T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI"

Transkript

1 T.C. BALIKESĠR ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ GENEL FĠZĠK MEKANĠK LABORATUVARI

2 FĠZĠK BÖLÜMÜ BALIKESĠR GENEL FĠZĠK LABORATUVARI ĠMZA ÇĠZELGESĠ ÖĞRENCĠNĠN : ADI SOYADI : FAKÜLTE NUMARASI : BÖLÜMÜ : DENEY NO DENEYĠN ADI TARĠH ĠMZA

3 DENEY 1: MEKANĠK SĠSTEMLERE GĠRĠġ A-HOOK KANUNU-KUVVETLERĠN ÖLÇÜMÜ Araçlar -Deney tahtası -Kütle asıcısı GiriĢ -Yay terazisi -Kütleler Kuvvet kavramı F = ma olarak; Newton un ikinci kanunuyla ifade edilir. Bu kanunu kullanarak kütlesi bilinen bir cisim meydana getirdiği ivmeyi ölçerek o cisim üzerindeki kuvvet tespit edilebilir. Fakat bu yöntem pratik olarak çok nadirdir. Daha uygun bir diğer yöntem ise ayarlanabilen değerleri belli kuvvetler ile bilinmeyen kuvvetleri karşılaştırmaktır. Her iki kuvvet bir cisim üzerine uygulandığı zaman ve aynı zamanda cisim ivmesiz ise bilinmeyen kuvvet hem büyüklük hem de yön olarak bilinen kuvvete tam olarak ters düşmek zorundadır. Bu statik sistemler ile kuvvetlerin ölçümü ve uygulanmasıyla ilgili iki yöntem vardır. Bunlardan birisi ayarlanmış kuvvetleri asmaktır. Kütlesi m olan bir cisim için yerçekimi kuvveti F = mg olarak bu kütleyi aşağı doğru çeker, burada g yerçekimi ivmesidir (g = 9.8 m/s 2 aşağı doğru, dünyanın merkezine doğru). Yay terazisi kuvvetlerin uygulanması ve ölçülmesinde ikinci bir yöntem olarak kullanılır. Bu deneyde yay terazisinin özelliklerini incelemek için ayarlanmış kütleler tarafından sağlanan bilinen kuvvetleri kullanacaksınız. Düzenek Yay terazisini deney tahtasının üzerine asın. Yayın plastik tüple dikey olarak asılı bulunmasına dikkat ediniz. Yay terazisinde herhangi bir ağırlık olmaksızın, Şekil 1.1.a da da görüldüğü gibi terazinin santimetre ölçeğinde göstergeyi, 0 cm noktasına gelene kadar yay terazisinin üzerinde bulunan sıfırlama vidasını ayarlayınız. Metot 1. Yay terazisinin ucuna 20 gram bir kütle ile birlikte bir kütle asıcısı asınız. Şekil 1.1.b de görüldüğü gibi santimetre ölçeğinde yayın aldığı yolu ölçünüz. Bu değeri Tablo 1.1 de uygun bir yere kaydediniz. Toplam kütle içerisinde 5 gr olan kütle asıcısının kütlesini dikkate alınız. 2. Kütle asıcısına ek kütleler asarak tabloda gösterilen yay terazisine asılı her bir değer için toplam kütleyi ayarlayınız. Her değer için yayın aldığı yolu kaydediniz. 3. F = mg formülünü kullanarak kullanılan her kütle değeri için toplam ağırlığı Newton cinsinden bulunuz. Sonuçlarınızı Tablo 1.1 e yerleştiriniz.

4 NOT: Kuvvet ölçmek için asılı ağırlıklar kullanılırsa gram terimi genel olarak bir ağırlık birimiymiş gibi kullanılır. Ağırlık ile kütle arasındaki fark iyi anlaşıldığı sürece bu kullanımda herhangi bir sakınca yoktur. Ağırlık = Kütle x Yerçekimi ivmesi Ağırlık kütleye ve yerçekimine dayanan bir kuvvettir. Eğer çekim sabiti değişirse ağırlık da değişir, fakat kütle aynı kalır. ġekil 1.1 Deney Düzeneği ġekil 1.2 Yay sabitinin ölçülmesi

5 Hesaplamalar 1. Ayrı bir kağıt üzerinde, ağırlığın, x-ekseni yayın aldığı yol olmak üzere, yayın aldığı yola olan grafiğini çiziniz. Nokta değerleriniz üzerinden en iyi uyuşmayı sağlayan bir çizgi çiziniz. Grafiğin eğimi yay terazisinde kullanılan yayın yay sabitini verecektir. 2. Yay sabitini çizdiğiniz grafikten hesaplayınız. (N/m) birimini kullanınız. Yay sabiti (k) =..(N/m) Sorular 1. Kuvvet ve yaydaki yol değişimi arasındaki çizgisel ilişki Hook kanunu olarak bilinmektedir. Eğer Hook kanunu geçerli olmasaydı, kuvvetleri ölçmek için bir yay halen başarılı bir şekilde kullanılabilir miydi? Eğer öyleyse nasıl? 2. Kuvvetlerin ölçümü için bir yayın ayarlanmasında Hook kanunu hangi yönden kullanışlı bir özellik oluyor? Tablo 1.1 Kütle (gram) Ağırlık = F = mg (N) Yayın Aldığı Yol (m) B- BĠLEġKELERĠNE AYRILAN KUVVETLER-BĠLEġKELER Araçlar -Deney tahtası -Kuvvet çemberi -Kütle asıcısı (3) -Derece ölçeği -Makaralar(3) -İp Teori Bu deneyde iki kuvvetin birbirlerine eklendikleri zaman bir tek kuvvet gibi aynı etkiye sahip olduğunu bulacaksınız. İleride göreceğiniz gibi x-y düzlemindeki herhangi bir kuvvet x ve y yönündeki kuvvetlerin toplamı olarak ifade edilir. Düzenek Düzeneği Şekil 1.3 deki gibi kurunuz. Görüldüğü gibi bir makaradan geçirilerek kuvvet çemberine bağlı bir kütlenin meydana getirdiği kuvveti F olarak tanımlayın. Kuvvet çemberini yerinde tutabilmek için tutucu iğneyi kullanınız. İpi dengeden makaranın altından kuvvet çemberine kadar yatay olarak çalışacak biçimde yaya

6 terazisini ve makarayı kurunuz. İkinci bir kütleyi direkt olarak kuvvet çemberinden asınız. ġekil 1.3 Deney Düzeneği Şimdi yatay kuvveti veya kuvvetin x-bileşenini ayarlamak için yaya terazisini makaraya doğru veya ters yönde çekiniz. Dikey kuvveti ya da kuvvetin y-bileşenini ayarlamak için de dikey kütle asıcısına bağlı olan kütleyi ayarlayınız. Kuvvetlerin x ve y bileşenlerini tutucu iğnenin kuvvet çemberini ortalayana kadar bu şekilde ayarlayınız. (Bu x ve y bileşenlerinin gerçekte F kuvvetinin kendisinden çok bu kuvvetin eşdeğerinin x ve y bileşenleri olduğuna dikkat ediniz) Yöntem 1. F in büyüklüğünü ve açısını kaydedin. Açıyı Şekil 1.3 de görüldüğü gibi ölçün. Büyüklük=.. Açı=. 2. F in eşdeğerinin x ve y bileşenlerinin büyüklüğünü kaydedin. x-bileşeni=.. y-bileşeni= 3. F in x ve y bileşeni olan F x ve F y nin büyüklükleri nedir? F x =. F y = 4. F in açısını ve F, F x ve F y nin büyüklüklerini kaydedin. F:Büyüklüğü=... F x =. Açı=.. F y =

7 Vektörleri tanımlamak için neden onların bileşkesini kullanıyoruz? Bunun bir sebebi bileşenlerin kullanımı matematiksel olarak vektörlerin toplanmasını daha kolay hale getiriyor. Şekil 1.4 x-ekseni ile θ gibi bir açı yapmış ve uzunluğu F olan bir kuvvetin x ve y bileşenlerini göstermektedir. Bileşenler birbirlerine 90 0 açı yaptıkları için onların toplamlarını bulmak için kullanılan paralelkenar kuralı bir dikdörtgendir. Dik üçgen özelliğini kullanarak AOX, F in bileşenleri kolayca hesaplanabilir; x-bileşeni Fcosθ ya ve y-bileşeni de Fsinθ ya eşittir. Eğer eklenen birçok vektörünüz var ise, ilk olarak her bir vektörün x ve y bileşenlerini tespit ediniz. Bütün x-bileşenlerini beraber ve bütün y-bileşenlerini de beraber toplayınız. Çıkan değer toplamı kuvvetin x ve y bileşenlerini verecektir. Bir makara ve asıcı kütle kullanarak bir kuvvet vektörünün yönünü ve büyüklüğünü istenilen şekilde oluşturmak için bu deneyin ilk bölümünde olduğu gibi deney düzeneğini kurun. Derece düzleminin x-eksenine paralel olmasına dikkat ediniz. 5. Kurduğunuz kuvvet vektörünün (F in) açısını ve büyüklüğünü kaydediniz. Büyüklüğü=.. Açı=.. 6. F in x ve y bileşenlerinin büyüklüklerinin olan F x ve F y yi hesaplayınız.(f x = Fcosθ, F y = Fsinθ) F x =.. F y = Şimdi deneyin ilk bölümünde olduğu gibi (Şekil 1.6) yay terazisi ve bir asılı kütle düzeneğini kurunuz. 6.soruda hesapladığınız değerleri kullanarak yay terazisini kuvvet çemberini yatay olarak F x miktarı kadar çekecek şekilde ayarlayınız. Asılı kütleyi de kuvvet çemberine dik yönde F y miktarı kadar çekecek şekilde ayarlayınız. ġekil 1.4 Vektör BileĢenleri

8 Sorular 1) Kuvvet çemberi derece düzleminin ortasında dengede mi bulunuyor? Genel olarak yukarıda yaptığınız gibi bir vektörün birbirlerine dik iki eksen boyunca bileşenlerini bulmak için kullanışlı bir yöntemdir. Fakat her zaman için x ve y eksenleri birbirlerine dik olmayabilir. Eğer yeterli zamanınız varsa deney düzeneğinizi bir vektörün birbirlerine dik olmayan eksenler üzerindeki bileşenlerini bulmak için kurmaya çalışınız.(bileşke kuvvetleri dik olmayan eksenlere yönlendirmek için makaralar kullanınız) 2) Bir vektörün dik olmayan eksenler üzerindeki bileşenlerini bulmak için kurmaya çalıştığınız düzenekte ne gibi zorluklarla karşılaştınız.

9 DENEY 2: MERMĠ FIRLATICISI MERMĠ YOLU Araçlar -Mermi fırlatıcısı ve plastik top -Karbon kağıdı -Düşeyde hareket edebilen hedef tahta -Grafik kağıdı -Cetvel -Beyaz kağıt Amaç Bu deneyin amacı bir masadan yatay olarak fırlatılan topun düşeyde aldığı yolun yatayda aldığı yola nasıl bağlı olduğunu bulmaktır. Teori Menzil namlu ile topun çarptığı yer arasındaki yatay uzaklıktır. Menzil x ile gösterilir ve x=v 0 t ile hesaplanır. Burada v 0 topun ilk hızıdır ve t uçuş zamanıdır. Eğer top yatay olarak fırlatılırsa topun uçuş zamanı t=x/v 0 olacaktır. Topun t süresinde aldığı düşey mesafe ile verilir. Burada g yerçekimi ivmesidir. t yi y de yerine yazarsak denklem haline gelir. Düzenek 1. Mermi fırlatıcısını bir masanın kenarına mengene ile sıkıştırınız. 2. Mermi fırlatıcısının açısını sıfır dereceye ayarlayın ki top yatay olarak fırlatılsın. 3. Düşey hedefin ilk konumunu belirlemek için orta menzilde bir test atışı yapın. Top hedefin alt tarafına çarpacak şekilde hedefi yerleştirin. 4. Hedef tahtayı beyaz kağıtla kaplayın bunun üzerine de karbon kağıdını sabitleyin. Deneyin YapılıĢı 1. Namludan taban kadar olan yüksekliği ölçün ve bunu Tablo 2.1 e kaydedin. Bu yüksekliği hedefin üzerinde işaretleyin. 2. Kurşun fırlatıcısının namlusundan hedefe kadar olan yatay uzaklığı ölçün ve sonucu Tablo 2.1 e kaydedin. 3. Topu fırlatın. 4. Hedefi 10 ile 20 cm arasında fırlatıcıya yaklaştırın. 5. Topun hedefte çarptığı noktanın namlunun yüksekliğinden 10 ile 20 cm arasında aşağıda kalmasını sağlayana kadar 2 nolu maddeden 4 nolu maddeye kadar olan işlemleri tekrarlayın.

10 ġekil 2.1 Deney Düzeneği Tablo 2.1 Veriler Namlunun Yüksekliği=. Yatay (x) Yükseklik (y) x 2 Analiz 1. Hedef üzerinde işaretlenen namlu seviyesi çizgisi ile topun bıraktığı iz arasındaki düşey uzaklığı ölçün ve sonucu Tablo 2.1 e kaydedin. 2. Bütün noktaların verileri için x 2 yi hesaplayın ve sonuçları Tablo 2.1 e kaydedin. 3. y nin x 2 ye göre değişiminde en uygun doğruyu veren grafiği çizin. 4. Grafiğin eğimini hesaplayın ve Tablo 2.2 ye kaydedin. 5. Grafiğin eğiminden topun ilk hızını hesaplayın ve Tablo 2.2 ye kaydedin. 6. Herhangi bir x ve y değeri kullanın. Y den t yi bulun ve x ile t den ilk hızı bulun. 7. İlk hızın bu iki yöntemle bulunan değerleri arasındaki yüzde hatayı hesaplayın ve Tablo 2.2 ye kaydedin.

11 Grafiğin Eğimi Eğimden hesaplanan ilk hız Uçuş süresi x ve y den hesaplanan ilk hız Yüzde hata Tablo 2.2 Ġlk Hız Sorular 1. Çizgi doğru mudur? Bu sonuç size x ile y arasındaki ilişki hakkında ne anlatır? 2. Eğer y nin x e göre grafiğini çizerseniz bu grafik y nin x 2 ye göre grafiğinden nasıl farklıdır? 3. Merminin yolu ne şekildedir?

12 DENEY 3 : BASĠT HARMONĠK TĠTREġTĠRĠCĠ (OSĠLATÖR) Araçlar -Araba -Araba yolu -2 Yay -Makara, ip -Kütle çengeli ve kütle takımı -Dengeleme kütleleri -Kronometre -Grafik kağıdı Amaç İki ucu yaya bağlı arabanın sürtünmesiz yol üzerinde yaptığı periyodik hareketin incelenmesi, periyodunun deneysel ve teorik değerlerinin karşılaştırılması. Teorik Bilgi Yaya bağlı kütlenin yaptığı titreşim hareketi için periyot olarak verilir. Burada T kütlenin ilk bulunduğu noktadan ileri geri gidip gelerek yine aynı noktaya gelmesi için geçen süredir, m titreşim hareketi yapan cismin kütlesi ve k da yay sabitidir. Hooke kanununa göre sıkıştırılmış yayın uyguladığı kuvvet F=kx dir. k sabiti yaya göre değişir. Aynı yay sabitine sahip yay değişik kuvvetler uygulanılarak farklı uzunluklarda sıkıştırılabilir. Kuvvete karşı yaydaki uzama arasında çizilen grafik çizgisel olarak değişir, buradan da k bulunabilir. Deneyin YapılıĢı: Teorik Olarak Bulunan Periyot 1. Arabanın kütlesini bulunuz ve bu değeri Tablo 3.1 e yazınız. 2. Arabayı yol üzerine yerleştirip araba yol üzerinde hareketsiz olana kadar yolun eğimini aşağıya veya yukarıya kaldırarak dengeleyiniz. 3. Şekil 3.1 deki gibi yayaları araba ve yol üzerindeki engellere bağlayınız. 4. Yaylara bağlı olan arabaya, iple makara üzerinden geçirerek kütle çengelini bağlayınız. 5. Arabaya bütün bağlantıları yaptıktan sonra arabanın denge durumunu Tablo 3.1 e kaydedin. 6. Kütle çengeline kütleler ekleyerek her ek kütle için yeni durumları kaydedin. Beş farklı kütle için bunları yeniden kaydedin. Yayları gereğinden fazla germeyin. Bu metot her iki yay için yay sabitini verecektir.

13 ġekil 3.1 Deney Seti Tablo 3.1 Arabanın kütlesi=.. Denge konumu= Ek Kütle (m) Kuvvet (mg) Konum Denge Konumundan Olan Yerdeğiştirme Hesaplama (Teorik Periyot) 1. Tablo 3.1 deki verileri kullanarak kuvvete karşı yerdeğiştirmeyi gösteren grafiği çiziniz. Verilen noktalardan en uygun şekilde geçen bir çizgi çekiniz ve bu çizginin eğimini bulunuz. Grafiğin eğimi, yay sabiti k ya eşittir. ġekil 3.2 k=. 2. Arabanın kütlesi ve yay sabitini kullanarak teorik formülden periyodu hesaplayınız. Arabanın üzerine 500 g kütle eklendiğinde yine teorik olarak periyodu bulunuz. Periyot(Teorik) Kütlesiz Araba T 1 = Kütleli Araba T 2 =

14 Deneysel Olarak Bulunan Periyot 7. Arabanın ucuna asmış olduğunuz ipi ve kütle çengelini çıkarınız ve arabayı denge durumuna getiriniz. 8. Denge durumunda bulunan arabayı, yayları çok germeyecek şekilde denge konumundan uzağa çekip bırakarak titreşim hareketi yaptırınız. Her denemede 5 titreşim hareketi için geçen zamanı Tablo 3.2 ye yazınız. 9. Arabaya 500 g kütle ilave ederek yine 5 titreşim için geçen zamanı 5 deneme için tekrarlayarak bulunuz ve Tablo 3.2 ye yazınız. Hesaplama (Deneysel Periyot) 1. Tablo 3.2 deki verileri kullanarak, kütleli ve kütlesiz arabanın ayrı ayrı 5 titreşim için ortalama zamanlarını bulunuz. 2. Bulunan bu ortalama zamanlar 5 titreşim içindir. Periyot ise 1 titreşim için geçen süre demektir. Bu nedenle periyodu hesaplamak için bu ortalama zamanları 5 e bölünüz ve Tablo 3.2 ye kütleli ve kütlesiz araba için bulduğunuz periyotları yazınız. Tablo 3.2 Deneme Ortalama 5 titreşim için geçen zaman Periyot (Deneysel) Kütlesiz Arabanın Periyodu T 1 = Deneme Ortalama 5 titreşim için geçen zaman Periyot (Deneysel) Kütleli Arabanın Periyodu T 1 = KarĢılaĢtırma Ölçülen ve teorik değerler arasındaki % hatayı hesaplayınız. Kütlesiz araba için % hata= Kütleli araba için % hata=..

15 DENEY 4: NEWTON UN ĠKĠNCĠ KANUNU Araçlar -Araba -Araba yolu -İp, Makara -Taban ve destek çubuğu -Kütle çengeli ve kütle seti -Ağaç veya metal durdurucu blok -Kronometre -Denge kütlesi Amaç Newton un İkinci Kanunu nu doğrulamak. Teori Newton un İkinci Kanunu na göre dır. F, cisim üzerine etkiyen bileşke kuvvet; m, cismin kütlesi ve a ise cismin ivmesidir. Deney sisteminde arabanın kütlesi m 1, kütle çengelinin kütlesi m 2 ise (Şekil 4.1) bileşke kuvvet F tüm sisteme etkir. Kütle çengelinin ağırlığından dolayı F=m 2 g olur. Cismin üzerine etkiyen sürtünme kuvveti ihmal edilebilir. Newton un İkinci Kanunu na göre sistem üzerine etkiyen bileşke kuvvet ma ya eşittir. Burada m sistemin toplam kütlesidir ve (m 1 +m 2 ) ye eşittir. Bu deneyde sürtünmeyi göz ardı ettiğimizden F=m 2 g kuvveti, (m 1 +m 2 )a ya eşit olacaktır. F=m 2 g=(m 1 +m 2 )a Deneyde sistemin ivmesinin bulmak için arabanın belirli bir d yolunu alması için geçen zamanı ölçerek den ivme hesaplanabilir. Buna göre ivme olarak bulunur. Deneyin YapılıĢı 1. Yolun üzerine arabayı yerleştiriniz ve araba hareketsiz duruma gelene kadar yolun altındaki ayakları aşağı veya yukarı ayarlayarak yolu düz konuma getiriniz. 2. Arabanın kütlesini Tablo 4.1 e kaydedin. 3. Makarayı yolun ucuna Şekil 4.1 deki gibi bağlayınız. Arabayı yolun üzerine yerleştirerek araba üzerinde bulunan deliğe ipi bağlayınız. İpin diğer ucunu askı çengeline bağlayınız. Kütle çengeli yere çarpmadan önce araba engele çarpacak şekilde ipin boyunu ayarlayın.

16 ġekil 4.1 Deney seti 4. Arabanın konumunu Tablo 4.1 e kaydedin. Bütün denemeleri aynı uzaklık için yapın. 5. Arabaya ve/veya askı çengeline kütleler ekleyerek yeni konumları ve zamanları kaydedin. 6. En az 5 defa ölçüm yapın ve değerleri Tablo 4.1 e kaydedin. Tablo 4.1 m 1 (arabanı n kütlesi) m 2 (kütle çengelini n kütlesi) d (yer değiştirme=son konum-ilk konum) t 1 t 2 t 3 t 4 t 5 t ort (ortalama zaman) Veri Analizi 1. Ortalama zamanları hesaplayıp Tablo 4.1 e kaydedin. 2. Tablo 4.1 deki verileri kullanarak her durum için ivmeyi hesaplayın ve Tablo 4.2 ye kaydedin. 3. Her durum için (m 1 +m 2 )a değerini hesaplayın ve Tablo 4.2 ye kaydedin. 4. Her durum için F=m 2 g değerini hesaplayın ve Tablo 4.2 ye kaydedin. 5. F=m 2 g ile (m 1 +m 2 )a arasındaki % hatayı hesaplayın ve Tablo 4.2 ye kaydedin.

17 m 1 (arabanın kütlesi) m 2 (kütle çengelinin kütlesi) Tablo 4.2. a (ivme) (m 1 +m 2 )a F=m 2 g % hata

18 DENEY 5 : MERKEZCĠL KUVVET Amaç Bir cismin belirli bir eksen etrafında dönmesiyle meydana gelen merkezcil kuvveti incelemek ve bu kuvvete etki eden faktörlerin incelenmesi. Teori Sabit bir kuvvet, sabit hız vektörüne sürekli olarak dik bir şekilde etki ederse, cisim R yarıçaplı çember etrafında düzgün bir dönme hareketi yapar. Bu harekete düzgün dairesel hareket denir. Bu dairesel hareket sonucunda merkezkaç ve merkezcil kuvvetler ortaya çıkar. Bir ipin ucuna bağlanan taş, bir eksen çevresinde döndürülürse, yörüngeye teğet doğrultuda fırlayıp kaçmaya çalışır. Taşı sürekli olarak yörünge dışına kaçmaya zorlayan bu kuvvete, merkez kaç adı verilir. Taşın merkezkaç kuvvet etkisinde kalıp uzaklaşmasını önleyen ve onu yörüngede tutan kuvvetse, merkezcil kuvvet diye adlandırılır. Merkezkaç ve merkezcil kuvvetlerin şiddetleri aynı, yönleri terstir ve her zaman ikisi birlikte bulunur. Periyot : Dairesel yörüngede hareket eden cismin bir turu için geçen süredir. T ile gösterilir. Frekans :Dairesel yörüngede dolanan cismin birim zamandaki (1sn)devir sayısıdır. f ile gösterilir. Periyot ile frekans arasındaki bağıntı; T=1/f dir. Çizgisel Hız: Düzgün dairesel hareket yapan cismin yörüngesel hızıdır. ν ile gösterilir. Birimi m/sn dir. ν=2πr/t T=1/f ν=2πrf Açısal Hız: Dairesel hareket yapan cismin belirli bir w yayını tarama hızına denir. ω=2π/t T=1/f ω= 2πf Çizgisel hız ile açısal hız arasındaki ilişki ise; ν =ωr Merkezcil Ġvme: Üzerine kuvvet etkiyen cismin hız vektöründe değişme olur. Hızdaki değişmede ivmeyi meydana getirir. Dairesel harekette ivme merkeze doğrudur. a ile gösterilir. a M = ν 2 /r ya da a M =4π 2 r/t 2 a M =ω 2 r a M = - 4π 2 r/t 2 merkezcil ivme vektörel olarak bu şekildedir. Buradan merkezcil kuvvet;

19 F=m*a M F=m* ν 2 /r ya da F=m*ω 2 r olur. Buradan ; F = - m 4π 2 r/t 2 merkezcil kuvvet vektörel olarak bu şekildedir. Deneyin YapılıĢı Şekilde görüldüğü gibi, m kütleli bir arabayı, başlangıçtan r kadar uzaklıkta bir konuma yerleştirildiğini ve yatay düzlemdeki dairesel yörüngede sabit hızla döndürüldüğünü varsayalım. Arabanın eylemsizliği, hareketin doğrusal bir yol boyunca kalmasını sağlamak eğilimindedir. 1. Yolun üzerine arabayı hareketsiz durumda yerleştiriniz 2. Arabanın kütlesini tabloya kaydedin. 3. r uzaklığını ölçerek önce çizgisel ve açısal hızı hesaplayarak tabloya kaydedin. 4. Daha sonra merkezcil ivmeyi bularak buradan merkezcil kuvvet değerlerini tabloya kaydedin. 5. Aynı adımları arabanın kütlesini ve frekans değerlerini değiştirerek tekrarlayın. Arabanın Kütlesi Frekans r uzaklığı Çizgisel Hız Açısal Hız Merkezcil İvme Merkezcil Kuvvet

20 DENEY 6 : MOMENT A-MOMENT Teori Moment matematiksel olarak aşağıdaki vektör denklemi ile tanımlanır. r F (6.1) Burada =moment, F=uygulanan kuvvet, r=dönme ekseninden kuvvetin uygulandığı noktaya olan uzaklıktır. Momentin yönü sağ el kuralı ile belirlenir. Şekil 6.1 de momentin yönü sayfanın dışına doğrudur. Momentin büyüklüğü ise = = r. ( sin ). F (6.2) Burada, r ve F arasındaki açıdır. r( sin ) = r dönme ekseninden kuvvetin uygulandığı eksene olan dik uzaklıktır. Moment aşağıdaki denklemle de gösterilir. = r F (6.3) Mekanik dengede olan bir cisim için (hareketsiz ya da sabit hızla hareketli) iki koşul sağlanmalıdır. Cisim üzerine etki eden dış kuvvetlerin toplamı sıfıra eşit olmalıdır ve cisim üzerine etki eden dış momentlerin toplamı sıfıra eşit olmalıdır. Moment vektörü cihazı bu şartların ikincisini incelemek için kullanılır. Momentler asılan kütlelerle mil üzerindeki topa uygulanır ve topun denge konumuna dönmesine izin verilir. Bu konumda uygulanan momentlerin tümünün toplamı sıfıra eşit olmalıdır. Bu gerçek momentlerin ölçülmesiyle doğrulanabilir. Her bir momentin büyüklüğü Denklem 6.3 kullanılarak ölçülür. Her moment için kuvvet, asılan kütlelerin ağırlıdır ve r Şekil 6.2 de gösterildiği gibi milimetre ölçek kullanılarak ölçülür. Her bir momentin yönü dereceli skala (iletki) kullanılarak ölçülür. Milimetre ölçeği asılı kütleyi taşıyan ipe değdiğinde, işaretleyici kütlenin ağırlığı tarafından uygulanan momentin yönünü gösterir. Moment vektörlerinin tamamı bu yolla ölçüldükten sonra ya trigonometrik olarak ya da vektörel olarak toplanırlar. Sonuç her zaman sıfıra eşit olmalıd ır. Deneyin YapıĢı UYARI: Üstte yer alan desteğin düşmemesi için kütle değiştirirken topu mutlaka tutunuz. Ayrıca terazinin herhangi bir koluna 75g dan daha fazla kütle asmayınız ve toplam kütle 200g ı geçmemesine dikkat ediniz. 1- Üç ayağın seviyelerini dengeleyene kadar ayarlayınız. 2-10cm uzunluğunda 3 adet iplik kesiniz. Denge koluna her bir ipliğin ucuna bağlayın, ve kütle askılarını asmak için ipin diğer ucuna bir ilmek atınız. 3- Topu tutarken üç ipliğin ucuna kütle askılarını takınız. Askıların her birine ek kütleler koyunuz (örneğin 20g, 50g ve 70g olabilir) Tablo 6.1 e kullandığınız kütleleri kaydediniz. Kütle askılarının kütlelerini de eklemeyi unutmayınız. 4- Topu bırakınız ve pompayı sıkarak topun dönmesini sağlayınız. Pompalamaya topun dönmesi durana kadar devam ediniz. Terazi kollarından herhangi birinin merkez direğe değmemesine dikkat ediniz. Eğer değiyorsa, değmeyecek

21 şekilde kütleleri değiştirin. (NOT: Bazen kütlenin bir tanesi o kadar alçak olur ki masaya temas eder. Böyle bir durumda ipi kısaltıp ve yeniden pompalayınız) ġekil 6.1 Moment diyagramı ġekil 6.2 Momentin ölçülmesi 5- Asılan kütlelerin her biri için Şekil 6.4 teki gibi r ve yı ölçünüz. Milimetre ölçeğini ipe temas etmeyecek şekilde uzatınız. Milimetreli ölçek üzerindeki r i ölçünüz ve cihazın tabanındaki dereceli ölçekten yı ölçünüz. Sonuçlarınızı Tablo 6.1 e kaydediniz. NOT: Doğru ölçüm için milimetreli öçlük ölçtüğünüzü her bir moment için ipin aynı tarafında olmalıdır. Eğer kütle çok yüksek ise r i ölçmek için milimetre ölçeğini ipe ulaşacak şekilde yükseltiniz (Şekil 6.5a). yı ölçmek için milimetre ölçeğini ipe değecek şekilde eğiniz ancak kütle yerinde oynamasın (Şekil 6.b). Analiz 1- açısı, kuvvet vektörü (F) ve yer değiştirme vektörünü (r) içeren düzleme dik olan moment vektörünün yönünü gösterir. Yer değiştirme vektörü başlangıç noktası destek topunun merkezi olan vektörünün ucunda ve ip boyunca aşağı doğru uzanan vektördür. Kuvvet vektörü asılı kütlenin ağırlığı ile orantılıdır. Bütün moment vektörlerinin yatay düzlemde olmasına dikkat ediniz. Çünkü bunların hepsi dikey konumda olan kuvvet vektörlerine diktir. 2- Her bir kütle tarafından uygulanan kuvveti hesaplayınız ve değerleri Tablo 6.1 e kaydediniz. 3- Her bir kütlenin ağırlığı tarafından uygulanan momenti hesaplayınız ve değerlerini kaydediniz.

22 ġekil 6.3 Deney Düzeneği ġekil 6.4 r ve θ nın ölçülmesi 4- Dik koordinatlarda üç moment vektörünü çiziniz. Her bir vektörün uzunluğu moment vektörü ile orantılıdır ve her bir vektörün açısı x eksenine göre ölçülmüştür. Şekil 6.6 da bir moment vektörü gösterilmiştir. 5- Her bir moment vektörünü x ve y bileşenine ayırınız. Her moment vektörü için her bir bileşenin değerini kaydediniz. Çizimi kullanarak bileşenlerin büyüklüğünü ölçebilirsiniz ve ya bileşenleri trigonometrik olarak hesaplayabilirsiniz (T x = TCos. T y = TCos ). 6- Tüm pozitif x bileşenlerinin toplamını hesaplayınız. Benzer şekilde negatif x bileşenlerinin toplamını da hesaplayınız. Bu değerlerin her ikisini de kaydediniz adımdaki iki toplamınız arasındaki yüzdelik farkı hesaplayınız. ġekil 6.5 Kütle yüksekte iken r ve θ nın ġekil 6.6 Moment diyagramı ölçülmesi

23 Burada = Pozitif x bileşenlerinin toplamı = Negatif x bileşenlerinin mutlak değerlerinin toplamı 8- Moment vektörlerinizin y bileşenleri için 6. ve 7. adımı tekrarlayın. Tablo 6.1 Veri ve hesaplamalar Veri Kütle, M (g) Düşey uzaklık, r (cm) Açı, (derece) Kuvvet, F (Newton) Moment, (N.m) x-bileşeni y-bileşeni Pozitif x-bileşenlerinin toplamı Negatif x-bileşenlerinin toplamı % fark Pozitif y-bileşenlerinin toplamı Negatif y-bileşenlerinin toplamı % fark Moment A B C B- Kuvvet Masası a- Vektör Toplamı Araçlar: -Kuvvet masası - ip -3 makara ve makara kıskacı - cetvel -3 kütle askısı - iletki -Kütle seti Amaç Bu deneyin amacı kuvvet masası kullanarak dengeleyen üçüncü kuvveti deneysel olarak belirlemektir. Teori Bu deneyde üç metot kullanarak iki vektörün toplamı bulunur: 1. Deneysel olarak, 2. Bileşenlerine ayırarak ve 3. Grafiksel olarak.

24 Not: Tüm durumlarda makara üzerine kütlenin asılmasıyla ortaya çıkan kuvvet yerçekimi ivmesiyle kütlenin çarpılmasıyla bulunur. 1. Deneysel metot İki kuvvet, belli açılarda yerleşmiş makaralara asılan kütleler tarafından kuvvet masasına uygulanır. Daha sonra üçüncü makaraya asılan kütle bunun açısı diğer iki kuvvet dengelenene kadar ayarlanır. Bu üçüncü kuvvet dengeyi sağlayan kuvvet olduğu için dengeleyici ( )olarak tanımlanır. Dengeleyici kuvvet bileşke kuvvetin ( ) aynısı değildir. Dengeleyici kuvvet bileşke kuvvete zıt yöndedir (Şekil 6.7). Bu nedenle dengeleyici kuvvet, bileşke kuvvetin negatifidir. + ġekil 6.7 BileĢke kuvveti dengeleyen kuvvet 2. BileĢen metodu ġekil 6.8 BileĢenler İlk olarak iki kuvvet trigonometri kullanılarak x ve y bileşenlerine ayrılır. + ve + Burada, vektörünün x bileşeni ve, x yönünde birim vektördür (Şekil 6.8). ve toplamını belirtmek için, bileşenler bileşke kuvvetinin bileşenleri olarak toplanırlar. = ( + ) + ( + ) = +

25 Bileşke kuvvetin bir yönü (açı) ve büyüklüğü olmalıdır. Bileşke kuvvetin büyüklüğü ( ve ) Pisagor teoremi kullanılarak bulunur. Trigonometri kullanılarak açılar bulunur. = Tan ( ) = 3. Grafiksel metod İki kuvvet, bir iletki ve cetvel kullanılarak ölçeklendirilerek kuvvetlerin çizilmesiyle toplanırlar. İkinci kuvvet ve ( ilk kuvvet ( ) nın başına gelecek şekilde çizilir. Bileşke kuvvet ( ), sonundan nin başına çizilir ( Şekil 6.9 ). Bileşkenin büyüklüğü şekilde direk olarak ölçülebilir ve seçilen ölçek kullanılarak uygun kuvvete dönüştürülür. Açı, iletki kullanılarak ölçülür. Analiz Deneysel Metot ġekil 6.9 Vektör Toplamı Deneme yanılma yöntemiyle iki kütleyi dengeleyecek üçüncü kütleyi ve bu kütlenin asılı olduğu makaranın açısını belirleyin. Bu üçüncü kuvvet dengeleyici kuvvet olarak adlandırılır. Dengeleyici kuvvet, bileşke kuvvetin negatifidir. Üçüncü makaraya asılı olan ve sistemi dengeleyen bu kütleyi Tablo 2 ye kaydedin. Sistemin dengede olup olmadığını belirlemek için aşağıdaki işlemi yapın. Dengeyi Bulmak Ġçin Halka Metodu Sistem dengedeyken halka merkezde olmalıdır. Merkez çubuğu çevirerek halkayı serbest bırakın halkayı yavaşça bir tarafa doğru çekin ve bırakın. Eğer halka dönmüyorsa, gerekli kütle veya açıları değiştirerek her defasında merkeze dönecek şekilde ayarlayın. Teorik olarak üçüncü makarada asılı kütleyi ve açısını bulmak için bileşenler metoduyla ve grafik metoduyla dengeleyici kuvvetini bulun. +

26 BileĢenler Metodu Bir kağıt üzerine A ve B kuvvetlerinin bileşenlerini toplayın ve dengeleyici kuvveti bulun. Yönü belirlemek için trigonometri kullanın ( Bileşkenin, dengeleyici kuvvetin tam zıttı olduğunu hatırlayın). Sonuçları Tablo 6.2 ye kaydedin. Grafik Metodu Bir kağıt üzerinde A ve B kuvvet vektörlerini uç uca ekleyerek çizin. Cetvel yardımıyla bileşke kuvvetin yönünü ve uzunluğunu bulun. Sonuçları Tablo 6.2 ye kaydedin. Dengeleyici kuvvetin yönünü tabloya kaydedin. Deneysel: Tablo 6.2 Vektörlerin toplanmasında kullanıla üç metodun sonuçları Bileşen: = = Grafiksel Metot Dengeleyici ( ) Büyüklük Yön ( )

27

28 YERÇEKĠMĠ KUVVETĠ Araçlar -Havayolu sistemi ve araba -Kronometre GiriĢ DENEY 7: YERÇEKĠMĠ KUVVETĠ VE ORTALAMA HIZ Bu deneyde Newton un ikinci kanunu kullanılacaktır (F=ma). İdeal olarak basitçe dünyanın çekim kuvveti sayesinde serbest olarak düşen bir cismin kütlesini ölçüp üzerindeki kuvveti hesaplayacak ve ivmesini ölçeceksiniz. Oysa serbest düşen bir cismin ivmesini hassas bir şekilde ölçmek zordur. Ölçüm hassasiyeti eğimli bir yüzey üzerinde yavaşça kayan bir cisim sayesinde arttırılabilir. Şekil 7.1 de deney düzeneğini bulabilirsiniz. Çekim kuvveti F g iki bileşenine ayrılabilir. Bu bileşenlerden birisi arabaya dik diğeri de hareket yönündedir. Bileşenlerden sadece hareket yönündeki arabayı ivmelendirir. Diğer bileşen arabaya dik etki eden hava akımı sayesinde dengelenir. Şekilden de görüldüğü gibi arabayı ivmelendiren kuvvettir. Arabanın ivmesini ölçerek F belirlenip F g hesaplanır. ġekil 7.1 Arabaya Etkiyen Kuvvetler ġekil 7.2 Deney Düzeneği Deneyin YapılıĢı 1. Hava yolunu Şekil 7.2 deki gibi yerleştirin. 2. Hava yolunun destek noktaları arasındaki uzaklığı ölçüp bulduğ unuz d uzaklığını kaydedin. 3. h yüksekliğindeki bir bloğu hava yolunun ayağının altına yerleştirin ve h yüksekliğini kaydedin. 4. İki kapı arasındaki uzaklığı ölçüp D olarak kaydedin. 5. Arabanın kütlesini kaydedin. 6. Arabayı hava yolunun başından bırakarak kronometreye basın. İlk kapıdan geçene kadarki süreyi t 1 olarak kaydedin. Arabanın 1. ve 2. kapılar arası geçirdiği süreyi yine kronometre ile ölçün ve t 2 olarak kaydedin.

29 7. Aynı ölçümlerden birçok kez tekrarlayarak Tablo 7.1 e kaydedin. Veri ve Hesaplamalar 1. eşitliğini kullanarak θ açısını belirleyiniz. 2. Her zaman aralığı için L uzunluğunu t 1 ve t 2 ye bölerek v 1 ve v 2 hızlarını bulun. 3. Her ölçüm için yi kullanarak arabanın ivmesini bulun. 4. Ortalama ivmeyi bulun. 5. Her bir ölçüm için yı kullanarak araba üzerindeki kuvveti bulun. 6. yı kullanarak her bir ölçüm için yi bulun. 7. Kütleyi(m) x eksenine yerleştirerek grafiğini çizin. d=.. D=.. θ=. h=. L=... Tablo 7.1 Veri ve Hesaplamalar m t 1 t 2 v 1 v 2 a a ort F g Analiz Çizilen grafiği nasıl bir bağlantı gösteriyor? Grafik orijinden geçiyor mu? Grafiğin eğiminden yer çekimi ivmesi g sabitini bulun. ORTALAMA HIZ Araçlar -Havayolu sistemi ve araba -Kronometre GiriĢ Ortalama hız değeri kullanışlı olabilir. Ortalama hız kavramını kullanarak belli bir süre sonunda nerede olacağımızı tahmin edebiliriz. Ancak trafik polisleri ortalama hızınızdan çok radarla ölçüm yaptıkları andaki hızınızla ilgilenirler. Bu deneyde ortalama hız ile ani hız arasındaki ilişkiyi araştıracaksınız.

30 ġekil 7.3 Düzeneğin Hazırlanması Yapılacak iģlemler 1- Şekil 7.3 de görüldüğü gibi hava yolunun son noktasını 1-2 cm lik bir destek yerleştirin. 2- noktasını ölçüp Tablo 7.3 e kaydedin. 3- Araba için noktası seçip kurşun kalem ile hava yolu üzerinde işaretleyin. Böylece her zaman aynı noktayı kullanabilirsiniz. 4- Şekildeki gibi ışık kapısı zamanlayıcı ve yardımcı ışık kapısını den eşit uzaklıklara koyup ışık kapıları arasındaki mesafeyi D olarak Tablo 7.3 e kaydedin. 5- Arabayı da tutup sonra bırakın. Araba iki ışık kapısından geçerken zamanları t 1 olarak kaydedin adımı dört kez tekrarlayıp zamanları t 2, t 3, t 4, t 5 olarak kaydedin. 7- Uzaklığı 10 cm kadar azaltıp 4-6 arasındaki adımları tekrar edin. Veri ve Hesaplamalar 1- D nin her değeri için t 1, t 2, t 3, t 4, t 5 zamanlarının ortalama değerlerini hesaplayıp t ortalama olarak kaydedin. 2- = d / yı hesaplayın. Bu arabanın iki ışık kapısı arasındaki hızıdır. 3- D ve t, ve grafiğini çizin. Tablo 7.3 Veri ve Hesaplamalar = D

31 DENEY 8: DÖNME EYLEMSĠZLĠK DENEYLERĠ DĠSK VE HALKANIN EYLEMSĠZLĠK MOMENTĠ Araçlar -Hassaslık zamanlayıcı programı -Eylemsizlik momenti takımı -Kütle ve askı takımı - Akıllı makara - Cetvel Amaç Halka ve diskin eylemsizlik momentini deneysel olarak bulmak ve deneysel olarak bulunan bu değerleri teorik değerleriyle kıyaslamak. Teori Teorik olarak bir halkanın merkezi etrafında eylemsizlik momenti ifadesiyle verilir. Burada M halkanın kütlesi, R 1 halkanın iç yarıçapı ve R 2 halkanın dış yarıçapıdır. ġekil 8.1 Halka Bir diskin merkezi etrafında eylemsizlik momenti ifadesiyle verilir. Bu bağıntıda M diskin kütlesi ve R diskin yarıçapıdır. Bununla beraber bir diskin çapı etrafında eylemsizlik momenti

32 şeklinde gösterilir. Eylemsizlik momentini deneysel olarak bulmak için cisme bilinen bir moment uygulanır ve oluşan açısal ivme ölçülür. Moment ifadesiyle verildiği için eylemsizlik momenti eşitliği ile gösterilir. Burada diskin açısal ivmesini göstermektedir ve değeri a/r dir. Burada a ivme ve r ise diskin yarıçapıdır., temeldeki makaraya sarılı ipe asılı kütlenin ağırlığının neden olduğu momenttir. bağıntısında r, ipin sarılı olduğu silindirin yarıçapını ve T, sistem dönerken ipte oluşan gerilmeyi temsil eder. ġekil 8.2 Asılı m kütlesi için Newton un ikinci kanununu uygularsak ifadesini elde ederiz. Bu denklemde T yi çekersek ġekil 8.3

33 T=m(g-a) bağıntısını elde ederiz. Eğer m kütlesinin çizgisel ivmesini tespit edersek eylemsizlik momentini hesaplamak için moment ve açısal ivmeyi bulabiliriz. Deneyin KuruluĢu 1. Şekil 8.4 te gösterildiği gibi merkez eksene diski yerleştirin. Diskin halka girmesi için hazırlanmış oluklu kısmının üste gelmesine dikkat edin. 2. Oluğa tam oturacak şekilde halkayı diskin üzerine koyun. 3. Akıllı makarayı temele takıp bilgisayara bağlayın. 4. Akıllı makara programını çalıştırın. Yapılacak ĠĢlemler Teorik Eylemsizlik Momentinin Hesabı ġekil Halka ve diski tartıp kütlelerini Tablo 8.1 e kaydedin. 2. Halkanın iç ve dış çaplarını ölçüp R 1 ve R 2 yi hesaplayın. Sonuçları Tablo 8.1 e kaydedin. 3. Diskin çapını ölçüp yarıçap R değerini Tablo 8.1 e kaydedin. Halkanın Kütlesi Diskin Kütlesi Halkanın İç Yarıçapı Halkanın Dış Yarıçapı Diskin Yarıçapı Tablo 8.1 Teorik Eylemsizlik Momenti Deneysel Metot Ġçin Ölçümler Deneysel olarak eylemsizlik momentini bulmaya yarayan teori sürtünmeyi hesaba katmamaktadır. Dolayısıyla kinetik sürtünmeye karşılık makaraya kütle asacağız. Kütlenin tam kinetik sürtünmeye karşılık geldiğini kütlenin sabit hızla

34 düşüşünden anlayabiliriz. Sonradan bu sürtünme kütlesini sistemi ivmelendiren kütleden çıkaracağız. 1. Kinetik sürtünmenin üstesinden gelecek kütleyi bulmak için Display Velocity(Hızı göster) sekmesini çalıştırın:<v>-display Velocity <ENTER>;<A>-Smart Pulley/Linear String(Akıllı Makara/Lineer Tel) <ENTER>; <N>-Normal Display (Normal Gösterim) <ENTER>. 2. Asılı kütlenin hızı üç önemli basamağa kadar sabit olacak biçimde makaraya kütle asın. Sonra <ENTER>a basarak hız gösterimini durdurun. Bulunan bu sürtünme kütlesini Tablo 8.2 ye kaydedin. Tablo 8.2 Eylemsizlik Momenti Verileri Sürtünme kütlesi Asılı kütle Eğim Yarıçap Halka ve disk bir arada Disk yalnız yatay Disk yalnız dikey Halka ve Diskin Ġvmesinin BulunuĢu 1. İvmeyi bulmak için makaraya 50 gram civarında kütle asın (Astığınız kütleyi Tablo 8.2 deki asılı kütle kısmına tam olarak kaydedin). Motion Timer (Hareket zamanlayıcı) sekmesini ENTER tuşuna basarak çalıştırın. İpi iyice sarıp kütleyi masadan yere doğru serbest düşmeye bırakın. Kütle yere değmeden az önce ENTER tuşuna basın. 2. Bilgisayar zamanları hesaplayıncaya kadar bekleyin ve sonra ENTER tuşuna basın. İvmeyi belirlemek için hız-zaman grafiğini çizin: <G>.-Graph Data (Veriyi Çiz) <ENTER>;<A>-Smart Pulley/Linear String (Akıllı Makara/Doğrusal Tel) <ENTER>;<V>-Velocity vs. Time (Hıza karşı Zaman) <R>-Linear Regression (Doğrusal Regresyon) <SPACEBAR>(Aktif konuma getirir) <S>- Statistics (İstatistikler) <SPACEBAR><ENTER>. 3. Şimdi grafik görüntülenecek ve eğim grafiğin üst kısmında verilecektir. Bu eğim ivmeye eşittir. Main Menu (Ana Menü) ye dönmek için bir kez <ENTER>, iki kez de <X>e basın. Yarıçap Ölçümü Cetveli kullanarak ipin sarılı olduğu silindirin çapını ölçün ve yarıçapını hesaplayın. Bu değerleri Tablo 8.2 ye kaydedin. Diskin Yalnız BaĢına Ġvmesinin BulunuĢu Daha önce disk halka ile birlikte dönmekteydi. Halkanın eylemsizlik momentini hesaplamak için toplamdan çıkarmak üzere yalnız diskin eylemsizlik momentini bulmamız gereklidir. Bunun için halkayı diskin üzerinden alarak Halka ve Diskin İvmesinin Bulunuşu bölümünü tekrarlayın. NOT: Halka diskin üzerinden alındığı için yeni kinetik sürtünmeyi yenmek için daha az sürtünme kütlesi gereklidir. Bundan dolayı 30 gram kütle yeterlidir.

35 Diskin Çap Ekseni Etrafında DönüĢü Diski merkez eksenden ayırıp dikey konuma getirin. Diskin iki tarafında buluna n D şeklindeki deliklerden biri üzerinde merkez eksene tekrar yerleştirin (Şekil 8.5). Yarıçap Ölçümü ve Diskin Yalnız Başına İvmesinin Bulunuşu adımlarını disk bu konumda iken tekrarlayın ve veriyi Tablo 8.2 ye kaydedin. Hesaplamalar ġekil 8.5 Aşağıdaki hesaplamaları yaparak sonuçları Tablo 8.3 e kaydedin. 1. Denklemlerde kullanılacak m kütlesini bulmak için sistemi ivmelendiren asılı kütleden sürtünme kütlesini çıkarın. 2. Halka ve diskin beraber eylemsizlik momentini hesaplayın. 3. Yalnız diskin eylemsizlik momentini hesaplayın. 4. Halka ve diskin toplam eylemsizlik momentinden diskin eylemsizlik momentini çıkarın. Bu halkanın eylemsizlik momentini verecektir. 5. Diskin çapı etrafında eylemsizlik momentini hesaplayın. 6. Halkanın eylemsizlik momentini teorik olarak hesaplayın. 7. Diskin ağırlık merkezi ve çapı etrafında eylemsizlik momentini teorik olarak hesaplayın. 8. Deneysel değerleri ve teorik değerleri karşılaştırmak için yüzdelik farkı kullanın. Tablo 8.3 Sonuçlar Disk ve Halka Beraber Yalnız Disk (Yatay) Yalnız Disk (Dikey) Yalnız Halka Deneysel Eylemsizlik Momenti Teorik Eylemsizlik Momenti Yüzde Hata

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cismin hareketi ve hareketi doğuran sebepler arasındaki ilişkiyi inceler. Bu deneyde eğik hava masası üzerine kurulmuş Atwood makinesini kullanarak Newton un ikinci

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: Bir nesnenin sabit hızda, net gücün etkisi altında olmadan düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplanmaktır. GENEL BİLGİLER:

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

Şekil 8.1: Cismin yatay ve dikey ivmesi

Şekil 8.1: Cismin yatay ve dikey ivmesi Deney No : M7 Deneyin Adı : EĞİK ATIŞ Deneyin Amacı : 1. Topun ilk hızını belirlemek 2. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışta açıyla menzil ve

Detaylı

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI Mekanik Deneyleri I Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; hareket, kuvvet ve kuvvetlerin bileşkesi, sürtünme kuvveti, Newton'un II. hareket yasası, serbest

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

2 SABİT HIZLI DOĞRUSAL HAREKET

2 SABİT HIZLI DOĞRUSAL HAREKET 2 SABİT HIZLI DOĞRUSAL HAREKET Bu deneyin amacı, hava masası deney düzeneği kullanarak, hiç bir net kuvvetin etkisi altında olmaksızın hareket eden bir cismin düz bir çizgi üzerinde ve sabit hızla hareket

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU Adı-Soyadı : ÖĞRENCİNİN Numarası : İmza :. Bölümü : Deney No Deney Adı Bir Boyutta Hareket: Konum, Hız ve İvme Deneyin Amacı Deneyin Teorisi (Kendi cümleleriniz ile yazınız) (0 P) T.C. SAKARYA ÜNİVERSİTESİ

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

elde ederiz

elde ederiz Deney No : M1 Deney Adı : NEWTON YASASI Deneyin Amacı : Sabit kuvvet altında hareketin incelenmesi, konum-zaman, hız-zaman grafiklerinin çizilmesi. Newton un ikinci hareket kanununun gözlemlenmesi, kuvvet-ivme

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. ÖDEV SETİ 4 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. 2) a) 3 kg lık b) 7 kg lık blok iki ip ile şekildeki gibi bağlanıyor, iplerdeki gerilme

Detaylı

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR 4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR Bu deneyin amacı, esnek ve esnek olmayan çarpışmalarda momentumun ve kinetik enerjinin korunumunun deneysel olarak incelenmesidir. Temel Bilgiler: Bir cismin lineer

Detaylı

Şekil 6.1 Basit sarkaç

Şekil 6.1 Basit sarkaç Deney No : M5 Deney Adı : BASİT SARKAÇ Deneyin Amacı yer çekimi ivmesinin belirlenmesi Teorik Bilgi : Sabit bir noktadan iple sarkıtılan bir cisim basit sarkaç olarak isimlendirilir. : Basit sarkaçta uzunluk

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

DENEY 6 BASİT SARKAÇ

DENEY 6 BASİT SARKAÇ DENEY 6 BASİT SARKAÇ AMAÇ: Bir basit sarkacın temel fiziksel özelliklerinin incelenmesi. TEORİ: Basit sarkaç şekilde görüldüğü gibi kütlesiz bir ip ve ucuna asılı noktasal bir kütleden ibarettir. Şekil

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme Deney No Deney Adı Deneyin Amacı : M8 : SERBEST DÜŞME ve ATWOOD DÜZENEĞİ : Yeçekimi ivmesinin serbest düşen bir cisim ve Atwood düzeneği kullanılarak tespiti. Bu iki sistem için konum-zaman, hız-zaman

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve Deney Kodu : M-1 Deney Adı Deney Amacı : Uzunluk Ölçü Aleti : Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve Ölçme Hataları Hakkında Önbilgiler Elde Etmektir. Kuramsal Ön Bilgi: Verniyeli kumpas, uzunluğu

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cisin hareketi ve hareketi doğuran sebepleri arasındaki ilişkiyi inceler. Bu deneyde, eğik hava asası üzerine kuruluş Atwood akinesini kullanarak, Newton un ikinci

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız. T.C. SAKARYA ÜNİVERSİTESİ FİZİK- LABORATUARI DENEY RAPORU Ad Soyad Numara Bölüm Grup Deney No Deneyin Adı Deneyin Amacı Teorik Bilgi Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 7 MANYETİK ALANLAR 2 İÇERİK

Detaylı

EĞİK ATIŞ Ankara 2008

EĞİK ATIŞ Ankara 2008 EĞİK ATIŞ Ankara 8 EĞİK ATIŞ: AMAÇ: 1. Topun ilk hızını belirlemek. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışda açıyla menzil ve tepenoktası arasındaki

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı 29 Kasım 2010 Hazırlayan: Yamaç Pehlivan Başlama saati: 13:00 Bitiş Saati: 14:30 Toplam Süre: 90 Dakika Lütfen adınızı

Detaylı

Doğrusal Momentum ve Çarpışmalar

Doğrusal Momentum ve Çarpışmalar Doğrusal Momentum ve Çarpışmalar 1. Kütlesi m 1 = 0.5 kg olan bir blok Şekil 1 de görüldüğü gibi, eğri yüzeyli m 2 = 3 kg kütleli bir cismin tepesinden sürtünmesiz olarak kayıyor ve sürtünmesiz yatay zemine

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu

İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu İş-Kinetik Enerji, Potansiyel Enerji, Enerji Korunumu 1. Kütlesi 7 kg olan motorsuz oyuncak bir araba, sürtünmesiz yatay bir düzlem üzerinde 4 m/s ilk hız ile gitmektedir. Araba daha sonra ilk hızı ile

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

Theory Turkish (Turkmenistan) Bu soruya başlamadan önce lütfen ayrı bir zarfta verilen genel talimatları okuyunuz.

Theory Turkish (Turkmenistan) Bu soruya başlamadan önce lütfen ayrı bir zarfta verilen genel talimatları okuyunuz. Q1-1 İki Mekanik Problemi (10 puan) Bu soruya başlamadan önce lütfen ayrı bir zarfta verilen genel talimatları okuyunuz. Kısım A. Gizli Disk (3.5 puan) r 1 yarıçaplı h 1 kalınlıklı tahtadan yapılmış katı

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA 4. İKİ BOYUTLU UZAYDA ÇARPIŞMA AMAÇ. İki cismin çarpışması olayında momentumun korunumu ilkesinin incelenmesi,. Çarpışmada mekanik enerjinin korunumu ilkesinin incelenmesi, 3.Ölçü sonuçlarından yararlanarak

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

MEKATRONİĞİN TEMELLERİ HAREKET

MEKATRONİĞİN TEMELLERİ HAREKET MEKATRONİĞİN TEMELLERİ HAREKET Bir Doğru Boyunca Hareket Konum ve Yer-değiştirme Ortalama Hız Ortalama Sürat Anlık Hız Ortalama ve Anlık İvme Bir Doğru Boyunca Hareket Kinematik, cisimlerin hareketini

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı 17 Ocak 2013 Hazırlayan: Yamaç Pehlivan Başlama saati: 11:00 Bitiş Saati: 12:40 Toplam Süre: 100 Dakika Lütfen adınızı ve

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı 13 Ocak 2011 Hazırlayan: Yamaç Pehlivan Başlama saati: 13:00 Bitiş Saati: 14:20 Toplam Süre: 80 Dakika Lütfen adınızı ve

Detaylı

Newton Kanunu / Hava izi

Newton Kanunu / Hava izi İlgili konular Hız, ivme, kuvvet, yerçekimi ivmesi Newton Kanunu / Hava izi Prensip ve amaç Mesafe zaman kanunu, hız zaman kanunu ve kütle, ivme ve kuvvet arasındaki ilişki, düz bir çizgide düz olarak

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y Fiz102L Deney 1 Eş potansiyel ve elektrik alan çizgileri P r o f. D r. T u r g u t B A Ş T U Ğ P r o f. D r. S a l e h S U L T A N S O Y Y r d. D o ç. D r. N u r d a n D. S A N K I R D r. A h m e t N u

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum DOĞRUSAL ve BAĞIL HAREKET Hareket Maddelerin zamanla yer değiştirmesine hareket denir. Fakat cisimlerin nereye göre yer değiştirdiği ve nereye göre hareket ettiği belirtilmelidir. Örneğin at üstünde giden

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017 SORU-1) Dirençli bir ortamda doğrusal hareket yapan bir parçacığın ivmesi a=k V 3 olarak tanımlanmıştır. Burada k bir sabiti, V hızı, x konumu ve t zamanı sembolize etmektedir. Başlangıç koşulları x o

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

O-bOt ile Uygulamalı Deneyler

O-bOt ile Uygulamalı Deneyler O-bOt ile Uygulamalı Deneyler Deney 1: Tekerlek Çapı Gidilen Yol Đlişkisinin Bulunması 1 AMAÇ Bu deneyde, robotu hareket ettirmek için kullandığımız tekerleklerin çaplarının ve motorların dakikada attıkları

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı