KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir."

Transkript

1 I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey (yn yüz), u yn yüzlei tşıyn düzlemle sistemine ise pizmtik yüzey deni. Pizmtik yüzeyin ve çokgenleiyle sınılndıılmış ölümüne sekizgen dik pizmsı şeklinde isimlendiilen I İSİM deni. Pizmtik Yüzey Yn yıt n oğu ' ' ' ' ' ' ' ' e i yn yüzün kesitine (kesişimine) yn yıt ( [ ] ve [ ] v. yn yıtldı ) ve u doğu pçsını tşıyn doğuy n doğu deni ( ve v. n doğuldı ). n doğul pizmtik yüzeylein yıtıdı. ik pizmld üst tnın dik iz düşümü lt tndı. ğik pizmld yn yüzleden i kısmı dikdötgen oliliken i kısmı d plelkendı. Yndki şekilde ke eğik pizmsı veilmişti. ve dötgenlei plelken iken ve dikdötgendi. ğe tn ke yeine plelken seçilseydi u eğik pizm Plelyüz (tüm yüzlei plelken), eğe dik (yn yüzleinin tmmı dikdötgen) olsydı ik Plelyüz dını lcktı. i pizmnın tnı düzgün çokgen ise pizmy d düzgün pizm deni

2 nı ie vey liptik ölge seçilen pizml ise silindi deni. Silindilein pizmtik yüzeyine ise silindiik yüzey deni. Yn yüzlei kesintisiz i eği yüzey olduğundn yn yıttn söz edilemez unun yeine iki tn sındki yüzey üzeinden çizileilecek en kıs doğu pçsını tşıyn doğu önem kznı: n oğu Yndki şekilde [], [] ve [] n doğudu pçlıdı. Silindi dik ise u n doğu pçlı d tnl dikti, eğik ise ynı eğimle tnlı kesecekti. i dikdötgeni i kenı etfınd tm çıyl döndüdüğümüzde oluşn cisim i silindidi ve u silindie önel Silindi deni. önel silindile dik silindidi. (,) ke dik pimidi sold veilmişti. Pimidin yüksekliği; [], kesinin ğılık mekezine ( kenin köşegenleinin kesim noktsı ) inmektedi. Soldki şekilde [] [], [] V [] n doğuldı. Pimitle de tn çokgeninin ismine göe isimlendiilile. Üçgense üçgen pimit, ymuks ymuk pimit ve eğe yüksekliği tn çokgeninin ğılık mekezine düşüyos dik pimit değilse eğik pimit deni. nı eşken üçgen ve yn yıt uzunluğu tn yıtlın eşit oln pimide ise üzgün ötyüzlü (sold) deni. üzgün ötyüzlü i dik pimitti. üm yıtlı eşit oln iki ke pimidin tn tn tes i içimde ileştiilmesiyle elde edilen cisme ise üzgün Sekizyüzlü (sğd) deni. un göe ÜP de düzgün ltıyüzlüdü. tü. ' - -

3 nı die seçilen pimide ise oni deni., tepe noktsındn inilen cisim yüksekliği eğe tn diesinin mekezine (ğılık mekezi) düşüyos dik koni düşmüyos eğik koni deni. Soldki şekilde [] ve [] n doğuldı. dik üçgeninin etfınd tm döndüülmesiyle oluşn cisme önel oni deni. önel konile dik konidi. ğe üçgeni etfınd döndüülseydi [] yıçplı [] yükseklikli i koni ile yine [] yıçplı [] yükseklikli iki dönel koniden oluşmuş i cisim elde ededik. Uzyd ( R 3 ) i noktdn eşit uzklıktki noktl kümesi i küe yüzeyidi. u yüzeyle sınılı cisim ise üedi. Söz konusu uzklık küenin yıçpıdı. i küe i düzlemle kesildiğinde kesit i diedi. = + eşitliği geçelidi. üe yüzeyinin düzlem üzeinde kln pçsın üe pğı, = e ise küe kpğının yüksekliği deni. üe kpğı ile düzlem sınd kln cisme üe Pçsı deni. ' ' i küenin plel iki düzlemle kesilmesiyle d kln yüzeye üe uşğı, u kuşk ve düzlemlele sınılı cisme ise üe ksı deni. şğıdki Şekil I [] etfınd 180 0, Şekil II ise [] etfınd döndüüldüğünde Şekil III elde edili. ud [] çptı. Şekil I Şekil II Şekil III - 3 -

4 Ο Ölçek çısı oln iki düzlem mekezli küenin [] çpı üzeinde şekildeki gii kesiştiğinde u iki düzlem ve küe yüzeyiyle sınılı cisme üe ilimi deni. üe diliminin [] etfınd tm çıyl döndüülmesiyle 360 o kd döndüülmesi sınd fk yoktu; iki duumd d ynı küe elde edili. Β tı isimlein cim ve Yüzey lnlının esplnmsı Pizmlın cimlei üm pizmlın ve silindilein cimlei tn lnı ile yüksekliğin çpımın eşitti. Pimitlein cimlei üm pimitlein ve konilein cimlei tn lnı ile yüksekliğin çpımının üçte iidi

5 cim ve ln omüllei klı yıtlı, ve c oln dikdötgenle pizmsının cmi V =..c tüm yüzey lnı ise S = (+c+c) i küpün (tüm yıtlı eşit oln dikdötgenle pizmsı) cmi V = 3 lnı ise S = 6 i dikdötgen eğik pizmnın fklı yıtlı, ve c ise cmi V =..c.sin (ud yıtlı dikdötgen tn ise c.sin d cismin yüksekliğidi) ve lnı S= (+c+c.sin) csin ' ' ' ' c n yıtlı, n doğulı oln ke dik pimidin cmi V = 3 ud = olduğundn = ulunu. / / / Ynl yüzeyin lnı S = 4( /)= üzgün dötyüzlünün i yıtı ise cmi V = tne eşken üçgenden oluştuğundn S = ulunu. lnı ise döt n yıçpı, i n doğusu oln i koninin cmi V = π 3 di. ud yüksekliğin kesi; = di. Yıçpı oln küenin cmi V = S = 4π di. 4 π 3 yüzey lnı ise 3-5 -

6 tı isimlein ÇINIMLRI ik Pizml ' ' ' ' ' ' Soldki dikdötgenle pizmsının çınımı sğddı. pklın [] ve [ ] üzeine konmsı zounlu değildi. nck ii mutlk doğusu üzeinde diğeiyse mutlk doğusu üzeinde olmlıdı. ' ' ' ' ' nı dötgen oln tüm pizmlın çınımı yukıdki şekildedi. n plelken, ymuk vey engi i dötgen olduğund ve kpklı d değişi nck dötgeni yine i dikdötgendi. nın üçgen vey engi i çokgen olmsı duumund tnın ken syısı kd dikdötgen ynyn dizilecekti. ğik Pizml Soldki eğik dikdötgen pizmnın çınımı sğddı. nı dötgenden fklı olduğund (üçgen, eşgen v.) tnın ken syısı kd dikdötgen ve plelken ynyn dizilecekti. ' ' ' ' ' ' nlı ve yn yüzlei plelken oln pizmy Plelyüz demiştik. Plelyüzün çınımı i eğik pizmdn fksızdı. ' ' ' ' ' - 6 -

7 Silindile 1 ik silindiin çınımınd iki eş die ve i kenı u dienin çevesi kd diğe kenı cismin yüksekliği kd oln i dikdötgen ulunu. = π = = = 1 öylece silindiin ynl lnı S = π. ulunu. ud cisim yüksekliği, dik silindide kdken eğik silindide.sin kddı. Pimitle Soldki pimidin çınımı sğddı. ' ' onile ' ' esik pimitte pizmldki gii lt ve üst kpk söz konusudu. ' ' ' ' ' ' ' onilein yn yüzlei ie die dilimidi. ie dilimini sınılyn yyın uzunluğu ise tn çevesidi. [] ve [] u dilimin yıçpıdı, dolyısıyl = π = π 360 olu ki udn = R elde edili. 360 π - 7 -

8 Ynl ln üçgen gii dvnk lnı ulunili (ie dilimine üçgen gii dvnk lnı ulunili). = πr(/360 o ) üçgenin tnı, [] ( = = R ) de u üçgenin yüksekliği olk lındığınd üçgenin ln fomülünden ()= πr (/360 o ) ulunu ki zten u ulduğumuz die diliminin lnıdı; nck = π di de. olyısıyl üçgenin ln fomülünü uygulsk ()= πr uluncktı. u fomülde nin R tüünden eşitini koysk ilk fomülü elde edeiz: ()= πr (/360 o ). 1 1 esik koni de kesik pimit gii iiine plel iki kpk söz konusudu. u kpklı tn kul eden iki koninin cimlei fkı kesik koninin cmidi. ud = π 1 ve = π şeklindedi. 1 1 esik koninin ynl yüzeyi iden fzl yöntemle ulunili. unldn ilki, iki koninin ynl yüzey lnlı fkını lmktı. esik koninin ynl yüzeyi lk dilimidi; 1 y d lk dilimine ymuk gii dvnk lnı esplnili; 360 S = π( R R ) π + π R R S = ( )( ) 1 1 = π( + )( R R ) 1 1 ud = R 1 ve = R di. = R,i = 1, eşitliğinden İ İ i yukıdki fomülde yeine kons i evvelki (lk 360 dilimi fomülü) fomül elde edili. sitçe; ynl ln esınd geçeli oln tn çevesi x ynl yükseklik fomülü koni ve kesik konide de geçelidi

9 Yüzeydeki eketli Yüzey oyunc eket eden i eketli (kınc, öümcek, şt v.) en kıs yolu lıken tıpkı izim dünynın eğimine-eğiliğine kmksızın dosdoğu gitmemiz gii i doğu üzeinde eket ede, i eği y d ikç doğu pçsındn oluşn i sistemde değil. Pizml: ' ' ' ' Soldki şekilde dn ne pizmnın yüzeyi üzeinden en kıs yoldn giden i eketlinin [ ] üzeindeki noktsın uğyk + ' kd yol ldığı göülüyo. Sğdki çınımınd ise slınd u yolun doğusl ve ' = + ' şeklinde esplnileceği göülüyo. ' ' ' ' ' ' ' Silindile: Soldki şekilde noktsındki kınc! silindiin yüzeyi üzeinde iki tu tk noktsın vıyo. ıncnın mcelı i seyt yptığını snsk ynılıız. şğıd kıncnın izlediği yol itsının i dikdötgenin ( dikdötgeni) köşegeni olduğunu göeiliiz. olyısıyl u yol d pisgo ğıntısı ydımıyl esplnili. i eketli i cismin yüzeyi üzeinde iden fzl tu ttığınd, tu tıln yüzeyi, tu syısı kd peşpeşe çizmeliyiz. u seeple yukıd silindiin ynl yüzeyi iki kez çizilmişti

10 onile: onilein çınımının i die dilimi ve i dieden iet olduğundn söz etmiştik. Soldki şekilde noktsındn şlyıp tm tul noktsın ulşn i eketlinin çizdiği yol sğddı. u yolun esını ceisel olk şu şekilde ypiliiz. ie diliminin yıçpı R, tn diesinin yıçpı ve (die diliminin çısı) çısı olsun. = 360, = = R olduğundn,, cosinüs teoeminden şğıdki gii R esplnı (tii ki kosinüs teoeminden değil, dik üçgenden esplmk d doğu olcktı. ud -çısının elisizliği üzeine işlem ypılmıştı.şğıdki önekte üçgeniyle u yolun sitce ulunduğu göülü). = R + R R 5R R cos = R cos 4 Öneğin, = 8cm, = cm ve = 3 olmk üzee noktsındn koni yüzeyince eket edip noktsın vn i eketlinin lcğı en kıs yolu esp edelim. 6 8 Önce çınımı çizdiğimizde ulcğımız die diliminin kç deecelik i dilim olduğunu ulmlıyız. n diesinin çevesi π=4π cm ynı zmnd die diliminin yyın, π8(/360 o ), eşitti. 4π = π8(/360 o ) olduğundn = 90 o ulunu. 6 6 öylece sğdki şekli elde edeiz. udn nın 10 cm olduğu kolyc göülü

11 Pimitle: Sold noktsındn [] nin ot noktsı y düzgün ke pimidin ynl yüzeyi üzeinden giden i eketlinin en kıs yolu çizilmişti. u pimidin çınımı şğıdki giidi. ud = 30 o ve = 6 cm seçesek = 3 5 cm olcktı. üzgün sekizgen dik pimitte = 6 cm, = m( ˆ ) =15 olduğund şğıdki gii i eketli en kıs yoldn noktsındn noktsın ulşsın. u yolu esplylım: Τ 10 o Β ismin çınımını yptığımızd üçgeninin kenını esplyiliiz. u esı ypken osinüs eoemi kullnileceğimiz gii dik üçgenden de ylniliiz o 6 10 o

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR

UZAY GEOMETRİ HAKKINDA GENEL HATIRLATMALAR UZY MRİ IN NL IRLMLR UZY SİYMLRI kı iki noktdn i tek doğu geçe oğus omyn fkı noktdn i tek düzem ÜÇ İM RMİ tı isim souını çözmede çok fydı i igidi geçe i doğu ve u doğu üzeinde uunmyn i nokt düzem eiti

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER

KATI CÝSÝMLER KATI CİSİMLER KATI CİSİMLER KTI ÝSÝMLR KTI İSİMLR YILLR 1966 1967 1968 1969 1970 1971 197 197 197 1975 1976 1977 1978 1979 1980 1981 198 198 198 1985 1986 1987 1988 1989 1990 1991 199 1995 1996 1997 1998 1999 001 001 00 00 00 005

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / EETRİ EEE ÇÖZÜERİ enee -.. H E desek E E EH (E uğund ot tn) olu. ` j $ $ c hlde, ^h $ $ 0 0 0 0 üüüş esfesi 0 c di. ulunu. evp de 0 0 0 ile c di. de 0 0 0 ile c di. hlde, lnın nık klcğı üüüş esfesi

Detaylı

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `

Detaylı

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ YS / TTİ N ÇÖZÜRİ eneme -. +. + + ti. - + + - + + > ise - + - + evp. ^ + ^- ^- +. z z + + + + evp z + -. c- m z z + - + + + z z z ^ ^ evp. çift sı olmlı Ç+ T T. Ştı sğln sdece vdı.. + + lde tne sl sı vdı.

Detaylı

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER

VE ÇOK YÜZEYLİ KAPALI YÜZEYLER VE KATI CİSİMLER EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Sf No tek ve çok üeli kplı üele ve ktı cisimle.................................. KVRMSL IM EK VE ÇK YÜZEYLİ KPLI YÜZEYLER VE KI İSİMLER Üç boutlu nesnelee ktı

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MTMTİK NM ÇÖZÜMLRİ eneme -. ) - - + ) - 7 - + ) - - +. + m ; + m + ^ ^ > H + ) - - + ^ ) 7- - + Sılın plı eşit olduğun göe, pdsı en üük oln sı en küçüktü. un göe seçeneğindeki sının pdsı en üük olduğundn

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

BASİT MAKİNELER BÖLÜM 4

BASİT MAKİNELER BÖLÜM 4 BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425

Belirsiz İntegral...415. İntegral Alma Yöntemleri... 425 Değişken Değiştirme Yöntemi... 425 Belisiz İntegl... İntegl Alm Yöntemlei... Değişken Değiştime Yöntemi... d c Biçimindeki İnteglle... 9 A B d Biçimindeki integlle... c Kesili Fonksionlın İntegli... 8 Tigonometik Fonksionlın İntegli...

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 20 Haziran Matematik Soruları Ve Çözümleri Öğenci Yeleştime Sınvı (Öys) Hzin 99 Mtemtik Soulı Ve Çözümlei. Rkmlı bibiinden fklı oln üç bsmklı en büyük tek syı şğıdkileden hngisine klnsız bölünebili? A) B) C) 6 D) 8 E) 9 Çözüm Rkmlı bibiinden fklı

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Geometri Notları. Uzay Geometrisi. Gökhan DEMĐR, 2006

Geometri Notları. Uzay Geometrisi. Gökhan DEMĐR,  2006 www.mtemtikclub.com, 006 Geometi Notlı Gökn MĐR, gemi@yoo.com.t Uzy Geometisi Tnım : Üzeine çlışm yptığımız noktlın kümesine uzy eni. Öneğin tek nokt üzeine çlışıyos uzyınız bu noktı. un koşutsuz uzy,

Detaylı

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır.

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır. 1 Temel Elektik Kvml Aşğıdki notl, D.J.Giffit s in Elektomnyetik Teoi kitındn lınmıştı. 1- Elektik Aln (E) Yüklü i cisim, fzl elekton vey potonu oln i cisimdi. Cisimdeki u fzl net yükün üyüklüğü, fzl oln

Detaylı

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7. KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t

Detaylı

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir.

Geometri Köflesi. Diklik Merkezi. Üçgen Eflitsizli inin Bir Sonucu Bilindi i üzere bir üçgenin alan, taban yükseklik/2 dir. Mtemtik üns, 2004 Güz Geometi Köflesi Mustf Y c gcimustf@hoo.com iklik Mekezi i üçgenin üç üksekli i dim tek noktd kesifli. u nokt üçgenin diklik mekezi deni. = iklik mekezi genelde ile gösteili. Üçgen

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

ELEKTRIKSEL POTANSIYEL

ELEKTRIKSEL POTANSIYEL FİZK 14-22 Des 7 ELEKTRIKSEL POTANSIYEL D. Ali ÖVGÜN DAÜ Fizik Bölümü Kynkl: -Fizik 2. Cilt (SERWAY) -Fiziğin Temellei 2.Kitp (HALLIDAY & RESNIK) -Ünivesite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) www.ovgun.com

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MEMİK ENEME ÇÖZÜMLERİ enee -. - + - + - - + - + - 7 - evp E. - + + 9 ifdelei tf tf çplı. ^- h^ + + 9h - 7. + + + ifdesinde zlı. + 7 ise + 7 evp + + + + + + + + + + +. z + z + + + z + z + dı. z z

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i f fonksionu veilmiş olsun ve e [, ] için f olduğunu kul edelim. f in gfiği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ BÖLÜM ĞLK MERKEZİ-TLET MOMENTİ BÖLÜM 5: ĞRLK MERKEZ-TLET MOMENTİ 5.. ĞRLK MERKEZİ HESB [LNN BİRİNCİ MOMENTİ] ğılık, csme uulnn kütle çekm kuvvetd. Dnmomete le ölçülü. Dün'd csm ele lısk ükseğe çıkıldıkç

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının İhtiyaç Yayıncılık ın yazılı izni olmadan kopya

Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının İhtiyaç Yayıncılık ın yazılı izni olmadan kopya KMU PERSONEL SEÇME SINVI LİSNS ÖĞRETMENLİK LN BİLGİSİ ORTÖĞRETİM MTEMTİK TESTİ ÇÖZÜM KİTPÇIĞI T.C. KİMLİK NUMRSI : DI : SOYDI : TG Mıs DİKKT! ÇÖZÜMLERLE İLGİLİ ŞĞID VERİLEN UYRILRI MUTLK OKUYUNUZ.. Tstli

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ T BSNC ODE SORU - DEİ SORURN ÇÖZÜERİ... Şe kil - e : Şe kil - e :. olu F i. F F e ifl mez. CEV D Tuğllın e biinin ğılığın iyelim. Sistemlein e uyulıklı bsınç kuvvetlei ğılıklın eşitti. F F F Bun

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY FİZ2 FİZİK-II Ank Ünivesitesi Fen Fkültesi Kimy Bölümü 24-25 Bh Yıyılı Bölüm-4 Ank Aysuhn OZANSOY Bölüm 4. Elektiksel Potnsiyel. Elektiksel Potnsiyel Eneji 2. Elektiksel Potnsiyel ve Potnsiyel Fk 3. Noktsl

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E

M1003 ÇÖZÜM : 4 YANIT : E M1101. ÇÖZÜM : x YANIT : C M0102 ÇÖZÜM : 6 YANIT : E - 8. LYS Mtemtik Soulı Ve Çözümlei M + +. eel sısının değei kçtı? M. > eşitsizliğinin en geniş çözüm kümesi şğıdkileden hngisidi? ) ) ÇÖZÜM : ve ) ) ve olduğundn di.. YNIT : ) ) R ) Z ) R + ) R {} ) R

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A

KATI BASINCI. 3. Cis min ağır lı ğı G ise, olur. Kap ters çev ril di ğin de ze mi ne ya pı lan ba sınç, Şekil-I de: = P = A = 3P.A BÖÜ TI BSINCI IŞTIRR ÇÖZÜER TI BSINCI Cis min ğır lı ğı ise, r( r) 40 & 60rr 4rr zemin r r Şekil-I de: I p ters çev ril di ğin de ze mi ne y pı ln b sınç, ı rr 60rr rr 60 N/ m r zemin r + sis + + 4 4 tı

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

GENLEŞME BÖLÜM Çubuk İlk boy MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Uzama miktarı. Sıcaklık artışı ( C) X L 2T 2a. Y 2L 3T 3a.

GENLEŞME BÖLÜM Çubuk İlk boy MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. Uzama miktarı. Sıcaklık artışı ( C) X L 2T 2a. Y 2L 3T 3a. GENEŞE BÖÜ 17 ODE SORU 1 DE SORURIN ÇÖÜER 4 60 1 Çubuk İlk boy Sıcklık tışı ( C) Uzm miktı 2 2 60 60 50 40 2 3 3 4 2 4 I,, çubuklının ilk boylı eşitti 2 3 2 2 3 2 3 2 4 4 2 2 > di ile ynı olbili, fklıdı

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER BÖÜ BASİ AİNEER AIŞIRAAR ÇÖZÜER BASİ AİNEER yatay düzlem 0N 0N 0N 0N fiekil-i fiekil-ii yatay düzlem 06 5 06 7 08 He iki şe kil de de des te ğe gö e tok alı nı sa a) kuvvetinin büyüklüğü 04 + 08 80 + 60

Detaylı

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E. nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8 y - 0, y 90 & 0, y y - y 90 y - 0+ y- & y - y 0y+ -y 9+ y 9y+ 7 + y 8y + 5 5y 5 y 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER ÖZEL EGE LİEİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTİZLİKLER HAZIRLAYAN ÖĞRENCİLER: Güneş BAŞKE Zeynep EZER DANIŞMAN ÖĞRETMEN: ereny ŞEN İZMİR 06 İçindekiler yf. Giriş.... Amç.... Ön Bilgiler...... 3. Yöntem....

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST ve Ç ÜLİ PLI ÜLR ve S I İSİMLR.. P(a,, ) ukarıdaki dik koordinat sisteminde (,, ) olduğuna göre, dikdörtgenler prizmasının hacmi kaç br tür? nalitik uzayda yukarıdaki dikdörtgenler prizmasının yüzey alanı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü OU 17 ÜRS R - - - - Çözümler S 17-1 ÇÖÜR 5. α 1. - - - - ve ynlış çizilmiş olup doğru çizimleri yukrıd verilmiştir.. sü ise doğru çizilmiştir. Cevp: Odk nin sğınddır. den çizilen doğru normldir. Bundn

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler.

KÜRESEL AYNALAR. 1. Çukur aynanın odağı F, merkezi M (2F) dir. Aşağıdaki ışınlar çukur aynada yansıdıktan sonra şekillerdeki gibi yol izler. . BÖLÜ ÜRESEL AYNALAR ALŞRALAR ÇÖZÜLER ÜRESEL AYNALAR. Çukur ynnın odğı, merkez () dr. Aşğıdk ışınlr çukur ynd ynsıdıktn sonr şekllerdek b yol zler. / / 7 / / / / / 8 / / / / / 9 / / / / N 0 OPİ . Çukur

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A

3. A. ABD de sin a = olduğuna göre. Cevap: B 4. A 0 - LYS/MT GOMTRİ ÇÖZÜMLRİ NM.. 70 k k 70 40 m ( X ) m ( ) m ( ) 70 kolsun.. k ln( ) sn m ( ) 80-40 40 + 40 70 0 evp: de sn olduğun göe k k ln( ). 8 cm k evp: 4.. 0 0 y y H çıotyın kollın ndlen dkmele

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

OO ' = d (Merkezler arası uzaklık) r 2 =d 2 +r' 2 KV= DERS: MATEMATĐK 8 KONU:KÜRE KISACA ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

OO ' = d (Merkezler arası uzaklık) r 2 =d 2 +r' 2 KV= DERS: MATEMATĐK 8 KONU:KÜRE KISACA ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: ) KÜRE : Uzayda sabit bi noktadan eşit uzaklıkta bulunan noktalaın bileşim kümesine küe deni. Bi yaım daienin çapı etafında 0 0 döndüülmesi ile oluşan cisme küe deni. Uzayda bi noktadan eşit uzaklıktaki

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı

Detaylı

GeoUmetri Notları Mustafa YAĞCI, Deltoit

GeoUmetri Notları Mustafa YAĞCI, Deltoit www.mustfgci.cm.tr, 01 GeUmetri Ntlrı Mustf YĞI, gcimustf@h.cm eltit n z ir köşegenine göre simetrik ln dörtgene deltit denir. = ve = lmsı deltidin iki ikizkenr üçgen rındırdığını nltır. Şöle de izh edeiliriz

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı