö cos t- +B(t) si t- ç è ø çè ø Yazılabilir. Burada, X(t)= A(t)+B(t) ve j(t)= j+j 1-1 B(t) +ta A(t) X(t)= X +X + X X cos (ω -ω )t-(j -j ) [ ] j+j é 1-1 X-X 1 ω1-ω j-j ù æ ö 1 j(t)= +ta ta t- ê X 1+X è ç ø ú ë û ifadeleri kullaılarak, æ ω 1+ω ö x(t)=x(t) cos ç t-j(t) çè ø toplam ifadesi buluur.

15 Vuru Titreşim Parametreleri ω m=ω1-ω ω 1+ω ω= π T m = ω -ω 1 vuru frekası veya modülasyo frekası taşıyıcı frekas vuru peryodu 4π T= ω +ω taşıyıcı peryodu 1 Tm ω = T (ω -ω ) 1 T m vuru peryoduda gerçekleşecek titreşim sayısı

16 Vuru Olayı x T m T X ~ (t) x(t) x(t)=100 e 1 x (t)=50 e x(t)=? i π t i.π t X 1 +X X 1 +X X 1 -X X 1 -X t clear t=0:0.01:30; x1=100*exp(i**pi*t); x=50*exp(i*.*pi*t); x=x1+x; plot(t,x)

17 Titreşim Sistemlerii Elemaları Kütle x Yay Söüm Kuvvet x

18 Yay Elemaları Helisel Yaylar

19 Yaprak Yaylar

20 Yay Karakteristikleri F (N) F (N) Lieer (doğrusal) yay karakteristiği X (m) X (m) No-Lieer (doğrusal olmaya) yay karakteristiği

21 Yay Katsayısı Kuvvet F k=ta α= (N/m) x Yerdeğiştirme

22 Yay Katsayısı Tablosu E I k= L E A k= L G I p k= L 4 G d k= 64 R 3 3EI k= L 3

23 k= 48 E I L 3 L/ 19 E I k= 3 L L/ 768 E I k= 7 L 3 L/

24 x a b 3 E I L P b x ab 6 E I L k= y y x = ( L -x -b ) EI L 1E I k= L 3

25 3E I k= L+a a ( ) L a 4E I k= a 3L+8 a ( ) L a

26 Söüm Elemaları Viskoz söüm Coulumb (kuru sürtüme) söümü Malzeme (histeresiz) söüm Sıkıştırılmış yağ (squeeze-film) damperi Elekro-mayetik damper Elektro-viskoz damper Piezo-elektrik damper

27 Kütle ve Atalet Elemaları Bir cismi bir döme ekseie göre kütlesel atalet mometii taımı: dm D r J= r dm ò D döme eksei

28 Problem: Orta oktasıda mafsallı ve sabit kesitli bir çubuğu kütlesel atalet mometii buluması y x L/ A dx x L

29 Çözüm: Elemater hacim Elemater kütle dv=a dx dm=ρ dv Kütlesel atalet mometii taımıda L L ò ò J= ρ A x dx=ρ A x dx L L - - L 3 x 1 3 J=ρ A = ρ A L 3 1 L - buluur. J= r dm ò D burada, 1 m = r A L J = m L 1

30 Problem: Bir diski döme ekseie göre kütlesel atalet mometii buluması. dr r d da R L

31 Çözüm: Elemater ala Elemater hacim Elemater kütle si d q da=r.si dθ.dr dv=l.da=l. r. si dθ.dr dm=ρ.dv=ρ.l.r.si dθ.dr dm=ρ.lr.dθ.dr buluur. π R J= ò r dm= ò ò ρ.l.r.dθ.dr= ρ.l.π.r D m = r.v = rp..r.l J = m.r

32 Titreşim yapa bir kütlei hareket özellikleri, tam olarak, 6 farklı hareketi birleşimiyle ifade edilebilir. Bu hareketler 3 ekse yöüdeki yerdeğiştirmeler ve 3 ekse etrafıdaki döme hareketleridir. Bu 6 hareket tipi Şekil-'de gösterilmiştir. Her kütlei karmaşık hareketleri bu 6 hareket kullaılarak ifade edilebilir. Bu edele bir kütlei ormaldeki serbestlik derecesi 6'dır. Acak bu hareketlerde bazıları sistemi özellikleri dolayısıyla kısıtlamış olabilir. Öreği Şekil-1deki yayı ucua bağlı ola kütlei muhtemel 6 hareketide 5 taesi kısıtlamıştır. (Kütlei kağıt düzlemi içide salıım yapabildiğii varsayıyoruz.) Bu kütle yalızca yukarı ve aşağı hareket edebilmektedir. Ayı biçimde, şekildeki sarkaç da yalızca sarkaç koluu bağlı buluduğu okta etrafida döme hareketi yapabilmektedir. Bu edele bu sistemlere tek serbestlik dereceli sistemler adı verilir. Titreşim hareketii icelerke alaşılmasıı daha kolay olması maksadıyla tek serbestlik dereceli bir sistemi örek alacağız. Herhagi bir sistemi ayrıtılı olarak icelemesi pratikte pek mümkü değildir. O edele sistemleri özelliklerie uygu fiziki modelleri çıkarılır. Tek serbestlik dereceli bütü sistemler (lieer olmak şartıyla) gösterile basit modelle iceleebilir.

33

34 Ayrık ve Sürekli Sistemler Solu sayıda serbestlik dereceli sistemlere ayrık sistem deir. Serbestlik derecesi sosuz ola sistemlere sürekli sistem deir. Sürekli sistem

35 SERBEST CİSİM DİYAGRAMI HAREKET DENKLEMİ y Newto s Law: mx ( t) kx( t) k c m x(t) Frictio-free surface x f k f c mg mx ( t) kx( t) 0 N x(0) x 0, x(0) v 0

36 Söümsüz Serbest Titreşim Düşey koumda kütle-yay sistemii hareket deklemi: L 0 k k st k x t x Statik dege koumu

37 k d st Serbest cisim diyagramı G= m.g Statik dege koumu: Burada, ω ΣF y =0 sistemi tabii frekasıdır. G=m.g=k.δ k g = =ω m δ st k ω = = m st g δ st

38 Newto u. kauu uygularsak, k( d st + x) x m x G= m.g ( d ) S F = m.a m x = -k + x + G st G=m.g=k.δst olduğuda, m x+k x=0 buluur.

39 Yatay koumda kütle-yay sistemii hareket deklemi: x x k m k x m m x Newto u. kauu uygularsak, ΣF=m.a m x = -k x m x + k x = 0 buluur.

40 Hareketi Diferasiyel Deklemii Eerji Metodu ile Buluması Bu metoodu kullaılabilmesi içi titreşim sistemii; Söümsüz Tek serbestlik dereceli olması gerekir. E+E=C=sabit k p d ( E ) k +E p =0 dt

41 Söümsüz Serbest Titreşim Hareket Deklemii Buluması m x + k x = 0 Bu diferasiyel deklemi çözümüü x = A e s t biçimide olduğuu biliyoruz. Burada, A ve s itegrasyo sabitleridir. Çözüm kabulüü türetirsek, x = x= s A e s A e s t s t Buluur. Bular yukarıdaki diferasiyel deklemde yerie koursa,

42 ( ) st m s + k A e = 0 Burada, s t A, e ¹ 0 dır. m s + k = 0 Buluur, bu dekleme karakteristik deklem deir. Karakteristik deklemi kökleri, s k = - = m i w 1, dir.

43 Bu durumda, hareket deklemi: x(t) = Ae + Ae = Ae + Ae st 1 st -iwt iwt 1 1 A 1 ve A başlagıç şartlarıda buluacak katsayılardır. iqt e = cos q.t i.si q.t eşitliği kullaılırsa, ( w w ) ( w w ) x(t) = A cos t - i si t + A cos t + i si t 1 ( ) w ( ) x(t) = A + A cos t -i A -A si w t 1 1 = ( + ) ve B ( A A ) B A A 1 1 = - olmak üzere, 1

44 x(t)=b1cos ωt+bsi ωt olur. Başlagıç şartları Bu durumda, ì x(0) = x t= 0 í ï ïï = B=x 1 0, 0 olsu. ïî x(0) x 0 x B= ω 0 buluur. Burada başlagıç şartlarıa bağlı hareket deklemi aşağıdaki şekilde buluur. x(t)=x cos ω t+ x si ω t 0 0 ω

45 İKİNCİ MERTEBEDEN DİFERANSİYEL DENKLEM mileböl: xt ( ) xt ( ) 0 k m doğa l frekas rad/s xt () Asi( t)

46 PERİYODİK HAREKET x(0) amplitude Displacemet Faz açısı Time sec Maximum Velocity

47 s peryot Frekas : rad/s doğoğfrekas f T rad/s cycles rad/cycle s Hz Frekas geellikle Hz olarak ifade edilir Fakat trigoemetrik foksiyolarda rad/s olarak kullaılır.

48 Gelik ve Faz x 0 Asi( 0 ) Asi v 0 Acos( 0 ) Acos Solvig yields A 1 x 0 v 0, ta 1 x 0 v 0 Amplitude Phase

49 Titreşim geliği üç farklı biçimde ifade edilir. peak to peak (P-P)(İki tepe arasıdaki uzaklık): Kütlei titreşim esasıda ulaştığı iki uç okta arasıdaki uzaklıktır. Değeri a'dır. Zero to peak (0-P): Dege koumu ile tepe oktası arasıdaki uzaklıktır. Değeri a'dır. RMS (Root mea square)(kareler toplamıı karekökü): Titreşimi efektif değeridir. Eliizi titreşim yapa makia üzerie koyduğuuzda hissettiğiiz titreşim seviyesidir. Basit harmoik harekette 0-P değerii katıdır. RMS değeri daha sora tekrar ele alıacaktır. Acak bu değer yalızca belli bir frekastaki düzgü harmoik bir titreşim içi geçerlidir. Yai 1500 CPM frekasıda ve 0-P geliği 0.1 μm ola siüzoidal bir titreşimi RMS değeri μm 'dir. Acak frekas düzlemide (spektrum grafiği) birçok farklı frekasta titreşimler mevcuttur. Bu durumda ise RMS değeri aşağıdaki formül kullaılarak buluur.

50 Tepede tepeye mesafe titreşimi geliğii alacağı büyük ve e, küçük değerleri gösterdiğide özellikle titreşim yerdeğiştirmesii öemli olduğu veya e büyük gerilmeleri dikkate alıması gerektiği yada mekaik boşlukları öem taşıdığı yerlerde kullaışlıdır. Tepe değeri özellikle kısa zama aralığıda ola şok titreşimleri göstermesi açısıda öemlidir. Ortalama değer zama içideki değişimi de göz öüe almakla beraber uygulamada fiziki bir değere doğruda doğruya bağlatırılmadığıda fazlaca bir öem taşımaz. RMS değeri ise titreşim ölçümleride e uygu değeridir. Buum sebebi titreşimi zamaa bağlı olarak değişmesii de dikkate almakla beraber, titreşimi ihtiva ettiği eerji miktarı, yai titreşimi tahrip gücüyle doğruda bağlatırılabilir.

51 Problem: Aşağıda dege koumuda verile sistemi diferasiyel deklemii çıkarıp tabii frekasıı hesaplayıız m,r k M x

52 Çözüm: Jmj j k x M x M x

53 Newto u. kauu uygulaırsa, S M= JTopj J j + M x.r = -k x.r m j<< 0 si j cos 1 J m = 1 m r x= r.si j= r x = r x= r j j j yazılabilir.

54 düzeleme yapılırsa, æ 1 m r ö ç j + M x.r = -k x.r çè ø æ 1 m r M r ö k r ç + j + j= 0 çè ø æ1 ö ç m + M j + k j= 0 çè ø k k k w = = = m 1 m+ M m+ M rad/s

55

56

57 Average & RMS A peak value 1 x lim T T x x rms 0 1 lim T T x T x( t) dt = average value T 0 x ( t) dt = mea - square value = root mea square value

58 The Decibel or db scale It is ofte useful to use a logarithmic scale to plot vibratio levels (or oise levels). Oe such scale is called the decibel or db scale. The db scale is always relative to some referece value x 0. It is defie as: db x 10log 10 0log x0 For example: if a acceleratio value was 19.6m/s the relative to 1g (or 9.8m/s ) the level would be 6dB, log10 0log x x 0 6dB

59 Diğer Çözüm Formları x(t) Asi( t ) x(t) A 1 si t A cos t x(t) a 1 e j t a e j t

60 TEPE DEĞERLERİ max veya tepe değeri : deplasma: x hız: x ivme: max x max max A A A

61 1 A=1, =1 x v a Time (sec)

62

63

64 Problem:Aşağıdaki titreşim sistemii üzerie m kütlesi h yüksekliğide düşüp yapışıyor. M kütlesii hareket deklemii yazıız. m h M x k

65 Çözüm: m ( M ) + m x h k M V = gh x x 0 = mg k k m M x m gh = V = M + m 0 0 x kx

66 m kütlesi ile M i çarpıştığı adaki mometumuu yazalım. ( ) m V (M m) V m gh M m V V x m gh = + 0 = = 0 = M + m kütleside dolayı k yayı bir miktar sıkışır. mg d st = x0 =- k m Newto u. kauu uygulaırsa, ( ) ( ) å F = m a M + m x = -k x M + m x + k x = 0

67 Sistemi tabii frekası. k k w = = m M+ m Söümsüz serbest titreşim hareketii başlagıç şartlarıa bağlı hareket deklemi aşağıdaki gibiydi: x x(t) = x cos w t + si w t 0 0 w değerler yerie koulura; mg æ k ö gh æ k ö xt () =- cos t m si t k + ç M m k( M m) è + ø + çè M+ m ø

68 Lieerleştirme Yapısal olieerlik (Malzeme olieerliği) Geometrik olieerlik -Ağırlık kuvveti - Merkezkaç kuvveti - Sürtüme kuvveti

69 Tek serbestlik dereceli bir sistemi diferasiyel deklemi aşağıdaki gibidir. m x+ f( x) = 0 Burada f( x) yay foksiyoudur. f( x) lieer olmaya bir formda ortaya çıkmış olsu. Koordiat başlagıcıı, x= 0 dege koumuda seçelim, yai; f( 0) = 0 ( ) f x x= 0 olsu bu durumda foksiyouu civarıda kuvvet serisie açalım. 3 k ( ) 1 ( ) 1 ( ) 1 ( ) df 0 d f 0 d f 0 d f 0 f( x) = f( 0) + x+ x + x + =å x dx! dx 3! dx k! dx 3 k 3 k k= 0

70 f(x) 3 x << x, x ihmal edilirse; Elde edile lieerleştirilmiş yay foksiyou dif. deklemde yerie koulursa, lieerleştirilmiş dif. deklem elde edilir. 0 1 k = df ( 0) dx x ( ) f m x + k x = 0 k x ( ) f x df ( 0) ( ) df 0 dx dx x olur. = eşitliğide. f( k x buluur.

71 Yay-kütle-damper Sistemleri k c m x(t) y Frictio-free surface x f k f c mg N Newto s kauuda: m x( t) cx ( t) mx ( t) cx ( t) kx( t) 0 x(0) f c x f k kx( t) 0, x(0) v 0

72 Söümlü Serbest Titreşim Hareket Deklemii Buluması m x + c x + k x = 0 Bu diferasiyel deklemi çözümüü x = A e s t biçimide olduğuu biliyoruz. Burada, A ve s itegrasyo sabitleridir. Çözüm kabulüü türetirsek, x = x= s A e s A e s t s t Buluur. Bular yukarıdaki diferasiyel deklemde yerie kourda,

73 ( ) st m s + c s + k A e = 0 Burada, s t A, e ¹ 0 dır. m s + c s + k = 0 s Buluur, bu dekleme karakteristik deklem deir. Karakteristik deklemi kökleri, 1, dir. c c 4mk c æ c ö k - - = =- ç - m m çèm ø m

74 Sistemi birbiride bağımsız iki gerçek kökü vardır. Bu durumda, hareket deklemi: x(t) = A e + A e st 1 s t 1 A 1 ve A başlagıç şartlarıda buluacak katsayılardır.

75 Kritik Söüm Katsayısı ve Söüm Oraı Kritik söüm katsayısı c kr aşağıdaki gibi taımlaır. æc ö kr k ç - = çèm ø m 0 k ckr = m = k m = mw m Söüm oraı ise, x = c c kr olarak taımlaır.

76 Eğer karakteristik deklem, m s + c s+ k = 0 x ve w ciside yazılırsa, c k s + s + = 0 s + xws + w = 0 m m xw w deklemi kökleri aşağıdaki gibi buluur. ( ) (-+ - ) ( ) -- - x x 1 w t x x 1 w t x t = A e + A e 1

77 1.Durum: Zayıf Söümlü Sistem c 1, c kr c, m ( x -1) Kritik altı söümlü sistemlerde egatif olur. Bu durumda, ( ) s =-+ x i 1 -x w 1 ( ) s =-- x i 1 -x w olur. Sistemi bir çift eşleik kompleks kökü olduğuda, () k m (- + - ) ( ) x i 1 x w t x i 1 x w t x t = A e + A e 1 () ( ) -xwt i 1-x w t -i 1-x w t = 1 + x t e A e A e

78 é = ë ( A ) ù cos 1-xwt -i si 1-xwt ú û -xwt () ( ê ) 1 xw xw x t e A cos 1 t i si 1- t é ù -xwt x() t = e ( A1+ A ) cos 1-xwt+ i ( A1-A ) si 1- x wt êë B1 B úû - xwt () ( = - xw ) + f x t X e si 1 t () = - xw - xwt x t X e cos 1 ( t -f )

79 = 1 + ï ïýï -1 B = ta ï B1 ïï þ X B B f üï Başlagıç şartları, olarak yazılabilir. ì x = x ï t= 0 0 í ï ïî x = x ise, t= 0 0 B B 1 0 = = x x + xwx 0 0 w 1-x olarak buluur. Bu durumda, x( t)

80 ì x x x t e ï + xw x cos 1 t si 1 t ïî w 1-x -xw () ( ) ( ) = t ï í xw + -xw ü ý ï ïþ w d = 1- dir. x w ì x x x t e ï + xw íx0cos dt si dt ïî w 1-x -xw () t 0 0 = ( w ) + ( w ) olarak buluur. ü ï ý ïþ

81 x() t a = -1 ta x 0 p Td = w d X X e -xw t x 0 t f si ( w t + f) d X e xw - - t

82 .Durum: Kritik Söümlü Sistem Katlı kök olduğuda, c k 1, ckr c, m m ckr s = s =- =-w m 1 m x+ c x + k x = 0 deklemi çözümü: ( ) ( ) x t A A t e w - t = 1+ formuda olacaktır. Başlagıç şartları, A = x 1 0 A = x + w x 0 0 ì x = x ï t= 0 0 í ï ïî x = x ise, t= 0 0 olarak buluur ve çözüm:

83 ( ) = é + ( + w ) ù x t ë x0 x0 x 0 û e w buluur. Dikkat edilirse, x( t) x > 0 0 x = t -wt t e 0 x < 0 0 t

84 3.Durum: Aşırı Söümlü Sistem m x+ c x + k x = 0 c x > > > 1, c c kr, m m k Diferasiyel deklemii karakteristik deklemi, m s + cs+ k = 0 i kökleri: ( ) s =- x x -1 w dir. 1, x> 1 x - 1 > 0 eğer, olur. Bu durumda, kökler reel ve ayrık olacaktır. Deklemi çözümü: ( ) ( ) ( -+ - ) -- - x x 1 w t x x 1 w t x t = A e + A e 1

85 Başlagıç şartları, ì x = x ï t= 0 0 í ï ïî x = x ise, t= 0 0 A A 1 = = ( ) x w x+ x x 0 0 w x - 1 ( ) -x w x- x -1 -x w x 1

86 () x t A 1 1 ( -+ - ) 1 t A e x x w t ( -- - ) 1 t A e x x w A

87 Logaritmik Azalma x() t x 1 x t

88 Logaritmik azalma, söümlü serbest titreşimlerde gelikleri azalma hızıı ifade eder ve herhagi ardışık iki gelik oraıı tabii logaritması şeklide taımlaır. () - xw t ( ) x< 1 x t = X e cos w t -f idi, taım gereği; x 1 ( ) ( ) - xwt - xwt x X e cos t e cos t d d d ( ) ( ) - xw1 t - xw1 t X e cos wdt 1-f e cos wdt1-f = = w -f w -f p t = t1+ T d Td = dir. w d p ( w - f) = é æ w + ö ù - f = ( w + p- f) = ( w -f) d d 1 d 1 d 1 ê ë çè w ø ú d û cos t cos t cos t cos t

89 - xw1 t - xw1 t x 1 e e - xw( t1+ Td) - xw1 t - x e e = xwtd e = = e xw T d Şeklide elde edilir. Logaritmik azalma d ile gösterilirse; æx ö px c p d d= ç = x w = = x= çè ø 1-x 4p + d 1 l ç T d x m wd x << 1 d» px x = d p Eğer ise, alıabilir. Bu durumda dir.

90 Eğer, ardışık iki gelik yerie, tam periyot katlarıda iki gelik verilmiş ise: x ve 1 x + gibi, 1 x1 x1 x x3 x = x+ 1 x x 3 x 4 x+ 1 x x e xwt d xwtd xwtd e ( xw e ) = = e T xwt e d d e xwtd her iki tarafı logaritması alıacak olursa, æ x ö æ ( ) dt x ö 1 æ x ö d l xw l e l xwt d l = = = çx x x è ø èç ø èç ø d d + 1

91 Logaritmik azalmaı söüm oraı ile değişimi Logaritmik azalma d x = c c kr Söüm oraı

92 Çözüm: Verileler; m, c, k, x 0, v 0 buluacak x(t) Hareket deklemii m ile bölersek x( t) = x ( t) x( t) 0 k m c söüm oraı (boyutsuz) km

93 t x( t) ae olarak kabul eder & hareket deklemide yerie koyarsak a e a e ae 0 t t t bağlı bircebrikdeklem elde edilir: 1, quadratik deklemi kökleri. 1 diskrimiat 1, köklerii karakteristiğii belirler

94 Üç Durum: , coditios : Usig the iitial ) ( = 1 called critically damped & repeated roots are equal 1 1) x v a x a te a a e t x m km c c t t cr

95 1 1) ( 1 1) ( where ) ( ) ( 1 roots : two distict real called overdampig - 1, ) , t t t x v a x v a e a a e e t x

96 3) 1, called uderdamped motio - Two complex roots as cojugate pairs write roots i complex form as : most commo 1, j 1 where j 1

97 Uderdamped 0 < < ta ) ( ) ( 1 dampedaturalfrequecy, 1 )] cos( ) si( [ = ) si( ) ( ) ( x v x x x v A t B t A e t Ae e a a e e t x d d d d d d t d t t j t j t Reduces to udamped formulas for = 0 Ae t si( d t )

98 Critically damped motio Displacemet (mm) k=5n/m m=100kg ad =1 x 0 =0.4mm v 0 =1mm/s x 0 =0.4mm v 0 =0mm/s x 0 =0.4mm v 0 =-1mm/s Time (sec)

99 Displacemet (mm) Overdamped motio k=5n/m m=100kg ad = x 0 =0.4mm v 0 =1mm/s x 0 =0.4mm v 0 =0mm/s x 0 =0.4mm v 0 =-1mm/s Time (sec)

100 Zayıf Söüm Deplasma zama(saiye)

101

102

103

104

105

106

107

108 Vuru Beatig Çalışma frekasları arasıdaki fark çok küçükse f 0 si t 1 Displacemet (x) Larger amplitude Time (sec)

109 x p What happes whe is? ( t) tx si( t) substitute ito eq. ad solve for X grows with out f X 0 f0 x( t) A1 sit A cost t si( t) Whe the drive frequecy ad atural frequecy are the same the amplitude of the vibratio grows without bouds. This is kow as a resoace coditio Displacemet (x) 5 0 boud Time (sec)

110 Harmoically Excited Systems Equatios of motio (c =0): m k m F f t f t x t x t F t kx t mx, / where ) cos( ) ( ) ( ) cos( ) ( ) (

111 Söümsüz Zorlamış Titreşim Hareket Deklemii Buluması ( w ) F= F cos t E geel halde harmoik bir dış kuvvet olsu. Hareketi diferasiyel deklemi: 0 ( w ) mx + kx = F cos t Hareket deklemii geel çözümü: Homoje çözüm: ( ) = ( ) = ( ) + ( ) x t x t x t x t g h ö ( ) = ( w ) + ( w ) x t A cos t A si t h 1 Ft ( ) x () t Uyarıcı kuvvet harmoik olduğu içi özel çözüm de ö harmoik ve ayı frekasıa sahip olacaktır. x t Xcos t ö ( ) = ( w )

112 ö ö ö ( ) = ( w ) x t Xcos t () =-w ( w ) x t Xsi t ( ) =-w ( w ) x t Xcos t 5 1 i içie koulursa; ( ) ( ) ( ) mw Xcos wt kcos wt F0 cos wt - + = F k - m X cos t = F cos t X = k-m w ( w ) ( w ) ( w ) Geel çözüm: 6 F0 x() t = A1cos( wt) + Asi( wt) + cos ( wt) 7 k - mw

113 Başlagıç şartları, A A F = x - k - mw x0 = w ì x = x ï t= 0 0 í ï ïî x = x ise, t= 0 0 olarak buluur ve geel çözüm: æ F ö x F x t x ç cos t si t cos t çè ø () = - ( w ) + ( w ) + ( w ) 0 k-mw w k-mw

114 X i w ile değişimi w F0 F0 F0 F0 X k 1 X = X = k = k = k = k-mw m 1- w w æ F0 1 w ö æ w ö - k k 1-1- çw w è ø è ç ø m w R = X k F 0 Gelik oraı veya büyütme faktörü.

115 0< w < 1 w 1.Durum: ise; ( ) = ( w ) Ft Fcos t 0 t xö ( t ) =Xcos( ωt) t

116 w 1 w >.Durum: ise; ( ) = ( w ) Ft Fcos t 0 t x t Xcos t ö ( ) = ( w ) t

117 w 1 w = 3.Durum: ise; ( ) = ( w ) Ft Fcos t 0 t xt ( ) t

118 Problem: Aşağıda dege koumudaki sistemi verile değer ve başlagıç şartlarıa bağlı olarak s içi hareketii iceleyiiz. m,e,w m cubuk, L M x k

119 Çözüm: Jj F= me w coswt kx F 0 x Mx x = L j x = L j x = Lj 1 J= mcubukl 3

120 Newto u. kauu uygulaırsa, å M = Jj Jj + Mx L =- kx L+ F L æ ö ç + + = çè3 ø 1 m cubuk L ML j kl j me w Lcos w t

121 m = 30 kg M = 300 kg m = 0.5 kg cubuk 3 e 1 m 000 d/d L m k N/m = = = = ìï x 0 = j0 = t = 0 ï í ïï ïx 0 = j0 = ïî 5p 180 8p 180

122 w p p000 = = = p rad/s 140j j= cos 66.66pt M 0 k w = = = 4.04 p rad/s m 140 æ M ö j M j j ç w w w çè ø () t = - cos( t) + si( t) + cos( t) 0 k-mw w k-mw () ( ) ( ) ( ) - j t = cos 4.04pt si 4.04pt cos 66.66pt

123

124

125 Problem: Aşağıdaki sistemi titreşim hareketii 4 s içi çiziiz. F = 500si0pt F1 = 100cos0pt m x k

126 Çözüm: F = 500si0pt m F1 = 100cos 0pt x mx kx

127 Newto u. kauu uygulaırsa, å F= ma mx =- kx + F + F 1 mx + kx = F + F 1 10x x = 100cos 0pt + 500si 0pt 500 f= f= ta = + = F N ( p ) 10x x = 773cos 0 t-64.35

128 m = 10 kg k = 5000 N/m ì x0 = t= 0 ï í ï ïî x 0 = 0.01 m 0. m/s k 5000 w = = = 4.59 p rad/s w= 0p m 10 æ F ö x F x t x ç cos t si t cos t çè ø () = - ( w ) + ( w ) + ( w -f) 0 k-mw w k-mw ( ) = ( p ) + ( p )- ( p - ) x t 0.016cos 4.59 t si 4.59 t 0.006cos 0 t 64.35

129

130

131 Söümlü Zorlamış Titreşim Hareketi diferasiyel deklemii buluması: ( w ) F= F cos t 0 m x m x m ( w ) F= F cos t 0 k c k x c x Newto u. kauua göre, S F = m a m x = -c x-k x + F m x + c x + k x = F

132 Söümlü Zorlamış Titreşim Hareket Deklemii Buluması ( w ) F= F cos t E geel halde harmoik bir dış kuvvet olsu. Hareketi diferasiyel deklemi: Hareket deklemii geel çözümü: Homoje çözüm: ( w ) mx + cx + kx = F cos t ( ) = ( ) = ( ) + ( ) x t x t x t x t g h ö ( ) = ( w ) + ( w ) x t A cos t A si t h 1 Ft ( ) x () t w Uyarıcı kuvvet harmoik olduğu içi özel çözüm de ö harmoik ve ayı frekasıa sahip olacaktır. ( ) = ( w -f) x t Xcos t ö

133 ö ö ö () = ( w -f) x t Xcos t () =-w ( w -f) x t Xsi t () =-w ( w -f) x t Xcos t 5 1 i içie koulursa; Aşağıdaki trigoometrik bağıtılar kullaılarak; 5 ( ) ( ) ( ) ( ) = é êë mw Xcos wt f cwxsi wt f k cos wt f F0 cos wt ( k-mw ) cos( wt-f) -cwsi( wt- f) X= F cos( wt) ( ) cos wt f = coswt cosfsi wt sif ( ) si wt f = si wt cosfcoswt sif ù úû 0 6 7

134 7 olu eşitlik 6 deklemie koulursa; ( ) ( ) ( ) X é k m w coswt cosf si wt sif cw si wt cosf coswt sif ù ê ú= F0 coswt ë û cost sit ve i katsayılarıı eşitlersek; ( ) Xé k mw cosf cwsifù ê - + = F ë úû Xé( k mw ) sif cwcosfù ê - - ú= 0 ë û Bu iki deklemi karelerii alalım: X é ( k mw ) cos f ( cw) si f ( k m w ) cwcosfsif ù ê ú= F ë û X é ( k mw ) si f ( cw) cos f ( k m w ) cwcosfsif ù ê ú= 0 ë û 0 ve taraf tarafa toplayalım;

135 X é ( k mw ) ( cw ù ) F X ë û 0 ê - + ú= 0 = 9 olu deklemde; = 0 F ( k- mw ) + ( cw) c X é w ( k mw ) sif cwcosfù æ ö 0 f ta -1 ê - - = = ë ú û çèk- mw ø 11 1 Geel çözüm: 13 F = w + w + w -f ( ) ( ) ( ) 0 xt Acos 1 t Asi t cos t ( k- mw ) + ( cw) ( )

136 Büyütme Oraı 11 ve 1 deklemlerii boyutsuzlaştıralım, her iki deklemi pay ve paydasıı ya bölelim: X = k F0 k æ ö æ ö mw cw 1- + ç è k ø çè k ø f ta æ cw ö k ç mw ç 1- çè k ø -1 = ç 14 w c kr x = k = m = mw c c kr Söümsüz tabii frekas Kritik söüm katsayısı Söüm oraı 15

137 15 eşitlikleri 14 deklemlerie koursa; X k 1 1 = = F0 é ù w é w ù æ ö æ ö x - w + ê w ú ê çè ø ú èç ë ø ë û û ( 1 r ) ( xr) 16 f æ w ö x ç w çè ø r x = ta = ta æ w ö 1 - r 1-ç ç ç w çè ø w r = w Burada, dir.

138 Büyütme Faktörü-Hız Oraı Değişimi. x = 0 x = 0.1 R = X k F 0 R Büyütme faktörü x = 0.15 x = 0.5 x = x = 0.5 x =1 Hız oraı r = w w

139 Faz Açısı-Hız Oraı Değişimi. x = 0 x = 0.1 x = 0. f Faz açısı [derece] x = 0.3 x = x =1 x = 0.7 x = 0.5 Hız oraı r = w w

140 Büyütme Faktörü ile Faz Açısı-Hız Oraı Arasıdaki İlişki: Söümsüz bir sistem içi; r< 1 f = 0 r = 1 f = 90 r> 1 f = 180 x = 0 Söüm, gelik oraıı tüm zorlayıcı frekas değerleride azaltır. Söümü gelik oraıı azaltması, rezoas frekasıda veya civarıda çok belirgidir. Gelik oraıı maksimumu; r= 1-x veya w = w -x d 1 değerleride meydaa gelir.

141 Zemii Hareketli Söümlü Zorlamış Hareket Hareketi diferasiyel deklemii buluması: y k c t ( ) = ( w ) yt Ysi t ( - y) cx ( - y) k x m x m x mx Newto u. kauua göre, ( ) ( ) å F = m a mx = -k x-y -c x -y mx + cx + kx = cy + ky

142 Yukarıda bulua deklemde yol foksiyou yerie koulursa, () = ( w ) y t Ysi t ( w ) w ( w ) mx + cx + kx = kysi t + c Y cos t buluur. 1 1 olu deklemi süperpoze edelim, ( w ) mx + cx + kx = ky si t ( ) = ( w -f) x t Asi t 1ö 1 () = w ( w -f) x t Acos t 1ö 1 ( ) =-w ( w -f) x t Asi t 1ö 1 3 eşitlikleri i içie koursa; 3

143 ( ) ( ) ( ) ( ) = mw A si wt f1 cwa cos wt f1 ka si wt f1 ky si wt ( - w ) é ( w ) ( f1) - ( w ) ( f1) Ak m si tcos cos tsi ù ë û 4 + cwa é ë cos wt cos f1 + si wt si f1 û = ky si wt 4 deklemi Asi t ve Acos wt paratezie alııp katsayılar eşitleirse; ( ) ( ) ( ) ( ) ù ( ) ( w ) ( ) ( k - mw ) cos( f1) + cwsi ( f1) ù Asi( wt) é êë úû +- é ê - + ú = ë û ( k m w ) si( f1) cwcos ( f1) ù Acos( wt) kysi( wt ) ( w ) ( f1) w ( f1) é k m cos c si ù ê - + A= ky ë úû é ( k m w ) si( f1) cwcos ( f1) ù ê- - + ú A= 0 ë û 6 7 5

144 olur. A¹ 0 olmak üzere, 7 olu deklemde, é ( - æ cw ö - k - m w ) si( f ) ( ) cwcos f ù 1 A = 0 f1= ta êë ú û çèk- mw ø = 0 6 ve 7 olu deklemleri kareleri alııp taraf tarafa toplaırsa; ( k- mw ) cos( f1) + cwsi ( f1) ù A = ( ky) é êë úû é ( k m w ) si( f1) cwcos ( f1) ù + ê ë ú û A = 0 é ê ë - + ù ú= = û ( w ) ( w) ( ) A k m c ky A buluur. ky 9 8 ( k- mw ) + ( cw)

145 8 ve 9 eşitlikleri 3 olu hareket deklemide yerie koulursa; ky é -1æ cw ö ù x1ö () t = si wt- ta ê çk mw ë è - øú û Bezer şekilde; ( k- mw ) + ( cw) ( w ) mx + cx + kx = cwy cos t 11 ( ) = ( w -f ) x t Bcos t ö () =-w ( w -f ) x t Bsi t ö ( ) =-w ( w -f ) x t Bcos t ö ilgili eşitliklere koup ara işlemler bezer şekilde yapılırsa; 1 10

146 f - cw = ta æ ç ö çèk- mw ø 1 B = cwy ( k- mw ) + ( cw) cwy é -1æ cw ö ù xö() t = cos wt- ta ê çk mw ë è - øú û ( k- mw ) + ( cw) -1 cw f= f1= f = ta æ ç ö çèk- mw ø Olarak buluur. Burada, dir

147 x t x () t Süperpozisyo ilkesi uyarıca her bir ve çözümüü ö toplarsak; () () () 1ö () xö t = x1ö t + xö t 17 é ù ky -1æ cw ö xö () t = si wt- ta ç ( ) çè k mw k m ( cw w ø ) ê ú ë f1 û A é ù cwy ê æ cw ö ç ( çè k mw ) k m ( cw w ø ) ê ú ë f û -1 + cos êwt - ta ç B 18

148 17 deklemi şu şekilde de, yazılabilir. ( ) = ( w - f) + ( w -f ) x t Asi t Bcos t ö 1 yada, x t Xcos t ö ( ) = ( w -f-j) 0 19 biçimide yazılabilir. Burada; X= A + B = Y k + ( cw) ( k- mw ) + ( cw) 1 j -1æAö -1æ k ö = ta = ta ç è B ø èçcw ø dir.

149 0 deklemi, 16, 1 ve eşitlikleri göz öüe alıarak tekrar yazılırsa; ( w) k + c é -1 cw -1 k ö () = êw - ç - ç æ ù x t Y cos t ta ö æ ö ta ê çk mw çcw - + ë è - ø è øú û ( k mw ) ( cw) 3

150 Problem: Aşağıdaki sistemi verile değer ve başlagıç şartlarıa bağlı olarak 5 s içi hareketii iceleyiiz. k 1 c m c x k e

151 Çözüm: k 1 x c x m c x x mx (x k y) ( w ) y= esi t y

152 Newto u. kauu uygulaırsa, å F= ma ( ) 1 1 ( ) mx =-cx -cx -k x -k x -y mx + cx + k + k x = k y ( ) ( w ) mx + cx + k + k x = k esi t 1 m = 50 kg c = 00 Ns/m k = 0000 N/m k = N/m 1 p p450 e = 0.05 m = 450 d/d w= = = 15p ( p ) 50x + 400x x = 000si 15 t

153

154 Geçici titreşim bölgesi Daimi titreşim bölgesi

155 Problem: Aşağıdaki sistemi verile değer ve başlagıç şartlarıa bağlı olarak 5 s içi hareketii iceleyiiz.

156 Yerdeğiştirme Geçirgeliği 1 olu deklemde, ( w) ( ) ( ) ( x ) k + c 1+ r X G = = = Y k- mw + cw 1- r + xr ( ) ( ) 3 bulur. é ù k + ( cw) -1æ cw ö -1æ k ö xö () t = Y cos wt ta ta - - ç ( k mw ) ( cw) k mw ç cw - + è - ø è ø ê ú ë y û

157 Yerdeğiştirme Geçirgeliği-Hız Oraı Değişimi. x = 0.05 x = 0.1 Oraı X Y x = 0.15 x = 0.5 x = x = 0.5 x =1 Hız oraı r

158 Yerdeğiştirme Geçirgeliği Faz Farkı-Hız Oraı Değişimi. x = 0.1 x = 0.05 Faz farkı y x = x = 0.5 x = 0.5 x = 0.15 Hız oraı r = w w

159 Degelememiş Sistemleri Söümlü Zorlamış Hareketi Hareketi diferasiyel deklemii buluması: e m wt x Mx mew M e m wt x k c M kx c x

160 Newto u. kauua göre, å = = ( w ) F m a mx -kx-cx-mew si t + + = w ( w ) mx cx kx me si t 1 F Burada, dir. Bezer şekilde çözüm yapılırsa, 0 = mew X = mew ( k- mw ) + ( cw) f - cw = ta æ ç ö çèk- Mw ø olarak buluur.

161 X f i ve yi boyutsuz formda yazalım. MX = m e æ ω ö ç ω çè ø é ù æ ω ö é ω ù 1- + ξ ω ê çè ê ø ú ω ú ë ë û û φ=ta -1 æ ω ö ξ ç ω çè ø æ ω ö 1- ç ω çè ø x( t ) =Xsi( ωt-φ) buluur.

162 4 olu eşitlikle-hız Oraı Değişimi. x = 0.05 x = 0.1 Oraı x = 0.15 x = 0.5 x = M m X e x = 0.5 x = 1 Hız oraı r = w w

163 Faz Açısı-Hız Oraı Değişimi. x = 0 x = 0.1 x = 0. f Faz açısı [derece] x = 0.3 x = x =1 x = 0.7 x = 0.5 Hız oraı r = w w

164 Problem: Aşağıdaki sistemi verile değer ve başlagıç şartlarıa bağlı olarak s içi hareketii iceleyiiz. k 1 c R m r r m R m,e, x M k

165 Çözüm: JRj k 1 x c x Jrj x k F= meω cos ωt x ( ) F 0 Mx

166 Newto u. kauu uygulaırsa, å M= J Top J j + J j + Mx R =-cx r-k x R- k x R+ F R r R 1 æ1 1 ö ç mr r + mrr + MR j+ crj+ k1+ k Rj= mew Rcos wt çè ø r j R ( ) ( ) m = 0 kg m = 60 kg M = 60 kg r = 0.5 m R = 1 m e = 0.1 m m = 0.05 kg = 1500 d/d c = 1400 Ns/m p p1500 k1= 5000 N/m k = N/m w= = = 50 p rad/s ( ) 9.5j + 350j j= cos 50pt

167

168 Geçici titreşim bölgesi Daimi titreşim bölgesi

169 Titreşim İzolasyou m M k,c k F M+m c x Temele geçe kuvvet F T : F = F + F F = kx F = cx T y s y s F = kx+ cx T ( w j) x= Xsi t- ( ) x = wxcos wt-j ( ) ( ) F= T kx +cωx =kx 1+ çè ω æξωö ç ø

170 é ù é ù X k 1 æ w ö æ w ö = F 0 = kx 1 x - F 0 w + w é ù ç ç w é w ù ê è ø ú êë è øúû æ ö æ ö 1 ë û x - w + ê w ú ê çè ø ú è ç ë ø ë û û m X cx F T F X kx

171 Kuvvet Geçirgeliği X F æxwö æxwö kx ç w è ø ç w è ø T G = = = = Y F 0 é ù w é w ù é æ w ö ù é æ w öù kx æ ö æ ö 1 x 1- + x ê - + w w w ê w ç ú ê ç ú çè ø çè ú ê ú ø ê è ø è ø ë úû ë û ë û ë û X F = = = ( x ) 1+ r T G Y F 0 1 r r ( - ) + ( x ) İzolasyo Iz = 1-G (%)

172 G F F T = = 0 X Y Eğer, söüm ihmal edilecek kadar küçük ise, geçirgelik G G = 1 1 æ w ö r 1-1 ç w çè ø = = - ( pf) buluur. g 1 d st -1

173 Kuvvet Geçirgeliği-Hız Oraı Değişimi. 0Oraı F F T Hız oraı r

174 Kuvvet Geçirgeliğie Ait Bazı Souçlar: r< G 1 olması halide olur. Bu durumda yalıtıcıları kullaılması yarar değil zarar getirir. r> G< 1 olması halide olur. Bu durumda yalıtıcılar, kedileride beklee yararı sağlar. Acak bu bölgede x e kadar büyükse, G de o kadar büyük olmaktadır. Bua göre söüm, yalıtıcıı yararıı azaltır. r r» 1 r» 0 G» 1 r= x r Yalıtıcıı e büyük zararı (rezoas) olması halide, e büyük yararı ise olması halide görülür. Bua karşılık (çok sert k yalıtıcı ) ve olması halide, de bağımsız olarak, olur ve yalıtıcıı hiçbir etkisi görülmez. Souç olarak; iyi bir yalıtım içi elde geldiğice büyük ise elde geldiğice küçük yapılmalıdır. x

175 Problem: Toplam 100 kg kütleli bir makia, 700 kn luk bir yay paketi ile yataklamıştır d/d ile döe degelememiş bir kütlede dolayı 350 N luk bir merkezkaç kuvvetie maruz kalmaktadır. Söüm oraı 0. kabul edilecektir. a-degelememişlikte dolayı oluşa gelik e kadardır.? b-geçirgelik edir.? c-zemie iletile kuvvet miktarı e kadardır.?

176 Çözüm: kr Sayfa 189 da olu deklem yardımı ile; X = mew ( k- mw ) + ( cw) Merkezkaç kuvveti c c x= = c = x k m = = Ns/m c k m p p3000 w= = = 100 p rad/s X= = m= mm ( ( 100p) ) + ( p)

177 Hız oraı; p p3000 w r = = 30 = 30 = w k m 100 ( x ) ( ) ( x ) ( ) F 1+ r T G = = = = ( ) ( ) F 1- r + r F T G = FT = G F 0 FT = = N F0

178 Liear ohomogeous ode: Solutio is sum of homogeous ad particular solutio The particular solutio assumes form of forcig fuctio (physically the iput wis) x p (t) X cos(t) To be determied Drivig frequecy

179 Substitute ito the equatio of motio: x p x p X cos t X cos t f 0 cos t solvig yields : X f 0 Thus the particular solutio has the form: x p f ( t) 0 cos( t)

180 Add particular ad homogeeous solutios to get geeral solutio: x(t) particular A 1 si t A cos t f 0 cost homogeeous A 1 ad A are costats of itegratio.

181 t f t f x t v t x v A x x f A x cos cos si ) ( (0) (0) Apply the iitial coditios to evaluate the costats Solvig for the costats ad substitutig ito x yields

182 . Harmoic excitatio of damped systems ow icludes a phase shift 0 0 ) cos( ) ( cos ) ( ) ( ) ( cos ) ( ) ( ) ( t X t x t f t x t x t x t F t kx t cx t mx p

183 Substitute the values of A s ad B s ito x p : x p ( t) f0 cos( t ( ) () X 1 ta ) Add homogeeous ad particular to get total solutio: x( t) t Ae si( dt ) homogeeous or trasiet solutio X cos( t ) particular or steady state solutio Note: that A ad will ot have the same values as i Ch 1, as t gets large, trasiet dies out

184 Magitude: X f 0 ( ) ( ) No dimesioal Form: Phase: Frequecy ratio: Xk F 0 X f 0 ta r1 1 r r 1 (1 r ) (r)

185 r

186

187 Radom(Gelişigüzel) Titreşimler Şu aa kadar hep düzgü salıımlı titreşimleri iceledik. Oysa çalışa bir elektrik motoruda veya otomobiliizi çalıştırdığıızda hissettiğiiz titreşimler gelişigüzel titreşimlerdir. Gerçek hayatta, eğer özel olarak yaratılmıyorsa, düzgü salııdı titreşimlere rastlamak mümkü değildir. Gelişigüzel titreşimleri harmoik salıımlar gibi belirli bir frekası ve geliği yoktur. Dolayısıyla bu titreşimlere bakarak titreşime sebep ola kuvvet hakkıda fikir yürütmek imkasızdır. Halbuki bizim titreşim aalizi ile arızala teşhis edebilmemiz içi, bu titreşimleri frekaslarıı bilmemiz gerekir. İşte bu işlem içi Fourier Döüşümü'ü kullaıyoruz.

188

189 Fourier Döüşümü iki kütlei yay sabitleri ve kütleleri farklıdır. Bu edele eğer her iki kütleyi de eşit miktarda çekip serbest olarak salıım yapmaya bırakırsak, her ikisi de farklı frekas ve gelikte titreşim yapacaktır. Bu iki farklı titreşimi topladığımız taktirde Şekilde gösterile grafiği elde ederiz. Olaya matematik yöüde bakacak olursak frekasları ve gelikleri farklı iki siüzoidal eğriyi topladığımızda, siüzoidal olmaya üçücü bir eğri elde ederiz. Eğer bu işlemi iki değil de daha fazla siüzoidal içi yapacak olursak elde edeceğimiz grafik Şekilde gösterile gibi bir eğri olacaktır. O halde eğer elimizde bu şekilde bir eğri varsa bu toplama işlemii tersii uygulayarak, bu düzesiz eğriyi düzgü siüzoidaller halide yazabiliriz. İşte bu İşleme Fourier Döüşümü adı verilir.

190

191 Fourier döüşümü vasıtası ile titreşimi siüzoidal bileşelerii bulabiliriz. Şekil- 11'de gelişigüzel bir titreşimi farklı frekas ve geliklere sahip siüzoidal bileşeleri gösterilmiştir.

192

193

194

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış.

Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. İÇİNDEKİLER MOTOR KONTROL SİSTEMLERİ VE TEMEL MEKANİK BİLGİLER... Hata! Yer işareti taımlamamış.. GİRİŞ... Hata! Yer işareti taımlamamış.. HAREKET ŞEKİLLERİ... Hata! Yer işareti taımlamamış... Doğrusal

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi Makie Elemaları II Prof. Dr. Akgü ALSARAN Temel bilgiler ve örekler Güç ve hareket iletimi İçerik Güç ve Hareket İletimi Redüktör Vites kutusu Örek 2 Giriş 3 Bir eerjiyi, mekaik eerjiye döüştürmek içi

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

3.2.3 DC Şönt Motora Yolverme... 58 3.2.4 DC Şönt Motorun Devir Sayısı Ayar Metotları... 63 3.2.5 DC Şönt Motorun Dönüş Yönünün Değiştirilmesi...

3.2.3 DC Şönt Motora Yolverme... 58 3.2.4 DC Şönt Motorun Devir Sayısı Ayar Metotları... 63 3.2.5 DC Şönt Motorun Dönüş Yönünün Değiştirilmesi... İÇİNDEKİLER ELEKTRİKLE TAHRİKİN TANII VE TEEL EKANİK BİLGİLER.... GİRİŞ.... ELEKTRİKLE TAHRİKTE HAREKET ŞEKİLLERİ..... Doğrusal Hareket..... Döer Hareket... 4.3 HAREKET OLAYLARININ KİNETİĞİ... 6.4 BİRİ

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

MEKANĠK TĠTREġĠMLER DENEYĠ

MEKANĠK TĠTREġĠMLER DENEYĠ MK-LB00 MEKNĠK TĠTREġĠMLER DENEYĠ. DENEYĠN MCI Mekanik titreşimler deneyi titreşim teorisi bilgilerinin daha iyi kavranmasına yardımcı olmak ve deneysel beceri kazandırmak amacıyla yapılmaktadır.. DENEY

Detaylı

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N DENGE VE DENGE ŞARTLARI Bir cisim duruyorsa veya düzgün hızla bir doğru boyunca hareket ediyorsa ya da sabir hızla bir eksen etrafında dönüyorsa ``cisim dengededir`` denir. Cisim olduğu yerde duruyorsa,

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

20 (1), 109-115, 2008 20(1), 109-115, 2008. kakilli@marmara.edu.tr

20 (1), 109-115, 2008 20(1), 109-115, 2008. kakilli@marmara.edu.tr Fırat Üiv. Fe ve Müh. il. Dergisi Sciece ad Eg. J of Fırat Uiv. 0 (), 09-5, 008 0(), 09-5, 008 Harmoikleri Reaktif Güç Kompazasyo Sistemlerie Etkilerii İcelemesi ve Simülasyou da KKİİ, Koray TUNÇP ve Mehmet

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR -

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR - DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR - Doç.Dr. Eşref YALÇINKAYA (. Ders) Bu derste ; Sismograf ve bileşenleri Algılayıcı Sinyal koşullandırma birimi Kayıt sistemi Sismometrenin diferansiyel denklemi

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

BİNAYA TEMEL SEVİYESİNDE TESİR EDEN TABAN KESME KUVVETİNİN BULUNMASI V = W A(T ) R (T ) 0,10.A.I.W

BİNAYA TEMEL SEVİYESİNDE TESİR EDEN TABAN KESME KUVVETİNİN BULUNMASI V = W A(T ) R (T ) 0,10.A.I.W BİNAYA TEMEL SEVİYESİNDE TESİR EDEN TABAN KESME KUVVETİNİN BULUNMASI X-X YÖNÜNDE BİNAYA TEMEL SEVİYESİNDE TESİR EDEN TABAN KESME KUVVETİNİN BULUNMASI V W A(T ) R (T ) 0,10.A.I.W TOPLAM BİNA AĞIRLIĞI (W)

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ T.C. DENİZ HARP OKULU DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ ELEKTRİK VE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI İLETİŞİM BİLİM DALI SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI

HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI 1. Ulusal Makie Teorisi Sempozyumu UMTS005 HAFİF SÖNÜMLEMELİ ESNEK SİSTEMLERİN GİRDİ KOMUTU BİÇİMLENDİRME TEKNİĞİ İLE ARTIK TİTREŞİMLERİNİN AZALTILMASI Sadetti KAPUCU, Mahmut KAPLAN Gaziatep Üiversitesi,

Detaylı

Görüntü Stabilizasyonu İçin Paralel İşlev Gören İki Kalman Filtresiyle İşlem Gürültü Varyansının Adaptifleştirilmesi

Görüntü Stabilizasyonu İçin Paralel İşlev Gören İki Kalman Filtresiyle İşlem Gürültü Varyansının Adaptifleştirilmesi Görütü Stabilizasyou İçi Paralel İşlev Göre İki Kalma Filtresiyle İşlem Gürültü Varyasıı Adaptifleştirilmesi Eylem Yama, Sarp Ertürk Kocaeli Üiversitesi Elektroik ve Haberleşme Müh. Bölümü eylem@kou.edu.tr,

Detaylı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPAN: PROJE: TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPI GENEL YERLEŞİM ŞEKİLLERİ 1 4. KAT 1 3. KAT 2 2. KAT 3 1. KAT 4 ZEMİN KAT 5 1. BODRUM 6 1. BODRUM - Temeller

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi Teksil Tekolojileri Elekroik Dergisi Cil: 3, No: 1, 009 (31-37) Elecroic Joural o Texile Techologies Vol: 3, No: 1, 009 (31-37) TEK OLOJĐK ARAŞTIRMALAR www.ekolojikarasirmalar.com e-issn:- Makale (Paper)

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ

RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Erdem KOÇ Arş.Gör. Mahmut

Detaylı

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi Karaelmas Fe ve Mühedislik Dergisi / Karaelmas Sciece ad Egieerig Joural 3 (2), 43-47, 2013 Karaelmas Sciece ad Egieerig Joural Joural home page: http://fbd.beu.edu.tr Araştırma Makalesi El Hareketii Takip

Detaylı

RF MİKROELEKTRONİK TEMEL BİLGİLER

RF MİKROELEKTRONİK TEMEL BİLGİLER RF MİKROELEKTRONİK TEMEL BİLGİLER BİRİMLER terminalli bir devre için desibel cinsinden voltaj kazancı: V o A = V 0log db Vi GİRİŞ Güç kazancı: P o A = P 10log db Pi ÇIKIŞ BİRİMLER Girişteki kaynak direnci

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya - 2015 Musa DEMİRCİ KTO Karatay Üniversitesi Konya - 2015 1/46 ANA HATLAR Temel Kavramlar Titreşim Çalışmalarının Önemi Otomatik Taşıma Sistemi Model İyileştirme Süreci Modal Analiz Deneysel Modal Analiz Sayısal

Detaylı

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve DĐŞLĐLER Diş Boyuları Taba Kavisi (Fille Radius) Diş başı yüksekliği (Addedum) Taba yüksekliği(dededum) Diş yüksekliği (Addedum +Dededum) Taksima (Circular pich) Diş kalılığı (Tooh Thickess) Dişler arasıdaki

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ T.C. KTO KARATAY ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ KONYA-2015 Arş. Gör. Eren YÜKSEL Yapı-Zemin Etkileşimi Nedir? Yapı ve zemin deprem sırasında birbirini etkileyecek şekilde

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKUZ EYÜ ÜİVERSİTESİ FE BİİMERİ ESTİTÜSÜ YAYII KÜTEİ SİSTEMERİ YÜKSEK MERTEBEDE KESME DEFORMASYOU TEORİSİ DİFERASİYE QUADRATURE (DQM) VE DİFERASİYE TRASFORMASYO (DTM) YÖTEMERİ KUAIARAK DİAMİK AAİZİ Yusuf

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI

YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA ÖZET: YÜZME HAVUZUU AYARLI SIVI SÖÜMLEYİCİ OLARAK PERFORMASI A. Bozer Yrd. Doç. Dr., İşaat Müh. Bölümü, uh aci Yazga Üiveritei, Kayeri

Detaylı

Araya Girme Kaybı İle Süzgeç Sentezi

Araya Girme Kaybı İle Süzgeç Sentezi ÜDKl 621.872.54 Araya Girme Kaybı İle Süzgeç Setezi Yaza : Ümit /ÖZGÜNE» Î.T.Ü. Müh. Mtm. Fak. ÖZET L ve C elemaları İle süzgeç /setezide araya girme kaybı metoduu temelleri taıtılmaktadır, tstee zayıflama

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ

ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ. İnş.Yük.Müh. Bülent DEVECİ ANTAKYA MÜZE OTEL TAŞIYICI SİSTEM PROJESİ İnş.Yük.Müh. Bülent DEVECİ Proje Künyesi : Yatırımcı Mimari Proje Müellifi Statik Proje Müellifi Çelik İmalat Yüklenicisi : Asfuroğlu Otelcilik : Emre Arolat Mimarlık

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ P A M U K K A L Ü N İ V R S İ T S İ M Ü H N D İ S L İ K F A K Ü L T S İ P A M U K K A L U N I V R S I T Y N G I N R I N G C O L L G M Ü H N D İ S L İ K B İ L İ M L R İ D R G İ S İ J O U R N A L O F N G

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti)

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti) T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORTAÖĞRETİM ALAN ÖĞRETMENLİĞİ TEZSİZ YÜKSEK LİSANS FİZİKTE GİZEMLİ BİR SABİT α (İce Yapı Sabiti ÖĞRETİM ELEMANI : Yrd. Doç. Dr. Rıza Demirbilek ÖĞRENCİ

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

AMORTİSÖR SÖNÜMLEME ÖZELLİĞİNE GÖRE DEĞİŞEN FREN BASINCI İLE ABS KONTROL PARAMETRELERİ ARASINDAKİ ETKİLEŞİMİN FREKANS TEPKİ FONKSİYONU İLE İNCELENMESİ

AMORTİSÖR SÖNÜMLEME ÖZELLİĞİNE GÖRE DEĞİŞEN FREN BASINCI İLE ABS KONTROL PARAMETRELERİ ARASINDAKİ ETKİLEŞİMİN FREKANS TEPKİ FONKSİYONU İLE İNCELENMESİ Gazi Üiv. Müh. Mim. Fak. Der. J. Fac. Eg. Arch. Gazi Uiv. Cilt 26, o 3, 549-560, 20 Vol 26, o 3, 549-560, 20 AMORTİSÖR SÖÜMLEME ÖZELLİĞİE GÖRE DEĞİŞE FRE BASICI İLE ABS KOTROL PARAMETRELERİ ARASIDAKİ ETKİLEŞİMİ

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

YAĞMURLAMA SULAMA SİSTEMLERİNDE MAKSİMUM SU UYGULAMA SÜRESİ VE YİNELEME SAYISININ BELİRLENMESİ

YAĞMURLAMA SULAMA SİSTEMLERİNDE MAKSİMUM SU UYGULAMA SÜRESİ VE YİNELEME SAYISININ BELİRLENMESİ Fe ve Mühedislik Dergisi 2000, Cilt 3, Sayı 2 63 YAĞMURLAMA SULAMA SİSTEMLERİNDE MAKSİMUM SU UYGULAMA SÜRESİ VE YİNELEME SAYISININ BELİRLENMESİ Cafer GENÇOĞLAN KSÜ., Ziraat Fakültesi Tarımsal Yapılar ve

Detaylı

Cobra3 lü Akuple Sarkaçlar

Cobra3 lü Akuple Sarkaçlar Dinamik Mekanik Öğrenebilecekleriniz... Spiral yay Yer çekimi sarkacı Yay sabiti Burulma titreşimi Tork Vuruş Açısal sürat Açısal ivme Karakteristik frekans Kural: Belirli bir karakteristik frekansa sahip

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ . Amaçlar: EEM DENEY ALERNAİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKRİSİK ÖZELLİKLERİ Fonksiyon (işaret) jeneratörü kullanılarak sinüsoidal dalganın oluşturulması. Frekans (f), eriyot () ve açısal frekans

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ Öğrencinin: Adı Soyadı : Ekrem Selçuk OYMAK Numarası : 1215 Sınıfı : 10 Fen A Öğretmenin: Adı Soyadı : Fahrettin KALE Konu : KÜTLE

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı