olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz."

Transkript

1 GOMTRİ 05/0/0. bir üçgen m() =, m() = 90 +, = 5 br, = 7 br, olduğuna göre = x kaç br dir? 5 m 9 0 m x Çözüm: den ye çıkılan dikmenin doğrusunu kestiği nokta olsun. bir dik üçgen ve bir ikizkenar üçgen olur. O halde = 5 br dir. iğer Yandan den ye inilen dikme ayağında diyelim. = = m br olsun. Öklid Teoremi gereği 5 = m (m + 7) olur, denklem çözülürse m = 9 bulunur ki, buradan x = 0 olduğu anlaşılır.. üçgeninde Ğ = Ğ ise a = b + bc olduğunu Çözüm: nın uzantısı üzerinde = olacak şekilde bir noktası alınırsa Ğ = Ğ = Ğ olu = = b ve = = a olur. V : V olduğundan b = a olu b + bc olur. a b + c 3. üçgeninde Ğ = Ğ = olmak üzere noktasının noktasına uzaklığı ile nin orta dikmesine olan uzaklığının oranının değerinden bağımsız olduğunu Çözüm: nin orta dikmesi yi S noktasında kessin. den orta dikmeye inilen dikme ayağı ve S = R olsun. u durumda Ğ SR = Ğ S = Ğ S = Ğ S = olu Ğ R = Ğ S = olduğundan R = dır. yrıca = R olacağından : = : olur. u değer sabit olu değerine bağlı değildir. 4. ar açılı üçgeninde Ğ = Ğ dir. kenarı üzerinde alınan bir noktası için Ğ = Ğ ise = + olduğunu Çözüm: kenarı üzerinde = olacak şekilde bir noktası alınırsa = = ve üçgeninde açıortay olur. u durumda = = = olu +.. =. Ş. = ( + ) Ş = = + olur.. 5. üçgeninde 3Ğ + Ğ = π ise a + bc =c olduğunu 0 Ğ 0 Ğ Çözüm: Ğ + Ğ = 90 ve Ğ = 90 + olur. kenarı üzerinde = olacak şekilde a c bir noktası alınırsa V : V olacağından : = : olu = eşitliğinden a + c b a bc =c olur. 6. üçgeninde 4.m() =.m() = m() ise = + olduğunu 7. üçgeninde =.. dir. kenarı üzerinde alınan bir noktası için.m() = m() olması için gerek ve yeter şartın = 3 olduğunu

2 8. üçgeninde Ğ = 3Ğ ise (a b )(a b)=bc olduğunu gösteriniz 9. üçgeninde nın karşısındaki dış çember merkezi O ve üçgenin çevrel çemberinin yayının orta noktası M olsun. MO = olmak üzere m() =.m() ise = olduğunu 0. açısı geniş ve açısı açısının katı olan kenarları tamsayılı çevrece en küçük üçgen (8, 6, 33) kenarlarına sahitir. Kanıtlayınız. c a N b Çözüm: Şartları sağlayan çevrece en küçük üçgen yan şekilde verilen üçgeni olsun. iç açıortayı yi N de kessin. a = b (b + c) olduğunu biliyoruz. urada b ile b + c aralarında asal olmalıdır. eğilse, den farklı bir d ortak böleni bulunurdu ve bu ortak bölen a yı da bölerdi. Kenarları a d, b d, c olan üçgense hem ye d benzer hem de daha küçük çevreli olurdu. u ise üçgeninin seçilişine uymaz. uradan böylece aralarında asal b ve b + c sayılarının tamkare olduklarını çıkarıyoruz. b = m, b + c = n, a = mn (m, n N + ) olsun. üçgeninde üçgen eşitsizliği c < a + b yi, açısının geniş olması da c > a + b yi veriyor. u eşitsizlikleri m ve n türünden yazdığımızda 3 < n/m < eşitsizliğini elde ediyoruz. u eşitsizlikler m =,, 3 olduğunda hiçbir n değeri için sağlanmazlar. una göre m 4 ve n 3m 48 olur, o halde n 7 olmalıdır, dolayısıyla da a + b + c = m n + n = 77 olmalıdır. Sonuçta da bahsi geçen en küçük çevreyi 77 ve buna bağlı olarak (a, b, c) değerlerini (8, 6, 33) olarak buluruz.. ir doğru üzerinde,, ve başka bir doğru üzerinde,, noktaları verilsin. ğer //, // ise // olduğunu Çözüm: ğer doğrular aralel ise = olu aralelkenar olur. uradan // olur. oğrular aralel olmayı kesim noktaları olsun. u durumda = ve = olu taraf tarafa çararsak = orantısı elde edilir. u ise // olduğunu gösterir.. dörtgeninde // olmak üzere [] üzerinde alınan bir noktası için = olsun. ve, yi sırasıyla O ve de kessin. O = ise = +. olduğunu / // O / //

3 O Çözüm: O = olduğundan = = olsun. Kolaylık olması açısından = alalım. u O k O durumda = = ve = = = olduğundan = k ve = olur. uradan O k O O k k k = + yani k = k + olur. = k ve +. = + k olduğundan = +. olur. k 3. üçgeninin [] açıortayı üzerinde alınan bir noktasının,, kenarları üzerindeki dik izdüşümleri sırasıyla,, dir. ile in kesim noktası R ise R nin yi ortaladığını R // // Çözüm: açıortay olduğundan m( ) = m( ) dir. R den geçen ye aralel doğru ve yi sırasıyla ve de kessin. u durumda // olur. m( ) = m(r ) = 90 0 olduğundan m( ) = m( R) = m( R) = m( ) olur. m( ) = m(r ) = 90 0 olduğundan m( ) = m( R) = m( R) = m( ) olur. u durumda ( R) = m( R) olu ikizkenardır. R olduğundan R = R dir. // olduğu göz önüne alınırsa R, yi ortalar. 4. ir d doğrusu üzerinde verilen sırada, M, N, noktaları için M = MN = N olsun. doğrusu üzerinde olmayan bir noktası alalım. ye aralel bir doğru [], [M], [N] yi sırasıyla,, F de kessin. F = 3. olduğunu H F K M N G olur. H // KF olduğundan F Çözüm: ve F den geçen ye aralel doğrular yi sırasıyla H ve K de kessin. yrıca F, N yi G de kessin. u durumda G F KF KF = = = olu KF =. G olur. N N N. N H G G = = = olduğundan G =.H olu KF = 4.H M M M. M H = = olduğundan F = 3. dir. KF 4 5. üçgeninin,, kenarlarının orta noktaları sırasıyla,, F dir. açısının açıortayı yi M de, açısının açıortayı yi N de kessin. MN = O, O = ve FO = ise = olduğunu M N Çözüm: M ve N açıortay olduğundan = = = M N MN N M olduğundan MN // dir. u durumda = = dir. yrıca F N M M M + M + O = ise = = = olur. iğer taraftan F = M M M MN F +. F : = olduğundan = olu + = (*) olur. NM F MN yrıca MN // ve = olduğundan OM = ON olu MN üçgeninde ve F kesenlerine göre Menaleus teoreminden = F F ve = olur. F // MN olduğundan = olu = N M M FN M FN M N 3

4 olur. u durumda F // dir. F yamuğunda = olur. + = olur. (*) eşitliği göz önüne alınırsa F MN 6. üçgeninin iç teğet çemberi ve kenarlarına M ve N de teğet olu merkezi I dır. I MN = ise olduğunu I M Çözüm: M = N olduğundan m(nm) = 90 0 m() / olur. yrıca m(i) = m() / olduğundan m(i) = 90 0 m() / dir. m(nm) = m(i) eşitliği IN nin kiriş dörtgeni olduğunu gösterir. olaysı ile m(i) = m(ni) = 90 0 olu dir. N 7. üçgeninin iç çember merkezi I olu ve ya sırasıyla ve de teğettir. ve kenarlarının orta noktaları sırasıyla K ve L olsun. I nın ile KL nin kesim noktasından geçtiğini Çözüm: I = olsun. -6 den m() = 90 olu K = K olduğundan K = K = K olur.u durumda m() = m(k) = m(k) olu K // dir. KL // olduğu göz önüne alınırsa noktası KL ile nin kesim noktası olmalıdır. 8. bir üçgen olmak üzere üzerinde bir noktası alınsın, ile arasında olmak üzere ve üçgenlerinin iç çemberlerinin kesim noktaları ve olsun. nun sabit bir noktadan geçtiğini M X K N Çözüm: ve nin iç çemberleri ye M ve N de,, ye K ve L de teğet olsun. u durumda KM // // LN ol nn KM ve LN ye uzaklıkları eşittir. (*).,, nin orta noktalarını birleştiren doğruya d diyelim. KM d = X ve LN d = Y olsun. -6 den X ve Y noktaları ve açılarının açıortaylarının d yi kestiği noktalardır. (*) dan dolayı, XY nin orta noktasından geçer. R 9. üçgeninin iç çemberinin,, kenarlarına teğet olduğu noktalar sırasıyla,, F ve çemberin merkezi I olsun. I ve I, F yi sırasıyla ve da kessin. I üçgeninin çevrel çemberinin merkezi O ise O, I, noktalarının O doğrusal olduğunu Çözüm: = R olsun. - olur. u durumda I noktası R olur. I olduğundan I üçgeninin çevrel çember noktası olduğundan O, I, noktaları doğrusaldır. L Y d F I 6 den R ve R üçgeninin diklik merkezi olu RI RI, noktasında geçer. yrıca merkezi O noktası RI nın orta 4

5 0. üçgeninin iç çemberinin merkezi I olu iç çember kenarına T de teğettir. T den geçen I ya aralel doğru iç çemberi S de kessin. İç çemberin S deki teğeti ve kenarlarını sırasıyla ve de kestiğine göre üçgeni ile üçgenlerinin benzer olduğunu Çözüm: I ile nin kesim noktası K olmak üzere m(st) = m m(k) = m() + ( ) dir. yrıca m(st) = m(ts ) dir. TS dörtgeninde m(s ) = 360 (m() + m(ts) + m(ts )) olu m(s ) = 80 m() olu m( ) = m() olur. enzer şekilde m( ) = m() olduğu gösterilebilir.. ir üçgeninin iç bölgesinde alınan herhangi bir noktasından, üçgenin kenarlarına birer dikme indirilsin.,, üzerindeki dikme ayakları sırasıyla,, olsun. üçgenine noktasının edal üçgeni denir. üçgenine de üçgeninin ters edal üçgeni denir. üçgeninin iç bölgesindeki bir noktasının edal üçgeni olsun. = sin, = sin, = sin olduğunu Çözüm:, ve dörtgenlerinin birer kiriş dörtgeni olduğunu görüyoruz. = = = = sin sin sin sin olduğundan ilk eşitlik kanıtlanmış olur. iğerleri de ve kiriş dörtgenlerinden faydalanarak benzer şekilde kanıtlanır. 3. üçgeninin noktasına nazaran edal üçgeni a b c olsun. ile c b nin orta noktasından geçen doğruya d a diyelim. enzer şekilde d b ve d c doğruları tanımlansın. u üç doğru noktadaştır. Çözüm: c b kirişler dörtgeni olu nin orta noktası çevrel çemberin merkezi olduğundan d a doğrusu c b nin orta dikmesidir. enzer şekilde d b ve d c doğruları da sırasıyla a c ve a b nin orta 5

6 dikmesi olu bir üçgenin kenar orta dikmeleri noktadaş olduğundan bu üç doğru noktadaş olu kesim noktaları da a b c üçgeninin çevrel çemberinin merkezidir.. üçgeninin noktasına nazaran edal üçgeni a b c ve,, nin üçgeninin çevrel çemberini kestiği noktalar sırasıyla,, olsun. a b c dir. Kanıt: c b ve a c kirişler dörtgeni olduğundan m( b ) = m( c b ) ve m( a ) = m( c a ) olu ayrıca m( b ) = m( ) ve m( a ) = m( ) olduğundan m( c ) = m( ) dir. c b enzer şekilde m( b ) = m( ) ve m( a ) = m( ) olacağından a b c dir. a 4. üçgeninin noktasına nazaran edal üçgeni a b c olsun., üçgeninin çevrel çemberini noktasında kessin. m( a b c ) = m() dir. c b Çözüm: m() = m() ve c a ve a b kirişler dörtgeni olduğundan m() = m( c a ) ve m( c a ) = m( b ) olu m() = m() + m( b ) = m( c a ) + m( c a ) = m( a b c ) dir. a 5[IMO 996]. üçgeninin iç bölgesinde bir noktası alınsın. ve üçgenlerinin iç teğet çemberlerinin merkezleri sırasıyla ve noktaları olsun. ğer m() m() = m() m() ise, ve nin noktadaş olduğunu kanıtlayınız. Kanıt: m() m() = m() m() = x ve noktasının edal üçgeni a b c olmak üzere m( b c ) = m m( a c ) = n olsun. c n m a b u durumda m( a ) = 90 n, m( b ) = 90 m ve m( a b ) = 80 m() olduğundan 90 m +90 n x = 360 olduğundan m( a c b ) = m + n = x olu benzer mantıkla m( a b c ) = x olur. Yani a c = a b 6

7 sin dir. - den sin = sin olu = ve üçgeninde sinüs teoreminden sin sin = olduğundan = dir. u ise ve açılarının açıortaylarının üzerinde sin kesiştiğini gösterir. Yani, ve noktadaştır. 6. üçgeninin iç bölgesinde. =. olacak şekilde bir noktası verilsin. ğer m() = m() ise?. = Çözüm: noktasının edal üçgeni a b c olsun. m( b a ) = 80º m() ve m() = 90º + m() olduğundan m( b ) + m( a ) = 90º olu m( b c a ) = 90º olmalıdır. üçgeninde sinüs teoreminden b sin = ve = olduğundan a sin sin = olur. yrıca Önsav den sin c b = ve c a = olu sin sin = yani c = olur. olayısı ile a b a b =. c b =. c a yazılabilir. Yine - den = olduğu göz önüne alınırsa, sin a b sin.. sin a b = olu. c a c = bulunur. a sin. sin 7[MO 993]. üçgeninin iç bölgesinde alına bir noktası için m() m() =, m() sin sin sin m() = β, m() m() = γ ise. =. = olduğunu sin sin β sin γ kanıtlayınız. b c a Kanıt: noktasından kenarlara indirilen dikme ayakları a, b, c olsun. Önsav- den m( b ) = m( c b ) ve m( a ) = m( c a ) olu m( b ) + m( a ) + m() = m() olur. u durumda m( b c a ) = γ olacaktır. enzer şekilde m( b a c ) = ve m( a b c ) = β yazılabilir. a b c üçgeninde sinüs a b b c c a teoreminden = = dır. () sin γ sin sin β Önsav- den b c =.sin, c a =.sin ve a b =.sin olu bu eşitlikler () de yerine yazılırsa istenen Kanıtlanmış olur. 7

ESKİŞEHİR FATİH FEN LİSESİ GEOMETRİ OLİMPİYAT NOTLARI. Çemberler 1

ESKİŞEHİR FATİH FEN LİSESİ GEOMETRİ OLİMPİYAT NOTLARI. Çemberler 1 SKİŞHİR FTİH FN LİSSİ GTRİ LİİYT NTLRI Çemberler 1 erleyen sman KİZ FFL atematik Öğretmeni Yazım hataları mevcut olup. Tashihi yapılmamıştır. ÇR GİRİŞ roblem. merkezli çemberin kirişi üzerinde bir noktası

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

Öklid alıştırmaları. Mat 113, MSGSÜ. İçindekiler. 36. önermeden sonra önermeden sonra 8. Çarpma 11

Öklid alıştırmaları. Mat 113, MSGSÜ. İçindekiler. 36. önermeden sonra önermeden sonra 8. Çarpma 11 Öklid alıştırmaları Mat 113, MSSÜ 30 kim 2013 İçindekiler 1. önermeden sonra 2 5. önermeden sonra 2 6. önermeden sonra 2 7. önermeden sonra 3 8. önermeden sonra 3 9. önermeden sonra 3 10. önermeden sonra

Detaylı

GEOMETRİPROBLEMLERİNE HARMONİK YAKLAŞIM

GEOMETRİPROBLEMLERİNE HARMONİK YAKLAŞIM ORTÖĞRETİM ÖĞRENİLERİRSI RŞTIRM ROJELERİYRIŞMSI (007 008) GEOMETRİROLEMLERİNE HRMONİK YKLŞIM rojeyi Hazırlayan Öğrencilerin dısoyadı : Semih YĞI Sınıf ve Şubesi : 10- dısoyadı : Uğur KRĞ Sınıf ve Şubesi

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim:

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim: 016 UOMO 1. Aşama 1. Bir ABC üçgeninde BE ve CD kenarortayları birbirine dik ve BE = 18, CD = 7 ise AF kenarortayının uzunluğu kaçtır? A) 43 B) C) 45 D) 3 E) 4 Çözüm. Üçgenin ağırlık merkezi G olmak üzere,

Detaylı

Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik,

Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik, Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılamaz,

Detaylı

2. 11 modunda aşağıdakilerden hangisine denktir? a) 1 b) 3 c) 4 d) 5 e) Hiçbiri

2. 11 modunda aşağıdakilerden hangisine denktir? a) 1 b) 3 c) 4 d) 5 e) Hiçbiri 1. Bir ABC üçgeninde [AB], [BC] ve [CA] nın orta noktaları sırasıyla C, A ve B ; A dan BC ye inilen dikmenin ayağı H dir. A C = 6 olduğuna göre, B H nedir? a) 5 b) 6 c) 5 2 d) 6 2 e) 7 2. 11 modunda 3

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

ÜÇGENLERDE EŞLİK VE BENZERLİK

ÜÇGENLERDE EŞLİK VE BENZERLİK Ünite 4 ÜÇNLR ŞLİ V NZRLİ ölüm 4.3. u ölümde Neler Öğreneceğiz? çıortay ve üçgenin açıortaylarının özelliklerini Üçgenin kenarortaylarının özelliklerini Orta dikme ve üçgenin kenar orta dikmelerinin özelliklerini

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6

BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6 BİRİNCİ AŞAMA DENEME SINAVI. Bir kenarortayı, diğeri olan bir üçgenin alanı en fazla kaç olabilir? A) B) C) D) 4 E) 6. 90 a bölünen ve tam 0 tane pozitif tam böleni bulunan kaç tane pozitif tam sayı vardır?

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler:

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler: GEOMETRİ 1 Üçgenler Gösterimler: Bir ABC üçgeni için aşağıdaki gösterimleri kullanacağız: Kenar uzunlukları: BC = a, CA = b, AB = c Açılar: Â, ˆB, Ĉ (Trigonometrik ifadelerde açı işareti kullanılmayacak.)

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 ) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 010 ) 1) Dar açılı ABC üçgeninde BB 1 ve CC 1 yükseklikleri H noktasında kesişiyor. CH = C H, BH = B H ise BAC açısını bulunuz. 1 1 A)0 0 B)45 0 C) arccos

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Geometri Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Geometri Soruları ve Çözümleri Lisans Yerleştirme Sınavı (Lys ) / 8 Haziran 0 Geometri Soruları ve Çözümleri. Bir ikizkenar üçgenin eş kenarlarının her birinin uzunluğu 0 cm ve üçüncü kenarının uzunluğu 4 cm olduğuna göre, alanı kaç

Detaylı

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0) GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. Geometrik yer üzerindeki noktalar

Detaylı

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ ÖLÜNÝLM KURLLRI ve ÖLM ÝÞLMÝ YGS MTMTÝK. Rakamları farklı beş basamaklı 8y doğal sayısı 3 ile tam bölünebildiğine göre, + y toplamı kaç farklı değer alabilir?(). ltı basamaklı y tek doğal sayısının hem

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

deneme onlineolimpiyat.wordpress.com

deneme onlineolimpiyat.wordpress.com 1.) toplamı kaça eşittir? A)hiçbiri B) C)3/217 D)9/217 E) 1/217 2.) 250 kişinin katıldığı bir tenis turnuvasında eleme usulü ile maçlar yapııyor. Yani ikişerli eşleşmelerde maçı kaybeden eleniyor.üst tura

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ENES KOCABEY HALİL İBRAHİM GÜLLÜK 2014 DANIŞMAN ÖĞRETMEN : YÜKSEL

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014 ÖZEL DÜŞŞFK LİSESİ SLİH ZEKİ V. MTEMTİK ŞTIM PJELEİ YIŞMSI -0 PJENİN DI PTLEMY TEEMİ VE UYGULMLI PJEYİ HZILYNL HLİL İHİM YZII MUHMMED ENİS ŞEN PJE DNIŞMNI DULGFU TŞKIN ÖZEL MÜÜVVET EVYP KLEJİ VE FEN LİSESİ

Detaylı

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 9. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2004 Soru kitapçığı türü A 1. Beş tam sayının toplamı

Detaylı

4. Şekil 1'deki ABCD karesi şeklindeki karton E ve F orta

4. Şekil 1'deki ABCD karesi şeklindeki karton E ve F orta airede lan - 1. sım çevre uzunluğu 0 birim olan kare biçimindeki kağıdın üzerine, merkezleri bu kağıdın köşelerinde yer alan ve birbirine teğet olan dört çeyrek daireyi şekildeki gibi belirliyor. Sonra

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK HAZIRLAYAN ÖĞRENCİLER: Barış BALKAN Meryem Nilsu ÇETİN DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ İZMİR 2016 İçindekiler Sayfa 1. Giriş... 2 1.1 Projenin Amacı....

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C 1. BÖLÜM: AÇISAL KAVRAMLAR VE DOĞRUDA AÇILAR 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-E 2-A 3-E 4-C 5-C 6-C 7-D 8-D 9-D 10-E 11-B 12-C 2. BÖLÜM: ÜÇGENDE AÇILAR 1-A 2-D 3-C 4-D 5-D 6-B

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNİLR 8. ÜNİT ÇMR V İR Çemberin Temel lemanları... Çemberin iriş, Çap ve esen... Çemberde Yay... Çemberde Teğet... Çemberde iriş Özellikleri... 5 7 onu Testi - 1... 8 9 Çemberde çılar...

Detaylı

IX. Ulusal İlköğretim Matematik Olimpiyatı

IX. Ulusal İlköğretim Matematik Olimpiyatı IX. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir su tankerinin tam doluyken toplam ağırlığı x ton; yarı yarıya doluyken toplam ağırlığı y ton ise, boş tankerin ağırlığı kaç tondur? a) 2x 2y b) 2y x

Detaylı

IX. Ulusal İlköğretim Matematik Olimpiyatı

IX. Ulusal İlköğretim Matematik Olimpiyatı IX. Ulusal İlköğretim Matematik Olimpiyatı A 1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5 2. Her x 0 gerçel sayısı için, eşittir?

Detaylı

( ) 1. Alt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? 3. x in hangi aralıktaki değeri ( ) 2

( ) 1. Alt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? 3. x in hangi aralıktaki değeri ( ) 2 . lt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? ) 6 dik açı B) 4 dik açı C) 8 dik açı D) dik açı E ) dik açı Bir konveks çokgenin iç açıları toplamını veren bağıntı

Detaylı

5. 5a. b a + 4 b = 3 3a + 2 2b. Cevap C. 6. x = 3, y = 7, z = 9 olduğundan x + z < y ve. Cevap C

5. 5a. b a + 4 b = 3 3a + 2 2b. Cevap C. 6. x = 3, y = 7, z = 9 olduğundan x + z < y ve. Cevap C eneme - / Mat MTEMTİK ENEMESİ..= 0 0..=0 =..=0 =..= = 8. =, = = y. 7, = +. 7 y + = + 00 y + + = + y + = + =, y = alınr ı. ^ - h. ^ + h. ^ + h= - ^ h. ^ + h= = = = bulunur. evap. a a $ = = a = $ 7b b =

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) 1) Bir ABC dik üçgeninde B açısı diktir. AB kenarı üzerinde alınan bir D noktası için m( BCD) m( DCA) dır. BC kenarı üzerinde alınan bir E noktası için

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

Üçgende Açı ABC bir ikizkenar. A üçgen 30

Üçgende Açı ABC bir ikizkenar. A üçgen 30 1. 4. bir ikizkenar üçgen 0 = m () = 0 m () = 70 70 Kıble : Müslümanların namaz kılarken yönelmeleri gereken, Mekke kentinde bulunan Kabe'yi gösteren yön. arklı iki ülkede bulunan ve noktalarındaki iki

Detaylı

Geometrik Kavramlar, Tümler-Bütünler Açılar

Geometrik Kavramlar, Tümler-Bütünler Açılar / / / Geometrik avramlar, Tümlerütünler çılar 1 1. Tümler iki açıdan büyük açı küçük açının 2 katıdır. una göre, küçük açının bütünleri kaç derecedir? ) 160 ) 150 ) 140 4. ) 120 ) 110 0 Şekilde, O, doğrusal

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

Cahit Arf Kitapçığı SINIF. Ad soyad:... sınıf:... okul:... MATEMATİK

Cahit Arf Kitapçığı SINIF. Ad soyad:... sınıf:... okul:... MATEMATİK Cahit Arf Kitapçığı 2019 İZMİR BİLİM OLİMPİYATLARI 9.10. SINIF Ad soyad:... sınıf:... okul:... MATEMATİK İZMİR BİLİM OLİMPİYATLARI MATEMATİK - 2019 1. Bölüm 3 puan değerinde 10 sorudan oluşmaktadır. 1.

Detaylı

LYS YE DOĞRU MATEMATİK TESTİ

LYS YE DOĞRU MATEMATİK TESTİ MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 50 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 75 dakikadır.. a, b ve c birer rakam

Detaylı

52 inci Uluslararası Matematik Olimpiyatı

52 inci Uluslararası Matematik Olimpiyatı 52 inci Uluslararası Matematik Olimpiyatı İhsan Yücel 1 /ihsanyucel19@gmail.com, Matematik Milli Takım Öğrencileri 2 52. Uluslararası Matematik Olimpiyatı 16-24 Temmuz tarihleri arasında Hollanda nın msterdam

Detaylı

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler)

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler) TYT Geometri MİKRO KONU TRM TST YRINTILRI V ÖRNKLRİ (-0. Testler) Yeni müfredata tam uygun eğerli öğretmenimiz, branşınızla ilgili TYT konu tarama testlerimizden bazı örnekleri incelemeniz için size sunuyoruz.

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

B)10!.15! C)10!.P(15,2).13! D)25! E) Hiçbiri

B)10!.15! C)10!.P(15,2).13! D)25! E) Hiçbiri 1.) Dış bükey ABCD dörtgeninde DA = AB =2 3, m(a)=96 o,m(c)=132 o ise AC nin yarısı kaçtır? A) 2 B) 2 6 C) 6 D) 2 3 E) 3 2.) Bir mağazada Ocak ayında satılan ayakkabı sayısı bir tamkaredir.şubat ayında

Detaylı

2009 Birinci Aşama Sınav Soruları

2009 Birinci Aşama Sınav Soruları 009 Birinci şama Sınav Soruları 1. = { 1,, 3,..., 97, 98} kümesinin, boş olmayan her alt kümesi için, bu alt kümenin elemanlarının çarpımını hesaplayalım. Ortaya çıkan tüm çarpımların toplamı aşağıdakilerden

Detaylı

TYT MATEMATİK DENEMESİ

TYT MATEMATİK DENEMESİ TYT MTMTİK NMSİ N TR N M N S R İS İ 5 u denemeler öğretmen ve öğrencilerin ücretsiz indirerek kullanmaları için NTRNMN YYINILIK web sitesinde yayınlanmıştır. İçeriğinin ticari amaçla kullanılması yasaktır.

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

8. SINIF MATEMATiK ÜÇGEN

8. SINIF MATEMATiK ÜÇGEN 05 8. SINIF MTMTiK ÜÇGN Kenarortay: ir kenarın orta noktası ile karşısındaki köşe arasına çekilen doğru parçasına kenarortay denir. çıortay: ir köşeden, karşısındaki kenara kadar giden ve bu köşedeki açıyı

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

Öklid in Elemanları. Türkçesi ve notlar Ali Sinan Sertöz. 8 Mayıs 2018 sürümü

Öklid in Elemanları. Türkçesi ve notlar Ali Sinan Sertöz. 8 Mayıs 2018 sürümü Öklid in lemanları Türkçesi ve notlar li Sinan Sertöz 8 Mayıs 208 sürümü li Sinan Sertöz ilkent Üniversitesi Matematik ölümü 06800 nkara sertoz@bilkent.edu.tr http://sertoz.bilkent.edu.tr 8 Mayıs 208 sürümü

Detaylı

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2 8 ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 8 7. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı 8 cm Buna göre CEB üçgeninin

Detaylı

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: "Ω 3 R" 4. (p' q)' r p. 5. I. p p' 6. I.

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: Ω 3 R 4. (p' q)' r p. 5. I. p p' 6. I. MATEMATİK - FÖY İZLEME TESTLERİ ÜNİTE : MANTIK Önermeler - I /U UYGULAMA. p: "Ω R" q: "iki basamaklı en küçük tam sayı dur." r: " " + = + 9 önermelerinden hangilerinin doğruluk değeri dir? A) Yalnız I

Detaylı

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit...

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit... İÇİİR Üçgenler oğruda çı... 1 Üçgende çı... 5 çı enar ağıntıları...11 ik Üçgen...17 İkizkenar Üçgen...5 şkenar Üçgen...1 Özel çılı Üçgenler...7 çıorta...1 enarorta...51 Üçgende erkezler...1 enzerlik...5

Detaylı

İÇİNDEKİLER 1. TEMEL KAVRAMLAR

İÇİNDEKİLER 1. TEMEL KAVRAMLAR OİMPİYTR İÇİN ÜZM GOMTRİ İÇİNKİR 1. TM KVRMR çıortay Özellikleri 6 lanchet Teoremi 44 Yükseklikler ve Çevrel Çember 48 uler oğrusu 61 eibnitz Teoremi 78 okuz Nokta Çemberi (uler Çemberi) 85 uler ağıntıları

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

Örnek...3 : Örnek...4 : Örnek...1 : Örnek...2 : PARALELKENAR PARALELKENAR PARALELKENARDA KÖŞEGENLER PARALELKENAR TANIMI VE ÇEVRESİ

Örnek...3 : Örnek...4 : Örnek...1 : Örnek...2 : PARALELKENAR PARALELKENAR PARALELKENARDA KÖŞEGENLER PARALELKENAR TANIMI VE ÇEVRESİ N ( N NII, ÖZİİ V NI ĞNİ ) N N ÖŞGN N NII V ÇVİ b a öşegenler birbirini ortalar. öşegenlerin kesim noktası ağırl ık merke zidir. =e, =f olm ak üzere, b a O e 2 +f 2 =2.(a 2 +b 2 ) dir. arşılıklı kenarları

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

PH AB, PH =x kaç cm.dir?

PH AB, PH =x kaç cm.dir? ABCD bir kare. ABCD bir kare. AB =10 cm. m(pcb)=x kaç derecedir? PH AB, PH =x kaç cm.dir? PA ve PB ait oldukları çemberlerin yarıçaplarıdır. PA = AB =PB olduğundan PAB eşkenar üçgendir. m(pab)=60 o AB

Detaylı

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır?

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır? 00 ÖSS Soruları 3,4.,34 0, 34,34 işleminin sonucu kaçtır? ) 0 ) 0, ) 9,9 ) 0, E),. a, b, c, d pozitif tam sayılar ve a 7 a 4 : = c, : = d b 0 b 4 olduğuna göre, c + d nin alabileceği en küçük değer kaçtır?

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur. Öğrenci Seçme Sınavı (Öss) 8 Haziran 6 Matematik II Soruları ve Çözümleri. f (x) + x lim f ( x) a x x ve, x ise fonksiyonu için,, x lim f ( x) b olduğuna göre, a b kaçtır? x A) B) C) D) E) Çözüm x x için,

Detaylı

GEOMETRİ. kpss SORU. Önce biz sorduk. Güncellenmiş Yeni Baskı. Genel Yetenek Genel Kültür. 120 Soruda 83

GEOMETRİ. kpss SORU. Önce biz sorduk. Güncellenmiş Yeni Baskı. Genel Yetenek Genel Kültür. 120 Soruda 83 Önce biz sorduk kpss 2 0 8 20 Soruda 83 SRU Güncellenmiş Yeni askı Genel Yetenek Genel Kültür GEMETRİ Konu nlatımı Pratik ilgiler Sınavlara En Yakın Özgün Sorular ve çıklamaları Çıkmış Sorular ve çıklamaları

Detaylı

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI PROJENİN ADI: EULERİN PEDAL ÜÇGEN FORMÜLÜNÜ KULLANARAK PEDAL DÖRTGENLER İÇİN YENİ BİR FORMÜL GELİŞTİRME MEVKOLEJİ ÖZEL BASINKÖY ANADOLU LİSESİ DANIŞMAN:ELİF

Detaylı

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır.

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır. AYT 08 MATEMATİK ÇÖZÜMLERİ ai i İçler dışlar çarpımı yapalım. ai ai i ai ai aii ai ai ai ai 0 ai a 0 olmalıdır. Cevap : E 8 in asal çarpanları ve 3 tür. 8.3 3 40 ın asal çarpanları ve 5 tir. 40.5 İkisinde

Detaylı

2010 oldu¼gundan x 2 = 2010 ve

2010 oldu¼gundan x 2 = 2010 ve ) 444400 say s ndaki rakamlar n yerleri de¼giştirilerek 7 basamakl kaç farkl say yaz labilir? Çözüm : Bu rakamlar n bütün farkl 7 li dizilişlerinin say s 7! olacakt r. Bu dizilişlerin 4!! soldan ilk rakam

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 7 6 6.. Yönlü

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI ÖGRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKULU / SINIFI : SINAVA GİRDİĞİ İLÇE: SINAVLAİLGİLİUYARILAR: İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 018 SINAVI Kategori: Matematik 7-8 Soru Kitapçık

Detaylı

Uzay Geometri TMOZ-OZEL Mustafa YAĞCI

Uzay Geometri TMOZ-OZEL Mustafa YAĞCI UZY GEOMETRİ aşlıktan korkmayın. Oturduğumuz yerden Dünya ile Mars arasındaki uzaklığı filan ölçecek değiliz. İstersek ölçeriz ama konumuz bu değil. Çünkü bu uzay, o uzay değil. O uzaysa bile, işimiz gücümüz

Detaylı