BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:"

Transkript

1 FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin her bir terimine arşı gelen çözüm bulunur ve bu çözümler toplanara asıl çözüm elde edilir. Bu yöntemin iyi ve ötü yönleri yöntem açılandıtan sonra belirtilecetir. BİR FONKSİYONUN FOURİER SERİSİNE AÇIIMI: Bir f() fonsiyonu periyodi ise fonsiyonu T periyodu aşağıda verilen eşitliği sağlayan en üçü pozitif sayıdır. f( ) f( T) ( ) (10.1) Fourier analizinin esas teoremine göre; periyodi bir f() fonsiyonu periyot içinde sonlu sayıda notalar dışında te değerli olara tanımlı, sonlu sayıda estremuma haiz, endisi ve birinci türevi parça parça süreli ise, 1 f( ) a0 acos( ) bsin( ) ( ) (10.) T 1 şelinde tanımlanan seri, düzgün olara f() fonsiyonuna yaınsar. f() fonsiyonun bu şeildei açılımına Fourier açılımı; a ve b atsayılarına Fourier atsayıları; seriye ise Fourier serisi adı verilir. Fourier serisi süresizli notalarında fonsiyonun sağ ve sol değerlerinin ortalamasına yaınsar. Yuarıda verilen yaınsama şartlarına Dirichlet şartları adı verilir. Bu şartlar yeterlili şartlarıdır. Yuarıda (10.) bağıntısında verilen a ve b atsayıları aşağıda verilen şeilde hesaplanır.

2 Elastisite T a f( )cos( ) d T 0 T b f( )sin( ) d T (10.3) (10.) eşitliği ile verilen seri bir n değerinde esildiğinde elde edilen bağıntıya n inci dereceden trigonometri ço terimli adı verilir. Bu bağıntı aşağıda verilmiştir. n 1 P ( ) a [ a cos( ) b sin( )] (10.4) n 0 1 Fourier açılımı yapılaca fonsiyon, periyot içinde simetri ise b atsayıları sıfır olacağından açılımda sinüslü terimler bulunmaz. a atsayıları ise (10.3) ile verilen ifadeler, periyodun yarısına adar integre edilip ii atı alınara bulunabilir. Fourier açılımı yapılaca fonsiyon, periyot içinde antisimetri ise a atsayıları sıfır olacağından açılımda osinüslü terimler bulunmaz. b atsayıları ise (10.10) ile verilen ifadeler periyot yarısına adar integre edilip ii atı alınara bulunabilir. Fourier serilerinin uygulamada ullanışlı olması için serinin yavaş yaınsamaması gereir. Fourier serileri, süresizli notalarında, fonsiyonun sağ ve sol değerlerinin ortalamasına yaınsar ve yaınsama sırasında aşırı salınımlar yapar. Bu olaya Gibbs olayı adı verilir. Bu salınımları önleme için fazla terim alma veya salınımları bastıran özel yöntemler uygulama gereir. Fonsiyonda süresizli var ise Fourier serisi 1/ şelinde yaınsar. Fonsiyonun birinci türevinde süresizli var ise Fourier serisi 1/ şelinde yaınsar. Genel olara fonsiyonun m inci türevinde süresizli var ise fonsiyon 1/ m+1 şelinde yaınsar. Görüldüğü gibi süresizliler Fourier serilerinin yaınsama hızına eti etmetedir. Ayrıca verilen fonsiyon aralı dışına genişletildiğinde fonsiyonun süresizli yapmayaca şeilde genişletilmesi halinde daha hızlı yalaşım sağlanabilir. Süresizliği aldırma için fonsiyonun ardışı ii süresizli notalarını birleştiren y=a+b doğrusu f() fonsiyonundan çıartılara süresizli aldırılabilir. Daha genel olara basit fonsiyonlar, örneğin ço terimliler, f() fonsiyonundan çıartılara fonsiyonun çeşitli türevlerindei süresizliler aldırılabilir.

3 Fourier Serileri 3 FOURIER SERİERİ İE ÇÖZÜM Fourier serileri ile çözüm yönteminde serinin her terimine arşı gelen çözümler yapılaca sonunda bu çözümler toplanacatır. Burada yapılaca çözümlerde uzunluğu yüseliği h olan didörtgen bölgeler göz önüne alma alınacatır. Bu bölge için dört tip yüleme incelenecetir. Birinci Yüleme: Bu yüleme tipinde şeilde görüldüğü gibi y=+h enarında p ( ) bsin bsin ( ) olara verilsin. Şeilde =1 hali görülmetedir. Burada fazla indis ullanmama için ya bağlı α değeri sadece α olara gösterilmiştir. Sınır şartları: y=+h σ y =-b n sinα τ =0 y=-h σ y =0 τ =0 =± σ =0 dır. =± de dengeyi temin için R ayma uvvetleri bulunacatır. Problemin çözümü için Airy gerilme fonsiyonu olara F(,y)=f(y) sinα fonsiyonun deneyelim. Bu fonsiyon birharmoni denlemde yerine onulduğunda aşağıda verilen diferansiyel denlem ve çözümü bulunur. ıv 4 f ( y) f( y) f( y) 0 f ( y) C ch yc shyc ychyc yshy 1 3 4

4 4 Elastisite Gerilme fonsiyonu ve bundan elde edilen gerilmeler F(, y) sin ( C chyc shyc ychy C ysh y) sin C [ 1 chyc shy C3(shyych y) C4(chyysh y)] sin [ C1chyCshyC3ychy C4ysh y) cos C [ 1sh ycchy C3(chyysh y) C4(shyych y)] dir. Yuarıda verilen gerilmeler y=+h da σ y =-b n sin α ve τ =0; y=-h da σ y =τ =0 sınır şartlarında ullanılara C 1, C, C 3 ve C 4 değerleri aşağıda verilen şeilde elde edilir. shhhchh chhhshh C1 b C b (shh h) (shh h) chh shh C3 b C1 b (shh h) (shh h) Bulunan bu değerler Airy gerilme fonsiyonunda yerlerine yazıldıtan sonra Airy gerilme fonsiyonun türevleri alınara gerilmeler ifadeleri 1 1 bsin [ ( y) b sin [ ( y) y 3 3 b cos [ ( y) şelinde bulunur. Yuarıda verilen φ(y) ve ψ(y) fonsiyonları aşağıda verilmiştir. Denlemlerde değerine bağlılı α=π/ den gelmetedir. Fazla indis ullanmama için α yerine sadece α yazılmıştır. 1 ( hchhsh h)chyyshyshh ( y) sh h h ( hchhsh h)chyyshyshh ( y) sh h h 3 hshhchyyshychh ( y) sh h h

5 Fourier Serileri 5 1 ( hshhch h)shyychychh ( y) sh h h ( hshhch h)shyychychh ( y) sh h h 3 hchhshyychyshh ( y) sh h h Yuarıda verilen φ(y) fonsiyonları çift, ψ(y) fonsiyonları ise te fonsiyonlarıdır; yani φ(y)= φ(-y) ve -ψ(y)=ψ(-y) dir. Ayrıca y=±h olduğunda φ(y) ve ψ(y) fonsiyonları aşağıda verilen değerleri alır. 1 1 ( h) ( h) ( h) 0 ( h) Uç notalarda; =± değerinde sinα sıfır edeceğinden σ (y,=±)=0 olara sınır şartı sağlanır. R esme uvvetlerinin hesabı ise h h 3 3 R dy b cos [ ( y) dy h h integrali ile hesaplanacatır. ψ(y) te fonsiyon olduğundan integrali sıfırdır. İntegralin geri ısmı aşağıda verilmiştir. h 3 1 b R b cos ( y) dy bcos cos h =1 için R=b /π dir İinci Yüleme: Bu yüleme tipinde şeilde görüldüğü gibi y=-h enarında * * * p ( ) bsin bsin ( ) olara verilsin. Şeilde =1 hali görülmetedir. Sınır şartları: y=h σ y =0 τ =0 y=-h * y bsin τ =0 =± σ =0

6 6 Elastisite dır. =± de dengeyi temin için R ayma uvvetleri bulunacatır. Bu hale ait bağıntılar daha öncei hale ait bağıntılar yardımı ile elde edilebilir. Bağıntılar şeilde görülen y eseni göre çıartıldığında aynısı elde edilir sonra y y dönüşümü yapılıp φ(y)= φ(-y) ve -ψ(y)=ψ(-y) olduğu ve olduğu göz önüne alınara aşağıdai sonuçlar bulunur. b sin [ ( y) * 1 1 b sin [ ( y) * y b cos [ ( y) * 3 3 Üçüncü Yüleme: Bu yüleme tipinde şeilde görüldüğü gibi y=+h enarında p ( ) acos acos ( ) olara verilsin. Şeilde =1 hali görülmetedir. Sınır şartları:

7 Fourier Serileri 7 y=h σ y =-p()=-a cosα τ =0 y=-h σ y =0 τ =0 dır. Gerilme fonsiyonunu daha öncei gerilme fonsiyonuna benzer olara F(, y) f( y)cos şelinde seçildiğinde gerilme ifadeleri daha önceilere benzemete olup aşağıda verilen şeildedir. 1 1 acos [ ( y) y acos [ ( y) 3 3 asin [ ( y) =± sınırındai şartlara gelince sin α sıfır olduğundan τ =0 şartı sağlanır. σ =0 şartı sağlanmaz. Onun yerine aşağıdai sonuç bulunur (integral alınıren ψ(y) fonsiyonunu te fonsiyon olduğu göz önüne alınmıştır). h h h h h 1 1 cos [ ( ) ( )] h h 1 dy acos ( y) dy 0 h dy a y y dy Yuarıda bulunan sonuç σ gerilmelerin bir uvvet çiftine eşdeğer olduğunu gösterir. Kuvvet çiftinin değeri aşağıda hesaplanmıştır. h h 1 1 cos [ ( ) ( )] h h M ydy a y y y dy a n M cos Bu momente ait gerilmeler ters olara yüleme gereir. Bu gerilmeler ise d M 3a y d d y cos 0 3 y I h dir. Sınır şartları tam sağlanmadığı için bu bir yalaşı çözümdür. Saint Venant prensibine göre ince uzun levhalar için geçerlidir.

8 8 Elastisite Dördüncü Yüleme: Bu yüleme tipinde levhanın y=-h enarında * * * p ( ) acos acos ( ) şelinde bir yü bulunmatadır. Bu yülemeye ait gerilmeler oordinat dönüşümleri ile a cos [ ( y) * 1 1 a cos [ ( y) * y a sin [ ( y) * 3 3 olara bulunur. =± sınırındai σ =0 şartı sağlanmaz. Daha önceden de olduğu gibi momentten * d M 3a y d d y cos 0 3 y I h doğan gerilmeler sisteme yülenir. Beşinci yüleme: Fourier açılımındai sabit terimden dolayı yüleme. Bu yüleme şeilde görülmetedir. Bu yülemeden doğan gerilmeler aşağıda verilmiştir. 0 1 * ( a0 a0) ( y y h y) 3 h * * 1 y ( a0 a0) ( y h y) ( a 3 0 a0) 4h * 3 ( a0 a0) ( h y ) 3 4h

9 Fourier Serileri 9 Genel hal: Şeilde görüldüğü gibi bir levhaya genel yüleme yapılsın. Bu durumda p() ve p*() yüleri peryodlu Fourier serilerine açıldığında aşağıda verilen bağıntılar elde edilir. 1 p( ) a0 [ acos( ) bsin( )] 1 1 p ( ) a [ a cos( ) b sin( )] * * * * 0 1 Yuarıda verilen yülerin sisteme yülenmesiyle elde edilen gerilmeler daha önce incelenen beş halin toplamı olacatır. Toplam yapıldığında bulunan sonuçlar [( a a ) ( y) ( a a ) cos( ) 0 * 1 * 1 * 1 * 1 [( b b) ( y) ( b b) sin( ) [( a a ) ( y) ( a a ) cos( ) 0 * * y y * * 1 [( b b) ( y) ( b b) sin( ) [( a a ) ( y) ( a a ) sin( ) 0 * 3 * 3 * 3 * 3 [( b b) ( y) ( b b) sin( )

10 10 Elastisite dir. Ayrıca uçlara d 3 y 1 * 3 ( )cos d d a a y 0 h 1 gerilmelerini yüleme gereir.

) ile algoritma başlatılır.

) ile algoritma başlatılır. GRADYANT YÖNTEMLER Bütün ısıtsız optimizasyon problemlerinde olduğu gibi, bir başlangıç notasından başlayara ardışı bir şeilde en iyi çözüme ulaşılır. Kısıtsız problemlerin çözümü aşağıdai algoritma izlenere

Detaylı

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987

1991 ÖYS. )0, 5 işleminin sonucu kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 A) 123 B) 432 C) 741 D) 864 E) 987 99 ÖYS.,8 (, ), işleminin sonucu açtır? A) B) C) D) E) 7. Raamları sıfırdan ve birbirinden farlı, üç basamalı en büyü sayı ile raamları sıfırdan ve birbirinden farlı, üç basamalı en üçü sayının farı açtır?

Detaylı

ANALİZ CEBİR. 1. x 4 + 2x 3 23x 2 + px + q denkleminin kökleri (a, a, b, b) olacak şekilde. ikişer kökü aynı ise ise p ve q kaçtır?

ANALİZ CEBİR. 1. x 4 + 2x 3 23x 2 + px + q denkleminin kökleri (a, a, b, b) olacak şekilde. ikişer kökü aynı ise ise p ve q kaçtır? ANALİZ CEBİR. x + x x + px + q denleminin öleri a, a, b, b) olaca şeilde iişer öü aynı ise ise p ve q açtır? x + x x + px + q = x - a) x - b) = x ax + a )x bx + b ) = x a+b)x +a +ab+b )x aba+b)x +a b a

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir.

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir. 9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR Aşağıdai teorem Homomorfizma teoremi olara da bilinir. Teoremi 9.. (.İzomorfizma Teoremi) f : G H bir grup homomorfizması olsun. Şu halde ( ) dir. Özel olara,

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim 3.Seviye Deneme Sınavı TAP_1_14_011 Titreşim 1. Notasa bir cisim şeidei çemberin A notasından sıfır i hızı ie AB doğrutuda yer çeim aaında hareet etmetedir. Çemberin çapı BC= ye eşit oduğuna öre cisim

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

KÜÇÜK TİTREŞİMLER U x U x U x x x x x x x...

KÜÇÜK TİTREŞİMLER U x U x U x x x x x x x... 36 KÜÇÜK TİTREŞİMLER A) HARMONİK OSİLATÖRLER B) LAGRANGE FONKSİYONU C) MATRİS GÖSTERİMİ D) TİTREŞİM FREKANSLARI E) ÖRNEKLER F) SONLU GRUPLAR VE TEMSİLLERİ G) METOT H) ÖRNEKLER - - - - - - - - - - - - -

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

DENEY 3. HOOKE YASASI. Amaç:

DENEY 3. HOOKE YASASI. Amaç: DENEY 3. HOOKE YASASI Amaç: ) Herhangi bir uvvet altındai yayın nasıl davrandığını araştırma ve bu davranışın Hooe Yasası ile tam olara açılandığını ispatlama. ) Kütle yay sisteminin salınım hareeti için

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

Cahit Arf Liseler Arası Matematik Yarışması 2008

Cahit Arf Liseler Arası Matematik Yarışması 2008 Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17

Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 SORU Lütfen çözümlerinizi basamak basamak ve net bir şekilde yaziniz. n ( n + )n3/ serisinin yakinsak olup olmadigini inceleyiniz.

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

ÇÖZÜMLER (Week 9tr) 5. Kareyi 1 boyutlarında dört

ÇÖZÜMLER (Week 9tr) 5. Kareyi 1 boyutlarında dört ÇÖZÜMLER (Wee 9tr) 1. Ormandai ağaçların sayısı n olsun. Ağaçların yapra sayısı {0,1,, n 1} ümesindei değerlerden birisine eşit olacatır. Bu ümede de n farlı değer olduğundan, ağaçların yapra sayıları

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 3. HAFTA SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi TAYLOR TEOREMİ Eğer f C n [a,b] ve f n+1 [a,b] de mevcut ise, x

Detaylı

KAYNAK BAĞLANTILARI SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

KAYNAK BAĞLANTILARI SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU KAYNAK BAĞLANTILARI MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Kayna Bağlantıları Kayna, çözülemez bağlantı şeilleri içinde en yaygın ullanım alanına sahip bağlama yöntemidir. Kayna işleminin

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v İÇİNDEKİLER ÖNSÖZ... iii İÇİNDEKİLER... v BÖLÜM 1.... 1 1.1. GİRİŞ VE TEMEL KAVRAMLAR... 1 1.2. LİNEER ELASTİSİTE TEORİSİNDE YAPILAN KABULLER... 3 1.3. GERİLME VE GENLEME... 4 1.3.1. Kartezyen Koordinatlarda

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINI NU ANAIMI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENGE EİNİ VE ES ÇÖZÜMERİ 8 ork ve Denge 1. Ünite 8. onu (ork ve Denge) A nın Çözümleri 1. Çubuk dengede olduğuna göre noktasına göre toplam tork sıfırdır.

Detaylı

k = sabit için, Nikuradse diyagramını şematik olarak çiziniz. Farklı akım türlerinin

k = sabit için, Nikuradse diyagramını şematik olarak çiziniz. Farklı akım türlerinin İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ R O L İ K E R S İ BORU İÇERİSİNEKİ BASINÇLI AKIMLAR - 1 Ci sabit için, Niuradse diyagramını şemati olara çiziniz. Farlı aım türlerinin i bölgelerini gösteriniz

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

Titreşim Hareketi Periyodik hareket

Titreşim Hareketi Periyodik hareket 05.01.01 Titreşi Hareeti Periyodi hareet Belirli bir zaan sonra, verilen/belirlenen bir durua düzenli olara geri dönen bir cisin yaptığı hareet. Periyodi hareetin özel bir çeşidi eani sistelerde olur.

Detaylı

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir.

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir. 1. HİPERSTATİK SİSTEMLER 1.1. Giriş Bir sistemin hesabının amacı, dış etkilerden meydana gelen kesit tesirlerini, şekil değiştirmelerini ve yer değiştirmelerini belirlemektir. İzostatik sistemlerde, yalnız

Detaylı

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Doç. Dr. Erhan Pişkin Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ ISBN 978-605-38-45-5 Kitap içeriğinin tüm sorumluluğu yazarına aittir. 06, Pegem Akademi

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

MATEMATİK (LİSE) ÖĞRETMENLİĞİ

MATEMATİK (LİSE) ÖĞRETMENLİĞİ KAMU PERSONEL SEÇME SINAVI MATEMATİK (LİSE) ÖĞRETMENLİĞİ TÜRKİYE GENELİ ÇÖZÜMLER MATEMATİK (LİSE) ÖĞRETMENLİĞİ. D 6. D. D 7. B. B 8. A 4. D 9. B 5. B. C 6. A. A 7. B. A 8. E. B 9. D 4. E. C 5. B. D 6.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

UYGULAMALI ELASTİSİTE TEORİSİ

UYGULAMALI ELASTİSİTE TEORİSİ KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI ELASTİSİTE TEORİSİ Prof.Dr. Paşa YAYLA 2010 ÖNSÖZ Bu kitabın amacı öğrencilere elastisite teorisi ile ilgili teori ve formülasyonu

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DERS III ÜRETİM HATLARI. akış tipi üretim hatları. hat dengeleme. hat dengeleme

DERS III ÜRETİM HATLARI. akış tipi üretim hatları. hat dengeleme. hat dengeleme DERS ÜRETİM HATLAR ÜRETİM HATLAR Üretim hatları, malzemenin bir seri işlemden geçere ürün haline dönüştürülmesini sağlayan bir maineler ve/veya iş istasyonları dizisidir. Bir üretim hattı üzerinde te bir

Detaylı

0, , ,303 7,8057 2, , ,265 7,7504 0, ,305 7,7504 0, ,291 7,7504 1,

0, , ,303 7,8057 2, , ,265 7,7504 0, ,305 7,7504 0, ,291 7,7504 1, olur. Çeşitli malzemelerin E, G ve υ değerleri Cetvel 1.1 de verilmiştir. Malzemelerde ortalama bir değer G = 0,384 E ve υ = 0,3 olara abul edilir. b. Elastili sınırı E : Malzemenin elasti özelliğinin

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde ÖABT LİSE KPSS 2016 Pegem Aademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 40'ın üzerinde soruyu olaylıla çözebildiğini açıladı. MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Eğitimde

Detaylı

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi JEODEZİ 6 1 Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi Jeodezik gözlemler, hesaplamalarda kullanılmadan önce, referans elipsoidin yüzeyine indirgenir. Bu işlem, arazide yapılan gözlemler l jeoidin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ Yılmaz Uyaroğlu M. Ali Yalçın Saarya Üniversitesi, Mühendisli Faültesi, Eletri Eletroni Mühendisliği Bölümü, Esentepe Kampüsü,

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15.

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15. HARMONİK DENKLEM Harmonik denklemin sağ tarafının sıfır olması haline Laplace, sağ tarafının sıfır olmaması haline de Possion denklemi adı verilir. Possion ve Laplace denklemi, kısaca harmonik denklem

Detaylı

p 2 p Üçgen levha eleman, düzlem şekil değiştirme durumu

p 2 p Üçgen levha eleman, düzlem şekil değiştirme durumu Üçgen levha eleman düzlem şekil değiştirme durumu Üçgen levha eleman düzlem şekil değiştirme durumu İstinat duvarı basınçlı uzun boru tünel ağırlık barajı gibi yapılar düzlem levha gibi davranırlar Uzun

Detaylı

FAYLARIN DÜŞEY MANYETİK ANOMALİLERİNİN YORUMU

FAYLARIN DÜŞEY MANYETİK ANOMALİLERİNİN YORUMU İstanbul Üniv. Müh. Fa. Yerbilimleri ergisi,. 6,.,. -9, Y. 3 FAYLARIN ÜŞEY MANYEİK ANOMALİLERİNİN YORUMU INERPREAION OF VERIAL MAGNEI ANOMALIE OF FAUL avut AYOĞAN İ.Ü. Müh. Fa. eofizi Mühendisliği Bölümü

Detaylı

DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ

DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ DENEY 3: DFT-Discrete Fourier Transform FOURIER SERİSİ Herhangi bir periyodik işaret sonsuz sayıda sinüzoidalin ağırlıklı toplamı olarak ifade edilebilir: 2 cosω sinω 1 Burada Ώ 0 birinci (temel) harmonik

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Türev Uygulamaları. 9.1 Ortalama Değer teoremi 1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

k tane bağımsız değişgene bağımlı bir Y değişgeni ile bu bağımsız X X X X

k tane bağımsız değişgene bağımlı bir Y değişgeni ile bu bağımsız X X X X 3.1 Genel Doğrusal Bağlanım tane bağımsı değişgene bağımlı bir Y değişgeni ile bu bağımsı X X X X,,, değişgenleri arasındai ilişiyi bulma isteyelim. Bu ilişi modelinde yer alaca bağımsı değişgenler yalnıca

Detaylı

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. HARRAN ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ YÜKSEK İSANS TEZİ ÇATAK İÇEREN DEĞİŞKEN KESİTİ KİRİŞERDE TİTREŞİM PROBEMİNİN SONU EEMANAR METODUYA MODEENMESİ Mehmet HASKU MAKİNE MÜHENDİSİĞİ ANABİİM DAI

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13 4. İNTEGRALLER 4.1. Kompleks İntegrasyon Tanım 1. f : [a, b] R fonksiyonu f(t) u(t) + iv(t) biçiminde olsun. Eğer u ve v, [a, b] aralığı üzerinde integrallenebilirse, olarak tanımlanır. b f(t)dt b u(t)dt

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

16. Dörtgen plak eleman

16. Dörtgen plak eleman 16. Ddörtgen pla eleman 16. Dörtgen pla eleman Kalınlığı dğer boyutlarına göre üçü ve düzlemne d yü etsnde olan düzlem taşıyıcı ssteme pla denr. Yapıların döşemeler, sıvı deposu yan duvarları ve öprü plaları

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

KUVVET, MOMENT ve DENGE

KUVVET, MOMENT ve DENGE 2.1. Kuvvet 2.1.1. Kuvvet ve cisimlere etkileri Kuvvetler vektörel büyüklüklerdir. Kuvvet vektörünün; uygulama noktası, kuvvetin cisme etkidiği nokta; doğrultu ve yönü, kuvvetin doğrultu ve yönü; modülüyse

Detaylı

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar Matemati Dünyası Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar İler Birbil / sibirbil@sabanciunivedutr / wwwbolbilimcom Princeton Üniversitesi Yayınları ndan 15 yılında bir itap çıtı [1] Kapsamlı

Detaylı

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ PAMUKKALE ÜNİVERSİTESİ MÜHENDİ SLİK FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİSLİK B İ L İ MLERİ DERGİSİ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 006 : : : 7-6 SAKARYA HAVZASI

Detaylı

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi 5. Paralel Plakalar Amaç Bu deneyde yüklü bir parçacığı elektrik alan içinde hızlandırmak için kullanılan paralel plakalı elektrot düzeneğinin bir eşdeğeri iki boyutlu olarak teledeltos kağıdına çizilerek,

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Tenoloji Dergisi, 3 (2015) 414-431 Düzce Üniversitesi Bilim ve Tenoloji Dergisi Araştırma Maalesi Moment Taşıyan Çeli Çerçeveli Sistemlerin Titreşim Periyotları ve Deprem Yülerinin

Detaylı

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli,

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 01 Mayıs VİNÇTE ÇELİK KONSTRÜKSİYON KİRİŞTE BURUŞMA 1-03 Güven KUTAY Semboller ve Kaynalar için "1_00_CeliKonstrusiyonaGiris.doc" a baınız. Koordinat esenleri "GENEL GİRİŞ" de belirtildiği gibi DIN 18800

Detaylı

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi XIX. UUSA MEKANİK KONGRESİ 4-8 Ağustos 15, Karadeni Teni Üniversitesi, Trabon Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubuların Stoe Dönüşümü Yardımıyla Burulma Analii M. Öür YAYI 1, A. Erdem

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste

Detaylı

FİBER TAKVİYELİ TERMOELASTİK MALZEMELER İÇİN MATEMATİKSEL BİR MODEL

FİBER TAKVİYELİ TERMOELASTİK MALZEMELER İÇİN MATEMATİKSEL BİR MODEL FİBER AVİYELİ ERMOELASİ MALZEMELER İÇİN MAEMAİSEL BİR MODEL Bene HAMAMCI Danışman Yrd. Doç. Dr. Mele USAL YÜSE LİSANS EZİ MAİNE EĞİİMİ ANABİLİM DALI ISPARA - 6 FİBER AVİYELİ ERMOELASİ MALZEMELER İÇİN MAEMAİSEL

Detaylı

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : 6 : : -7 AutoLISP

Detaylı

TEST Levhan n a rl G olsun. G a rl n n O F 1 TORK (KUVVET MOMENT ) - DENGE

TEST Levhan n a rl G olsun. G a rl n n O F 1 TORK (KUVVET MOMENT ) - DENGE R (UVVE MME ) - DEE ES -... evhalar dengede oldu una göre, desteklerin oldu u noktalara göre moment al n rsa,...... oldu u görülür. CEVA B d d d d. ucuna göre moment cambaz den ye giderken momenti azald

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0 SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi (1882-1969) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur.

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ EK SERBESLİK DERECELİ İREŞİM SİSEMİNİN LAGUERRE POLİNOMLARI İLE MARİS ÇÖZÜMÜ Mehmet ÇEVİK a, Nurcan BAYKUŞ b a Celal Bayar Üniversitesi Maine Mühendisliği Bölümü, Muradiye 454, Manisa. b Douz Eylül Üniversitesi,

Detaylı