TOPOLOJİK TEMEL KAVRAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TOPOLOJİK TEMEL KAVRAMLAR"

Transkript

1 TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım f : A B foksiyou içi V A olsu. U V olmak üzere; ( ) ( ) f : U V B, f a = f a V V şeklide taımlı f foksiyoua f i V üzerie kısıtlaması deir. V

2 Taım f : A B bir foksiyo olsu. Domf =A ise f foksiyoua A ya göre global foksiyo deir. Taım f : A B ve g: B üzere; C iki foksiyo olsu. ( Ragef ) Domg olmak ( ο )( ) ( ( )) gο f : A C, g f a = g f a şeklide taımlı foksiyoa g ile f i bileşkesi deir ve gο f, g( f ) şeklide gösterilir. Taım f : A B bir foksiyo olsu. Ragef = B ise f foksiyoua örte foksiyo deir.

3 Taım f : A B bir foksiyo olsu. a1, a A içi f ( a ) = f ( a ) a = a oluyorsa f ye 1-1 foksiyo (ijectio) deir. 1 1 Taım örte foksiyolara bijeksiyo (bijectio) deir. Taım f : A B 1-1 ve örte foksiyo olsu. f ο g = I f ( A ) ve gof = olacak I f 1 ( B) şekildeki g foksiyoua f i tersi deir ve g = f 1 şeklide gösterilir. Bu taımda da alaşıldığı gibi f 1 of foksiyou yerie özdeşlik döüşümüü bir bileşke işlemide yerie yazarke dikkatli olmalıyız. poh ile pof 1 ofoh foksiyoları ayı foksiyolar değildir. pof 1 ofoh foksiyou poh foksiyouu bir kısıtlamasıdır.

4 Teorem f : A B ve g: B A, fog ve gof foksiyoları B ve A üzeride özdeşlik foksiyoları olacak şekilde iki foksiyo ise f, 1-1, örte ve g = f 1 dir. Taım A 1 ve A iki küme p : A A A, i= 1, i 1 (, ) p a a = a i 1 i i şeklide taımlı foksiyolara izdüşüm foksiyoları deir.

5 Taım f : A A1, g: B B1 şeklide verile iki foksiyo içi f g: A B A B 1 1 ( f g)( a, b) = ( f ( a), g( b) ) şeklide taımlı foksiyoa f ile g i kartezye çarpım foksiyou deir. Dom( f g ) = ( Domf ) ( Domg ) Taım Eğer öceki taımda f : A A1, g: A B1 şeklide özel halii göz öüe alırsak; ( f, g)( a) = ( f ( a), g( a) )

6 Dom( f, g ) = Domf Domg Bu taımları herhagi solu sayıdaki küme ve foksiyolar üzerie taşıyabiliriz. Taım :..., (,..., ) p A A A p a a = a i 1 i i 1 i f : A C, i = 1,,..., i i i f f... f : A A... A C C... C ( f1 f... f)( a1, a,..., a) ( f1( a1 ), f( a ),..., f( a )) (... ) = ( ) ( )... ( ) Dom f f f Domf Domf Domf 1 1 f : A C, i = 1,,..., i i

7 ( f1, f,..., f)( a) ( f1( a ), f( a),..., f( a )) (,,..., ) = ( ) ( )... ( ) Dom f f f Domf Domf Domf 1 1 f: A A1 A... A f i = pof i p i A i olmak üzere i f i 1,,..., = foksiyolarıa f i bileşeleri deir.

8 Problemler 1.1. :, :, : ve k: B1 B foksiyoları verildiğie göre 1. f A A1 g B B1 h A1 A ( h k ) o( f g ) = ( hof ) ( kog ) olduğuu gösteriiz.. f : A A, g: B B foksiyoları verildiğie göre, :, (, ) üzere po( f g ) = fop olduğuu gösteriiz. p A B A p a b = a olmak 3. f : A B, g: C D 1-1 foksiyolar ise f g i de 1-1 olduğuu ve ( ) f g f g = olduğuu gösteriiz. f A B g A C h B B k B B ve q: C C1 foksiyoları verildiğie 4. :, :, : 1, : göre

9 i) ( h, k ) of = ( hof, kof ) ii) ( h q) o( f, g ) = ( hof, qog ) olduğuu gösteriiz..1. FONKSİYONLAR VE SÜREKLİLİK Bu kısımda Öklid Uzayları arasıdaki foksiyoları özelliklerii gözde geçireceğiz. Dom f ( ) R de elemaıa bir tek resmii y f ( x) y m R ye taımlaa : ( ) f Dom f R m foksiyou; x Dom( f ) R m R oktası karşılık getire kural olarak taımlaır. x i f altıdaki m = yazarak belirteceğiz. f : A R de kastımız f foksiyouu taım kümesii A olmasıdır. Yai A daki her x elamaı içi f ( x ) iyi taımlıdır. A ı dışıdaki

10 elemalar içide f ( x ) iyi taımlı olabilir, A ı f içi maksimal taım küme olmasıda ısrar etmiyoruz. A f m R p of i = f i p R f : A R, 1 i m i, ( ) f x = y şeklide taımlı foksiyolara f i bileşe foksiyoları i ya da kısaca bileşeleri deir. O zama f ( x) ( f1 ( x),..., fm ( x) ) ( ) f = f,..., 1 fm şeklide belirteceğiz. i = veya daha kısaca olarak

11 Örek: a) f : R R 3, f ( x, y) = ( y, x, x+ y) 3 b) :, (,, ) f R R f x y z = xyz c) f :0, [ ) R ( ) ( ) 3, f x, y, z = x, x, x d) f : R 4 R 4, f ( x, x, x, x ) = ( x + x, x + x, x x, x x ) (,,, ) = +, (,,, ) f x x x x x x f x x x x = x + x, (,,, ) =, (,,, ) f x x x x x x f x x x x = x x olur.

12 Bu öreklerde foksiyolar formül yoluyla taımladı. Buula beraber foksiyoları kısıtlı şekilde taımlayacağıı da belirtelim. Mesela; f :1, [ ) R, kuralı f(x) i ( y + 1) e y = x deklemii çözümü şeklide taımlayabiliriz. ( y ) + 1 e y ; y ye göre arta olduğuda deklem bir tek çözüme sahiptir. Fakat f(x) içi herhagi formül yoktur. Bu bir foksiyoua ters foksiyoua örektir. Bu kou 4. bölümde iceleecektir. O halde yukarıdaki ham foksiyo taımıdaki geçerli kuralı tam olarak oluşturmak içi e yapmalıyız sorusuu sorabiliriz. Bu kesi taım bir foksiyouu grafiğii taımıı verdikte sora verilebilir. m f : A R R bir foksiyo ise G grafiği de R R m m kümesidir. ( x, y) R R içi ( x, y) G x A ve y f ( x) {( ) } i, ( ) = dir. G = x f x x A alt Bir foksiyou grafiği hakkıdaki bilgi f hakkıdaki her şeyi söylediğide f foksiyou G grafiği ile özdeşleir. O halde bir foksiyou kesi olarak taımlamak içi bu foksiyou

13 grafiğideki sıralı ikili kümesii özelleştirmek gerekir. Hagi sıralı ikilileri kümesi bir foksiyou grafiğidir? H, R m R i herhagi sıralı ikililerii kümesi olsu. H ı e az bir foksiyouu grafiği olması içi gerek ve yeter şart her (, ),(, ) olmasıdır. x y H x z H y = z Taım.. Bir f foksiyou ( x, y) G ve ( x, z) G y = z özelliğideki m G R R sıralı çiftleri kümesidir. Bu durumda f i taım kümesi de { } m ( ) = (, ), şeklide taımlaır ve ( ) (, ) Dom f x R x y G y R şeklide yazılır. Döüşüm(Map) ve foksiyo ayı alamdadır. m m f : A R bir foksiyo ve A 1 A içi f 1 : A 1 R, x A 1 y = f x x y G içi f ( x) f ( x) 1 = şeklide taımlı f foksiyoua f i 1 A 1 e kısıtlaması deir ve f şeklide yazılır. Bezer olarak A 1

14 m A A, g: A R ve x A tek olmadığı da bir gerçektir. içi g( x) f ( x) = ise f i geişlemesi deir. Böyle g i G { } = {( x, y) } şeklide verile sıralı çiftleri cümlesi içi G = ( y, x) sıralı çiftleri cümlesi de bir foksiyou grafiği olma özelliğii gösterebilir. Buu içi (, ),(, ) yx G yx G x= x olması gerekir. Eğer G bir f foksiyou grafiği ise f i olması x x f ( x ) f ( x ) olması ile taımlaır. f 1-1 ike G da kesi olarak bir 1 1 foksiyou grafiğidir. Bu foksiyoa f i tersi diyerek ( ) ( ) = = dir. 1 x f y y f x 1 f şeklide belirteceğiz. Kısaca

15 Eğer f : A S içi S f ( A) = oluyorsa f ye örte foksiyo(veya A yı S üzerie döüştüre döüşüm) deir. f : A S 1-1 ve üzerie ise f ye bijectio deir. f bijectio ise f 1 : S A da bijectivedir. Reel değerli foksiyou tersii olmadığıı belirlemek basit bir koudur. Reel değerli taım kümeside arta ve azala foksiyolar bu aralıklarda 1-1 dir. Bu türevi işaretide buluur. 4.Bölümde ivers foksiyou varlığıı göz öüe alarak türevii ivers bulmada kullaılıp kullaılamayacağıı göreceğiz. Şimdi öemli kavram ola sürekliliğe döelim. m Taım.3. f : A R R bir foksiyo olsu. a A olmak üzere; ε > 0 içi x A ve ( ) ( ) x a < δ f x f a < ε olacak şekilde δ > 0 sayısı buluabiliyorsa f ye a da süreklidir deir. Yada kısaca ε > 0, δ > 0 vardır. Öyle ki x A ve ( ) ( ) x a < δ f x f a < ε şeklide gösterilir. Eğer a A içi f sürekli ise f ye A da

16 süreklidir deir. Bu yöteme ε δ şartı diyeceğiz. δ, ε a bağlı olduğu kadar a oktasıa da bağlı olabilir. Komşuluklara bağlı olarak; a A olmak üzere f ( a ) oktasıı herhagi ε komşuluğua karşılık; f ( A B( a, δ )) B( f ( a), ε ) olacak şekilde a ı bir δ komşuluğu varsa f ye a da süreklidir deir. Bu sezgisel ola x oktaları a ya yaklaşırke f ( x ) oktaları da f ( a ) ya yaklaşır şeklideki taıma kesilik kazadırır. Eğer x i a ya yaklaştığıı gözlemlediğimizde f ( x ) de f ( a ) ya yaklaşmalıdır. Ne şekilde olursa olsu x i a ya yaklaşması esasıda x i A içide kalması çok öemlidir.

17 Bir a oktasıdaki süreklilik lokal özellik olup, a ı komşuluğuda f i davraışıa bağlıdır. Eğer a, A ı yalız (izole) oktasıysa δ yı öyle küçük seçebiliriz ki x a < δ olacak şekilde x A şeklideki bir tek okta a ı kedisi olur. O zama taım sağlaır ve f foksiyou yalız(izole) oktada otomatikma süreklidir. Buula birlikte yalız oktalardaki sürekliliği öemi azdır.

18 . a δ ẋ Örek.4. :, ( ) f R R f x = x ile taımlası o zama f, R üzeride süreklidir. Yai orm foksiyou R de süreklidir. Çözüm: f ( x) f ( y) = x y x y eşitsizliğide x y < δ = ε f ( x) f ( y) < ε olacak şekilde δ > 0 sayısı vardır. O halde f her y R de süreklidir.

19 Örek.5. :, ( ) p R R p x = x i-yici izdüşüm foksiyou süreklidir. i i i Çözüm: ( ) ( ) p x p y = x y x y eşitsizliğide; ε > 0 içi i i i i i ( ) ( ) x y < δ = ε p x p y < ε olduğuda p i foksiyou süreklidir. i m Teorem.6. f : A R R olsu. Aşağıdaki ifadeler dektir. a) f, a A oktasıda süreklidir. b) A daki herhagi ( k ) { } x dizisi içi ( k) ( k) ( ) ( ) x a f x f a olur. İspat: (Fuctios Several Real Variable p.39)

20 m Teorem.7. :, (,..., ) süreklidir. = ise f, a A da süreklidir Her bir f i a da f A R f f1 f m m Teorem.8. f, g: A R R, a A da sürekli foksiyolar ve α R içi α. f, f + g ve m = 1 halide f. g foksiyoları da a A da süreklidir. İspat: h= α. f olsu. f sürekli olduğuda ε > 0 içi < ( ) ( ) x a δ f x f a < ε olacak şekilde δ > 0 sayısı vardır. O zama; ε > 0 içi < h( x) h( a) α f ( x) f ( a) x a δ = < αε

21 olacak şekilde δ > 0 sayısı vardır. O halde h= α. f foksiyou a A da süreklidir. F = f + g olsu. f, g a A da sürekli olduğuda; ε1 > 0 içi ( ) ( ) x a < δ f x f a < ε olacak şekilde δ1 > 0 sayısı vardır. Bezer şekilde g a A 1 1 da sürekli olduğuda ε 0 > içi x a δ g( x) g( a) sayısı vardır. O zama ε = ε1+ ε > 0 içi < < ε olacak şekilde δ > 0 < mi {, } = ( ) ( ) ( ) ( ) x a δ δ δ 1 ( ) ( ( ) ( )) ( f ( x) f ( a) ) ( g( x) g( a) ) F x F a = f x f a + g x g a + F( x) F( a) < ε1+ ε = ε

22 olacak şekilde δ > 0 sayısı vardır. O halde F = f + g foksiyou a A da süreklidir. m = 1 halide ( f. g)( x) = f ( x) g( x) olmak üzere; ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( ) = ( f ( x) f ( a) ) g( x) + f ( a) ( g( x) g( a) ) f ( x) f ( a) g( x) + f ( a) g( x) g( a) f x g x f a g a f x g x f a g x f a g x f a g a eşitsizliği vardır. M 1 f ( a) g( a) = + + olsu. f a A da sürekli olduğuda ε > 0 içi ε x a < δ f ( x) f ( a) < M

23 olacak şekilde δ > 0 sayısı vardır. Bezer şekilde ε > 0 içi ( ) ( ) x a < δ g x g a < ε M olacak şekilde δ > 0 sayısı vardır. O zama ( ) = ( ) ( ) + ( ) ( ) ( ) + ( ) g x g x g a g a g x g a g a ε < + g a < + M ( ) 1 g( a) olduğuda; ε > 0 içi;

24 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x a < δ f x g x f a g a f x f a g x + f a g x g a ε f x g x f a g a < g x + f a M ( ) ( ) ( ) ( ) ( ) ( ) ε < + + M ε M ( g( a) 1) f ( a) ( 1+ f ( a) + g( a) ) ε M < ε = ε M olacak şekilde δ > 0 sayısı vardır. Örek.9. :, (, ) f R R f x y = xy R üzeride süreklidir.

25 Çözüm :, (, ), (, ) f p x y = x p x y = y izdüşüm foksiyolarıı çarpımı olduğuda ve 1 izdüşüm foksiyoları da üzeride süreklidir. R üzeride sürekli olduğuda Teorem.8 i so halide f R Foksiyoları birleştirmei başka bir yolu da bileşke almaktır. Buu alamı bir f foksiyouu x oktasıa uygulayarak elde ettiğimiz f ( x ) görütüsüe başka bir g foksiyou uygulayarak g( f ( x )) görütüsüü elde etmektir. Buula birlikte; her f ( x ), g p i taım kümesie ait ise bu bileşke taımlıdır. Bu edele; f : A R R ve p g: B R R m, ( ) f A B bileşke foksiyo taımlaır. ise : m gof A R R, x A, ( gof )( x) g ( f ( x) ) = şeklide

26 p p Teorem.10. f : A R R, g: B R R m ve ( ) f A B olsu. f i a A da ve g i b= f ( a) B de sürekli olduğuu kabul edelim. O zama gof de a da süreklidir. İspat: g, ( ) ( ) ( ( )) f a da sürekli olduğuda y B ve 0 ε > içi ( ) y f a < ξ olur olmaz g y g f a < ε olacak şekilde ξ > 0 sayısı vardır. f, a da sürekli olduğuda ξ > 0 içi x A ve x a δ halde ε > 0 içi x a δ < olur olmaz ( ) ( ) < olur olmaz ( ) f x f a < ξ olacak şekilde δ > 0 sayısı vardır. O ( ) ( ( )) sayısı vardır. O halde gof foksiyou a A da süreklidir. g f x g f a < ε olacak şekilde δ > 0

27 Souç.11. g: A R R ( 1) m = a A da sürekli ve ( ) 0 g a olduğuu kabul edelim. 1 1 = g g x O zama ( x) ( ) foksiyou da a A da süreklidir. İspat: h: R { 0} R, hu ( ) süreklidir. g de a A da sürekli, ( ) 0 1 = şeklide taımlı foksiyo olsu. h taım kümeside u g a olduğuda B( a, δ ) üzeride ( ) 0 g a özellikli 1 g ( ) B( a, δ ) komşuluğu vardır. O zama x B( a, δ ) içi ( x) = h g( x) foksiyoları bileşkesi olur. O halde g, g( a) 0 ve a A da sürekli ise 1 g sürekli de a da süreklidir. f, g: R R, g( a) 0 özelliğide a da sürekli iki foksiyo ike

28 f g = 1 f. g foksiyou da Teorem.8 de a da süreklidir. Örek.1. f : R R, ( ) y f x, y = x y, 1 + x foksiyou R üzeride süreklidir. Çözüm: f ( xy) = xykoordiat foksiyolarıı çarpımı olduğuda ve f ( x, y) 1, y = 1 + x 1 de g( x, y) = 1 + x sürekli foksiyou ile y i çarpımıda oluştuğuda süreklidir. O halde Teorem.7. de f R üzeride süreklidir.

29 Örek.13. araştırıız. f : R R, f ( x, y) xy,, 0,0 = x + y 0,, = 0,0 ( xy) ( ) ( xy) ( ) foksiyouu sürekliliğii Çözüm: ( 0,0 ) oktası hariç diğer bütü oktalarda f i sürekli olduğu yukarıdaki çarpım ve resiprokaller üzerie verile souçlarda görebiliriz. ( 0,0 ) da ( 0,0 ) ı δ komşuluğudaki = xy x + y <ε ( x, y ) ler içi f ( x, y) f ( 0,0) olup olmadığıı araştıracağız. x 0 ve y = 0 içi f ( x,0) = 0 ve bu edele ε δ şartı sağlaır. Bezer şekilde ( ) oktalar içi de sağlaır. x 0, y x içi f ( x, x) f ( 0,0) 1 = olur. O halde = doğrusu boyuca (, ) 0, y, y 0 şeklideki 1 f x x = ve bu edele x 0 1 ε < içi ε δ şartı sağlamaz. Bu edele de f,

30 ( 0,0 ) da sürekli değildir. a ya yaklaşa x oktalarıı göz öüe alarak f ( ) x oktalarıı f ( a ) ya yaklaşıp yaklaşmadığıı düşümek uygu olur. Şimdi bu düşüceyi olgulaştıracağız. = < < cümlesie Taım.14. B ( a, ε ) { x R 0 x a ε} a R i delimiş ε -komşuluğu = delimiş açık yuvardır. deir ve B ( a, ε) B( a, ε) { a} Taım.15. f : A R R m olsu. a, A ı limit oktası ise (yai { } ise) x, a ya giderke f ( x ) i limiti (, δ ) ( ) (, ε ) b ( A a ) B( a, δ ) R ye eşit olması içi gerek yeter şart her 0 x B a A f x B b olacak şekilde δ > 0 sayısıı var olmasıdır. ε > içi

31 Bu taımda a oktasıı A kümesii bir limit oktası olmasıa ihtiyacımız vardır. Yai (, δ ) B a A, her δ > 0 içi e az bir okta kapsamalıdır. Buula birlikte a oktası A kümesii elemaı olmak zoruda değildir. Bu taıma dek ola ve dizileri kapsaya öerme olarak vereceğimiz bir taım daha vardır. Öerme.16. a, A R i bir limit oktası ve : f A R m bir foksiyo olsu. O zama ( ) ( k) ( k) { } lim f x = b x A, x a, k N x a içi ( k ) x a ike ( k ) ( ) f x b dir.

32 Tabii ki f, a da bir b limitie sahip olması içi gerek ve yeter şart f i her bir f i bileşeii a daki limitii b i b i bileşeie eşit olmasıdır. Öerme.17. f, g: A R R a) lim ( ) ( ) x a f x g x = b c b) ( )( ) ( ) m ve lim ( ) x a f x b lim α. f x = αlim f x = α. b, α R x a x a c) 1 m = içi ( ) ( ) ( ) ( ) = ve lim ( ) lim f x g x = lim f x lim g x = bc. x a x a x a g x = c olsu. O zama; x a *** A herhagi bir iç oktaya sahip değilke bu yapı bazı yalışlıklara yol açar. Mesela, { [ 0,1] } A = x x rasyoel sayı ve f : A R, f ( ) 1 x = olsu. f i A üzeride sürekli olduğu

33 kesidir. Buula birlikte f yi g :0,1 [ ] [ 0,1], g( x) 1, = 0, x A x A şeklide taımlı g foksiyouu A üzerie kısıtlamışı olarak göz öüe alabiliriz. g foksiyou [ 0,1 ] i herhagi bir oktasıda sürekli değildir. g kısıtlaması A üzeride sürekli olduğu halde g i A kedisi A ı herhagi bir oktasıda süreksizdir. Bir foksiyo sürekli ise bu foksiyou herhagi kısıtlaması da süreklidir. Yukarıdaki örekte de görüleceği gibi bir foksiyo sürekli ike bu foksiyou geişletilmesi sürekli olmak zoruda değildir. Daha öcede de belirttiğimiz gibi x a ike limite sahip ola f ( x ) içi a ya herhagi tarzda yaklaşılabilir. Özel olarak a ya bütü doğrular boyuca yaklaşmakta ayı cevabı verecektir. R de a da geçe ve doğrultusu u ola doğruu { x a tu t R} olduğuu biliyoruz. u yu doğrultu aldığımızda daima birim alacağız. = + kümesi

34 Öerme.18. f : A R R 0 ( ), a it ( A) lim f a+ tu = b olmasıı gerektirir. t olsu. lim ( ) f x = b olması her u doğrultusu içi x a İspat: lim ( ) f x = b ise ε 0 x a > içi, δ ( ) x a x a < f x b < ε olacak şekilde δ > 0 sayısı vardır. x a tu B ( a, δ ), 0 t δ f ( x) f ( a tu) B( b, ε) = + < < = + olur. O zama ( ) 0 < t < δ f a+ tu b < ε olacak şekilde 0 δ > sayısı vardır. Yai lim ( ) + = dir. f a tu b t 0 Bu öermei tersi doğru değildir. f doğrular boyuca limite sahip olabilir, fakat f i limite sahip olması gerekmez.

35 .. Süreklilik ve Kompaktlık Sürekli foksiyoları bir öemli özelliği de kompakt kümeleri kompakt kümelere döüştürmeleridir. R i altkümesii kompaktlığıda bu alt kümei sıırlı olmasıı kastedeceğiz. R de kapalı ve Teorem.19. K, olsu. O zama f ( K ) da R i kompakt bir altkümesi ve : m R i kompakt altkümesidir. f K R m K üzeride sürekli foksiyo İspat: (Fuctios of Several Real Variables p.44) Sürekli foksiyolar altıda e kapalı bir kümei görütüsüü kapalı olması ede sıırlı bir kümei görütüsüü sıırlı olması gerekir.

36 Örek.0. x 1 x a) f : R R, f ( x) = olsu. ( ) [ 0,1) + f R = olup R de e açık e de kapalıdır. Bu ayrıca açık bir kümei görütüsüü de açık olmak zoruda olmadığıı gösterir bir örektir. 1 x b) f :( 0,1 ) R, f ( x) = olsu. O zama f (( 0,1) ) = ( 1, ) Teorem.19 dakie bezer düşüceleri kullaarak sürekli foksiyoları sürekliliğii kou edie aşağıdaki teoremi verebiliriz. Teorem.1. K, R i kompakt altkümesi ve : foksiyo olsu. O zama 1 : ( ) f K R f f K K foksiyou süreklidir. m de K üzeride sürekli 1-1

37 İspat: (Fuctios of Several Real Variables ) Bu teorem K kompakt olmadığı zama doğru olmayabilir. Görütü kümesi R de yattığıda foksiyoları maksimum miimumları tartışılabilir. Taım.. f : A R R foksiyou verilsi. a A olmak üzere x A içi f ( x) f ( a) oluyorsa f, A üzerideki a oktasıda (global) maksimuma sahiptir deir. Bir a A oktasıı (, ) B a δ komşuluğudaki bütü x ler içi f ( x) f ( a) olacak şekilde δ - komşuluğu varsa f foksiyou a oktasıda (lokal) maksimuma sahiptir deir. Eğer bu eşitsizliklerde sadece eşitsizlik var ise tam (strict) global maksimum ve tam lokal maksimum terimleri kullaılır. Bu taımlarda yerie alarak global miimum, lokal miimum

38 taımları verilebilir. Maksimum ve miimum taımlarıı çalışmak aalizdekie bezer olup aalizdeki tekikleri kullaacağız. Teorem.3. f : K R R dif.bilir, K ve K kompakt olsu. O zama f, K üzeride bir global maksimum bir de global miimuma sahiptir. İspat: ( ) { }, ( ) M = Sup f x x K f K ı üst sıırlarıı e küçüğü olsu. Her boşta farklı reel sayıları sıırlı cümlesi bir supremuma sahip olduğuda M vardır ve soludur. Açık olarak f ( x) M, x K ve M bu özellikteki e küçük sayıdır. M i kompakt f ( K ) kümesie ait olduğuu gösterelim. Eğer M f ( K) ise M f ( K) c ve f ( K ) c olur. O zama M i ( M ε, M + ε ) şeklide bir ε komşuluğu vardır ve bu f ( ) açık K ı

39 oktalarıı kapsamaz. O halde x K içi ( ) f x M ε olup M ε bir üst sıırdır. Bu m i üst sıırları e küçüğü olması ile çelişir. O halde kabulümüz yalış yai M f ( K) olmak zorudadır. Yai; f ( x) M özellikli x K vardır. Miimum içi de ispat bezer şekilde yapılır. Yukarıdaki teoremde bir kompakt küme üzerideki sürekli foksiyo kedi sıırlarıı oluşturur. Örek.4. R üzerideki her orm Öklidye orma,, + x R αβ R içi α x x β x alamıda dektir. 1 1

40 Çözüm: { ei i 1,..., } =, R i stadart bazı ve M maks{ ei i 1,..., } = = olsu. x R içi x = xe olup üçge eşitsizliğide; i= 1 i i x x e x e ( 1... ) M x + + x M x 1 α = alıarak M α x x (1) 1

41 elde edilir. Ayrıca x, y R içi x y M x y eşitsizliği kullaılarak. 1 1 foksiyouu sürekli olduğu gösterilir. O halde 1. foksiyou S = { x R x = 1 } kompakt kümesi üzeride kedi m e küçük alt sıırıı oluşturur. z 0 olduğuda x x m= z > 0 ile gösterelim. z 0 içi x= x yazabiliriz. x = x m x 1 1 x x 1 olup β = alarak; m 1 x 1 x () m 1 buluur. (1) ve () eşitlikleride

42 1 1 x x x M m 1 1 eşitsizliği buluur. O halde. ve. bu alamda dektirler. 1 Bir x oktasıı bir A kümesie uzaklığı dist ( x, A) if{ x a a A} = şeklide taımlaır. Geel olarak; ifimumu oluşturacak şekilde a A oktası bulumayabilir. Buula birlikte eğer A kompakt ise ifimumu daima vardır. Bu orm foksiyouu sürekli olmasıı bir soucudur ve Örek.4. edeiyle ormla erede çalışılırsa orada daima sağlaır. x i yakııda a A oktası var olduğuda bu a tek olmak zoruda değildir. Mesela; x = 0

43 elemaı ve A { a a 1} = = kümesii göz öüe alırsak a tek değildir. A ı şeklii oyuu bir parçası olarak görebiliriz. Bua ait öemli bir düşüce de A ı koveksliğidir. Taım.5. C, R i bir altkümesi, { } x y C içi x i y ye birleştire ( 1 t ) x + ty 0 t 1 doğru parçası daima C de kalıyorsa C ye R i koveks altkümesi deir. *** Bu geometrik yaklaşım C i sıırı C i içide dışa doğru köşelemiş ve kearlar oyulmamıştır. Düz doğru parçalarıı oluşmasıa müsaade edilmiştir. Örek.6. Açık ve kapalı yuvarlar kovekstir. Çözüm: C B( z, r) = ve x, y C olsu. O zama x z < r, y z < r ve üçge eşitsizliğide 0 t 1 içi

44 ( 1 t) x+ ty z = ( 1 t) x ( 1 t) z+ ty tz = ( 1 t)( x z) + t( y z) ( 1 t) ( x z) + t ( y z) ( 1 t) r+ tr = r olur. O halde x, y C ile sıırlı doğru parçası C i içide kalır. Kapalı yuvarlar içide ispat bezer şekilde yapılır. Öerme.7. C, R de kapalı koveks küme olsu. O zama miimum ormlu bir tek c oktası vardır. Yai; 0 a yakı bir tek c C oktası vardır. İspat: d if { y y C} C = olsu. O zama d = 0 ise 0 C ve ispatlaacak bir şey yoktur. O halde 0 C olsu. c = d olacak şekilde tam bir tae c C i var olduğuu göstermek

45 istiyoruz. Eğer C sıırlı olsaydı böyle c i varlığı garati olacaktı çükü sürekli foksiyou kompakt küme üzeride ifimumua ulaşır. Buula birlikte C burada sıırlı olmak zoruda olmamasıa rağme C C B( 0, d 1) = + i göz öüe alarak bu yapıyı bu hale idirgeyebiliriz. O zama C kompakt ve miimal ormlu c C var ve bu C i miimal ormlu bir oktasıdır. Böylece herhagi orm içi miimum ormlu oktaı varlığı gösterilmiş olur. Teklik sadece C i koveksliğie bağlı değil ayı zamada komşuluklar Öklidye ormu tam kovekslik özelliği dediğimiz aşağıdaki özelliğe sahip olmasıa bağlıdır. Eğer x = y = d ve x y ise x+ y < r oluyorsa tam kovekstir deir. Bu x + y + x y = x + y şeklideki paralel kear kuralıda heme görülür. Şimdi tekliği gösterelim.

46 x = y = d ve x y olduğuu kabul edelim. O zama ormu tam kovekslik özelliğide x+ y O halde x < d ve C koveks olduğuda = y olmak zorudadır. Bu ise tekliği ispatıdır. x+ y C ve buu ormu d de daha küçük olamaz. Hatırlatma: Öklidye orm kullaıldığıda varlık içi kompaktlık gerekli değildir. a oktasıda ε δ şartı ε 0 > içi x a δ f ( x) f ( a) < < ε olacak şekilde bir δ (a veε a bağlı) sayısıı var olduğuu söyler. Özel bir ε içi ayı δ her a A içi çalışabilir. Bu güçlü özelliğe düzgü süreklilik deir ve bu özellik f i bir global özelliğidir.

47 m Teorem.8. f : A R R foksiyouu göz öüe alalım. ε > 0 içi x, y A ve ( ) ( ) x a < δ f x f a < ε olacak şekilde sadece ε a bağlı bir δ sayısı varsa f ye A üzeride düzgü süreklidir deir. Yukarıdaki Örek.4. herhagi orm foksiyou düzgü sürekli olduğuu gösterir. Bu bir foksiyou A üzeride düzgü sürekli olması A ı her bir oktasıda sürekli olmasıı gerektirdiğide açıktır. Buu tersi her zama doğru değildir. Bua basit bir örek; 1 f :( 0, ) R, f ( x) = x foksiyoudur. Herhagi 0< δ < 1 özelliğideki δ içi x= δ, y = δ alırsak;

48 f ( x) f ( y) = = > δ δ δ olur. Bu ise f i düzgü süreklilik şartlarıı sağlaması içi mümkü değildir. Bu foksiyo bölüm kuralı gereğice her a > 0 oktasıda süreklidir. Fakat δ, a ya bağlıdır. Buula birlikte f i taım kümesi kompakt olduğuda süreklilik düzgü sürekliliğe dektir. m Teorem.9. f : K R R, kompakt K kümesi üzeride sürekli olsu. O zama f, K üzeride düzgü süreklidir. İspat: (Fuctios of Several Real Variables p.49).6. Topolojik Kavram Olarak Süreklilik

49 Açık(kapalı) kümeleri sürekli döüşümler altıdaki görütülerii açık(kapalı) olmasıı gerekmediğii görmüştük. Buula beraber ters görütüleri daha iyi olur. m f : A R B R bir foksiyo ve T de B i bir alt kümesi olsu. T i f altıdaki ters 1 görütüsü f ( T ) { } 1 şeklide gösterilir ve ( ) ( ) f T = x A f x T kümesidir. Yai bu, f altıdaki görütüleri T de yata A ı elemalarıı cümlesidir. Eğer f, 1-1 ise ( 1 T, f ( A ) da kapsaır ve f ( T ) de 1 f altıda T i görütüsüyle çakışır. 1 f var) ve m m Lemma.59. f : A R R bir foksiyo ve S A, T R olsu. O zama; ( ) f f T T 1 1 a) S = f ( T) f ( S) T, yai ( ) b) ( ) 1 1 T = f S S f ( T), yai S f ( f ( S) ) İspat:.

50 ( ) a) x f ( T) içi y = f ( x) olacak şekilde y f f ( T) alalım. f ( T ) bu x A ve f ( x) T dir. Yai y T dir. b) S A olduğuu göz öüe alalım. x S ( ( )) 1 x f f S. ise f ( x) f ( S) i taımıda ve böylece taımda (a) ve (b) de eşitlik, geel alamda sağlamaz. Buu (a) içi görmek istersek; T f ( A) yai f örte olmalıdır. (b) içi f : R R, f ( x) x 1 zama [ 0,1] = T = f ([ 0,1] ) fakat ([ 0,1] ) [ 1,1] 1-1 olmasıyla mümküdür. = foksiyouu göz öüe alalım. O f = olur. (b) de eşitliği sağlaması içi f i Topoloji derside bir küme üzeride sürekliliği taımı geellikle Her açık kümei ters görütüsü de açıktır. Şeklide özetleir. f i taım kümesi üzerideki topoloji R

51 uzayıda ortaya çıkar. Bu edele A üzerideki rölatif topolojidir. Şimdi bu kavramları açıklayalım.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE SAÜ Fe Edebiyat Dergisi (-) Z.GÜNEY ve M.ÖZKOÇ PEANO UZAYLAR VE HAHN-MAZURKEWCZ TEOREMİ ÜZERİNE Zekeriya GÜNEY, Murad ÖZKOÇ Muğla Üiversitesi Eğitim Fakültesi Ortaöğretim Fe ve Matematik Alalar Eğitimi

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU.

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU. T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisas Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU Elif SERİN Tez Daışmaı Yrd. Doç. Dr.Abdullah SÖNMEZOĞLU Yozgat 202

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Üç Boyutlu Bilgisayar Grafikleri

Üç Boyutlu Bilgisayar Grafikleri 1. Üç Boyutlu Nese Taımlama Yötemleri Bilgisayar grafikleride üç boyutlu eseleri taımlamak içi birçok yötem geliştirilmiştir. Hagi taımlama yötemi avatajlı olduğu üç boyutlu uygulamaı amaç ve gereksiimleri,

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS

MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS Hacettepe Üiversitesi Eğitim Fakültesi ergisi 22: 130-134 {2002} J. of [ Ed 22 MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS Cahit PESEN* ÖZET: Matematik, diziliş ve iç uyum ile karakterize

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 26 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması Robot Navigasyouda Potasiyel Ala Metodlarıı Karşılaştırılması ve Đç Ortamlarda Uygulaması Eyüp Çıar 1 Osma Parlaktua Ahmet Yazıcı 3 1, Elektrik-Elektroik Mühedisliği Bölümü, Eskişehir Osmagazi Üiversesi,

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

OLASILIK VE TÜMEVARIM*

OLASILIK VE TÜMEVARIM* OLASILIK VE TÜMEVARIM* Yaza: Has Reichebach** Çevire: Hasa Aydı*** Tümevarım Soruu: Sık sık yieleme şeklideki olasılık yorumu, olasılık kuramı içeriside iki işleve sahiptir. İlki, sık sık yieleme bir olasılık

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

A A A A A. FEN ve TEKNOLOJİ TESTİ. 3. Ankara'da yaşayan Göktürk ve Ata tek yumurta. 1. Oktay'ın günlüğüne yazdığı birkaç olay

A A A A A. FEN ve TEKNOLOJİ TESTİ. 3. Ankara'da yaşayan Göktürk ve Ata tek yumurta. 1. Oktay'ın günlüğüne yazdığı birkaç olay FEN ve TEKNOLOJİ TESTİ 1. Oktayı gülüğüe yazdığı birkaç olay aşağıda verilmiştir. Elimi kesmiştim, iyileşmesi 5 gü sürdü. Babamı bahçeye diktiği gül dalı tomurcuk açtı. Beslediğim kertekelei kopa kuyruğuu

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. -2 Ekim 2005 FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA HASH FONKSİYONLARINA DAYANAN YENİ BİR SINIFLANDIRMA YÖNTEMİ (A NEW CLASSIFICATION METHOD

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti)

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti) T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORTAÖĞRETİM ALAN ÖĞRETMENLİĞİ TEZSİZ YÜKSEK LİSANS FİZİKTE GİZEMLİ BİR SABİT α (İce Yapı Sabiti ÖĞRETİM ELEMANI : Yrd. Doç. Dr. Rıza Demirbilek ÖĞRENCİ

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

ON THE TRANSFORMATION OF THE GPS RESULTS

ON THE TRANSFORMATION OF THE GPS RESULTS Niğde Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 6 Sayı -, (00), 7- GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Meti SOYCAN* Yıldız Tekik Üiversitesi, İşaat Fakültesi, Jeodezi Ve Fotogrametri Mühedisliği

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir İstabul L ıseler Arası Matemat ık Ol ımp ıyatı ILMO 9 Çözümler ı c www.sbelia.wordpress.com sbeliawordpress@gmail.com Her yıl KOÇ Üiversitesi Bi Topluluğu Öğreci Klübü tarafıda düzelee, İstabul Liseler

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

Deomed Yay nc l k. Türkçe birinci bask Deomed, 2011.

Deomed Yay nc l k. Türkçe birinci bask Deomed, 2011. Deomed Yay c l k Holz / Spaide Medikal Retia / Patogeez, Ta ve Tedavi Gücellemeleri Türkçe Editörü / Gülipek Müftüo lu Çeviri / rem Hamamc o lu 27 Yazar Kat l m yla 16.5 x 24 cm, XII + 228 Sayfa 55 fiekil,

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi Makie Elemaları II Prof. Dr. Akgü ALSARAN Temel bilgiler ve örekler Güç ve hareket iletimi İçerik Güç ve Hareket İletimi Redüktör Vites kutusu Örek 2 Giriş 3 Bir eerjiyi, mekaik eerjiye döüştürmek içi

Detaylı

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme Dağıtım Ağı Tasarımı Seçimi Uygu ağ seçimide ürü karakteristiklerii yaısıra dağıtım ağıı güçllü ve zayıf yöleri de göz öüüe alımalıdır. Geçe hafta ele aldığımız tasarımları hem güçlü hem de zayıf yöleride

Detaylı

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas www.istatistikciler.org statistikçiler Dergisi 3 (00) 45-53 statistikçiler Dergisi Galois cisimleri ve e yüksek çözümlü k- tasarmlar oluturulmas Naza Daacolu Siop Üiversitesi Fe-Ed. Fak. statistik Bölümü

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK ÖT 2015 Sorular yakalaya komisyo tarafda hazrlamştr. ÖĞRETMENLİK LN İLGİSİ TESTİ ÖT SINIF ÖĞRETMENLİĞİ TEMEL MTEMTİK Kou latm Özgü Sorular yrtl ler Test Stratejileri Çkmş Sorular Komisyo ÖT Sf Öğretmeliği

Detaylı

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI . INIF MATEMATİK ÜÇRENK ORU BANKAI Mil lî E i tim Ba ka l Ta lim ve Ter bi ye Ku ru lu Ba ka l.8. ta rih ve sa y l ka ra r ile ka bul edi le ve - Ö re tim Y l da iti ba re uy gu la a cak ola prog ra ma

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ Sıra No Parametre 1 Kişisel Soluabilir Tozları Kosatrasyou 2 İşyeri Ortamı

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI 1/9 Hazırlaya Oaylaya Yürürlük Tarihi Revizyo Tarihi Mehmet ÜVEY Mehmet ÜVEY 06.04.2011 05.06.2014 Gözde Geçire Gözde

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi

Vakumlu Ortamda Doymuş Buharla Đplik Kondisyonlama Đşleminde Kütle Transferi Analizi Teksil Tekolojileri Elekroik Dergisi Cil: 3, No: 1, 009 (31-37) Elecroic Joural o Texile Techologies Vol: 3, No: 1, 009 (31-37) TEK OLOJĐK ARAŞTIRMALAR www.ekolojikarasirmalar.com e-issn:- Makale (Paper)

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı