ELM207 Analog Elektronik

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELM207 Analog Elektronik"

Transkript

1 ELM7 Alog Elkroik

2 Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si )

3 Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı oplmı olrk id dilbilir: ) cos b si ) cos b si ) cos b si ) 3 3 cos3 b si 3 )

4 Fourir srisi hsplmlrı hrmoik liz olrk biliir v kyi bir oksiyou bir dizi bsi rimlr yrılrk, yrık rimlr olrk çözülmsi v yid birlşirilip orjil problmi çözümü içi oldukç kullışlı bir yoldur. Böyllikl problm isil y d prik ol bir yklşıklık çözülbilir.

5 ) Priodik Foksiyo = cos b si + + cos b si + + +

6 ) si cos ) b burd d ) rks ml d )cos d b )si *igrl limii olrk d ) / / kullbiliriz

7 Örk Aşğıdki dlg biçimii Fourir srisi gösrimii buluuz.

8 Çözüm İlk öc, oksiyou priyodu v ımı blirlir: = ),, ) )

9 Sor,, v b ksyılrı buluur : ) d ) d d d Y d, b ) d [,b] rlığı boyuc griği lıdki oplm l olduğud ) d [, ] boyuc l )

10 )cos d cos d d si si msyıdır v, si olduğud si si si 3 Dolyısıyl,.

11 d d d b cos cos si )si cos5 cos3 cos cos6 cos4 cos Dolyısıyl, çi, k, / ) b Y d ) cos

12 b si 5 5 si 3 3 si si ) ) si cos ) Souç,

13 Bzı ydlı ımlr si x) si x cos x) cos x msyı olduğud, si cos ) si cos

14 Fourir srisi rimlrii oplmı orjil dlg biçimii vrir Örk d, ) si si 3 si oplmı kr dlg vrcği gösrilbilir:

15 ) b) si si si 3 3 c) d) si si 3 si si si 3 si 5 si

16 ) si si 3 si 5 si 7 si ) si si 3 si 3 3 3

17 Kr dlg sr dişli dlg Üçg dlg Yrı çmbr

18 Örk ), ) ) ) i griğii çiziiz, 3 3. ) i Fourir srisii hsplyıız.

19 Çözüm =

20 Ksyılrı hsplylım: ) d d

21 cos cos ) cos cos cos )] si [ si si si cos )cos d d d x cos x ) cos

22 d d d b ) ) cos ) si si cos si )] cos [ cos cos cos si )si

23 Souç, ) cos b si ) si ) si si 3 si 3

24 Örk 3 v ),, 4 v 4) v ) v ) griğii çiziiz,. v ) i Fourir srisi çılımıı hsplyıız.

25 Çözüm v ) = 4

26 Ksyılr: 4 v ) d 4 ) d 4 d ) d

27 4 4 ] ) [ ) cos cos cos si )si )cos )cos d d d v

28 d d d v b si si cos )cos )si )si 4 4 si si

29 Souç, v ) cos b si ) [ ) ] cos si

30 Simri Simri oksiyolrı: i) çi simri ii) k simri

31 Çi simri Hrhgi ) oksiyou griği düşy ksi gör simrik is çiir, yi ) )

32 Çi simri dvm) çi oksiyolr örk: ) ) ) cos

33 Çi simri dvm) A d +A y çi bir oksiyou igrli d +A y igrlii iki kıdır ) A +A A A ) d ) d A

34 k simri Hrhgi ) oksiyou griği düşy ksi gör simrik is kir, yi ) )

35 k simri dvm) k oksiyolr örk: ) 3 ) ) si

36 k simri dvm) A d +A y k bir oksiyou igrli sıırdır o ) A +A A A o ) d

37 Çi v k oksiyolr Çi v k oksiyolrı çrpım özlliklri: çi) çi) = çi) k) k) = çi) çi) k) = k) k) çi) = k)

38 Simri çi v k oksiyolrı özlliklrid: çi priyodik bir oksiyo içi; / 4 )cos d b k priyodik bir oksiyo içi; b / 4 )si d

39 Çi oksiyo / / / )cos 4 )cos d d çi) çi) çi) )si / / d b çi) k) k) )

40 k oksiyo / / / )si 4 )si d d b k) k) çi) )cos / / d k) çi) k) ) ) / / d k)

41 Örk 4, ),, 4) ) ) i griğii çiziiz, 6 6. ) i Fourir srisi çılımıı hsplyıız

42 Çözüm ) = 4

43 Ksyılrı hsplylım. ) k oksiyo olduğud, ) d v )cos d

44 d d d d d b cos si cos cos cos si cos cos cos cos si si 4 4 )si 4 )si si si

45 Souç, ) cos cos si b si ) ) si

46 Örk 5 ) i Fourir srisi çlımıı hsplyıız.

47 Çözüm Foksiyou ri dlim;, = 3 ),, 3 3) ) = 3 v 3

48 Ksyılrı hsplylım. 3 ) d d d d ) ) 3 ) 8 3 Y d, ) çi bir oksiyo olduğud, 3 3/ 3/ 4 4 ) d ) d d d ) Vy, bsiç 3 ) d Bir priyod oplm l boyuc

49 3 si 3 si si si 3 si 3 4 si 3 si si 3 4 si 3 4 si 3 4 cos cos 3 4 )cos 4 )cos 3/ 3/ 3/ 3 d d d d ; 3

50 3 cos 3 si cos 3 si 3 4 ) si cos ) b Souç, v b ) çi bir oksiyo olduğud.

51 Prsvl ormi Prsrvl ormi priyodik bir siyldki orlm gücü, siyli DC bilşidki orlm güç v hrmoiklridki orlm güçlri oplmı şi olduğuu id dr.

52 P dc ) P vg P = P b cos b si + + P cos P b b si + + +

53 Siüzoidl siyl içi kosiüs v siüs), P V R rms V pk R V pk R Sdlik çısıd sıklıkl, R = Ω, olrk lırız, P V pk

54 Siüzoidl siyl içi kosiüs v siüs), dc vg b b P P P P P P b b vg ) 4 b P

55 Üsl Fourir srilri Eulr şiliğid, jx cos x jsi x dolyısıyl cos x jx jx v si x jx j jx

56 Fourir srisi gösrimi şğıdki gibi olur; ) si cos ) j j j j j j j j j j j j jb jb jb jb jb j b b

57 Burd, ) j j jb jb jb c, jb c Dolyısıyl, j j j j j j j c c c c c c c c c c Diylim v c c c c

58 Sor, c ksyısı, j d d j d j d d j d jb c ) ] si )[cos )si )cos )si )cos

59 Çoğu durumd komplks Fourir srilri rigoomrik Fourir srilrid dh koly ld dilir. Özl, komplks v rigoomrik Fourir srilri rsıdki ilişki: c ) d c ) j d c c jb jb Y d c c

60 Örk 6 Aşğıdki oksiyou komplks Fourir srisii buluuz ) 4 4

61 Çözüm Dolyısıyl c ) d d

62 ) ) ) ) ) ) ) j j j j d d d c j j j j j j dolyısıyl si cos j j

63 c j) c Souç, ) c j j) j *No: c, c d = koulrk hsplbilirs d, bz bu mümkü olmybilir. Dolyısıyl, c ı k bşı hsplmk dh iyi olbilir.

64 c komplks bir rimdir, v ω y bğlıdır. Dolyısıyl, ω y krşılık c griğii çizbiliriz. c Bşk dyişl, ) zm bölgsidki ) oksiyouu, ω) rks bölgsidki c oksiyou döüşürdük.

65 Örk 7 Örk dki oksiyou komplks Fourir srisii hsplyıız.

66 Çözüm ) d d c ) ) j j j j j j d d c

67 Fk j cos jsi cos ) Böylc, c j j ) j j /, [ ) ], k çi c *Burd. c Dolyısıyl, ) c j k j j

68 Grik çizimi şğıddır, c c, k, çi.5

BÖLÜM 2 FOURİER SERİLERİ (FS)

BÖLÜM 2 FOURİER SERİLERİ (FS) BÖÜM FOURİER SERİERİ (FS) Bir ısı kyğıı ml bir çubuk (vy lvh) dğılımıı hsplmsı içi, bird çok rigomrik işlvlri kullılmsı Josph Fourir (768-83) rıd düşüülmüşür. ısı dğılımı, prçlı bir dirsiyl dklmdir. Fourir

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı

Ele Alınacak Ana Konular. Hafta 5: Periyodik İşaretlerin Fourier Serisi Gösterilimi. LTI Sistemlerin Karmaşık Üstel İşaretlere Yanıtı ..5 El Alınc An Konulr LI sismlrin rmşı üsl işrlr ynıı Sürli-zmn priyodi işrlrin Fourir srisi gösrilimi Hf 5: Priyodi İşrlrin Fourir Srisi Gösrilimi Fourir srisinin yınslığı Sürli-zmn Fourir srisinin özllilri

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

İşaret ve Sistemler. Ders 10: Sistem Cevabı

İşaret ve Sistemler. Ders 10: Sistem Cevabı İşar v Sismlr Drs 0: Sism Cvabı Sismi İmpuls Cvabı Lir, zamala dğişmy bir sism v işarii uyguladığıı düşülim v işari lir, zamala dğişmy bir sism uyguladığıda çıkış işari bilimiyrsa, sismi lirlik özlliğii

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

ÖZET. ANAHTAR KELİMELER: Schrödinger denklemi, Dalga fonksiyonu, Potansiyel, Hipergeometrik fonksiyon.

ÖZET. ANAHTAR KELİMELER: Schrödinger denklemi, Dalga fonksiyonu, Potansiyel, Hipergeometrik fonksiyon. i ÖZET Bu çlışd irgorik oksiyolrı ölliklri kullılrk Srödigr dklii çöüü ol dlg oksiyolrı osiyl oksiyou S- risii liriği döüşü ilişir. Birii ölüd irgorik dkl il ilgili ı ilgilr rilişir. Posiyl oksiyouu gl

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Cebir Notları Mustafa YAĞCI,

Cebir Notları Mustafa YAĞCI, wwwygimustom, 6 Cbir Notlrı Must YAĞCI, ygimust@yhooom i hikysi Biz ltıl mtmtiği, trihtki buluuş sırsı gör ltıldığıı smıyorsuuz dğil mi? Bizlr hr kdr logritm drsii türvd ö görsk d, türvi ilk tohumlrı logritmd

Detaylı

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com Tiri ml rklrii rlıklı vr yömi gör izly bir işlmd döm s iibriyl sk rklrii drm şğıdki gibidir DB Ml Mvd 2 000 Döm içi Ml Alışı 50 000 Alış İd 3 000 Tiri Ml Hs Al Tp 5 000 Tiri Ml Hs Brç Klı 52 000 Yriçi

Detaylı

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com DEĞİŞİME AÇIK OLUN 1 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 2 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 3 sjbslmsivi@gmilm 1 Bir işlmi bzı bilgilri şğıdki gibidir: (Bi TL) Öki Döm Cri Döm Alıılr 940 610 Alk Slri

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 5..3 Sistm Dimiği v Modllmsi Doğrusl Sistmlri Frks Dvrışı Giriş: Drs ksmıd şu kdr yıl çözümlmlrd, doğrusl sistmlri imuls girdi, bsmk girdi gibi çşitli girdilr krşı zm cvlrıı icldik. Bzı durumlrd doğrusl

Detaylı

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a

D (5 1) Benzer biçimde integral için de bir operatör gösterimi düşünülebilir: a BÖÜM 5 APACE DÖNÜŞÜMÜ Şu kdr öğrdiklriizd, gl olrk difriyl dklmlri çözmi cbirl dklmlri çözmd dh zor olduğuu frk mişiizdir. O hld cb difriyl dklmlri cbirl hl döüşürck bir yol vr mıdır? Ev, vrdır. Alıd buu

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan.

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan. Mgntic Mtrils 4. Drs: Prmnytizm-2 Numn Akdoğn kdogn@gyt.du.tr Gbz Institut of Tchnology Dprtmnt of Physics Nnomgntism nd Spintronic Rsrch Cntr (NASAM) Kuntum mkniği klsik torinin özlliklrini dğiştirmdn,

Detaylı

İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö

Detaylı

İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü

Detaylı

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05

EKLEMELİ DC KOMPOUND JENERATÖR DENEY 325-05 İNÖNÜ ÜNİVSİTSİ MÜHNDİSLİK FAKÜLTSİ LKTİKLKTONİK MÜH. BÖL. 35 LKTİK MAKİNALAI LABOATUVAI I KLMLİ DC KOMPOUND JNATÖ DNY 3505. AMAÇ: Kompound bğlnmış DC jenertörün çlışmsını incelemek.. UYGULAMALA:. Yük

Detaylı

Her hakkı Millî Eğitim Bakanlığı na aittir. Kitabın metin, soru ve şekilleri kısmen de olsa hiçbir surette alınıp yayımlanamaz.

Her hakkı Millî Eğitim Bakanlığı na aittir. Kitabın metin, soru ve şekilleri kısmen de olsa hiçbir surette alınıp yayımlanamaz. MİÎ EĞİTİM BAKANĞ YAYNAR... 4 DERS KİTAPAR DİZİSİ... 68.4.Y..8 Her hkkı Millî Eğitim Bklığı ittir. Kitbı meti, soru ve şekilleri kısme de ols hiçbir surette lııp yyımlm. GENE KRDİNATÖR Yurdgül GÜNEŞ İNCEEME

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

7 SAYISAL İNTEGRASYON YÖNTEMLERİ

7 SAYISAL İNTEGRASYON YÖNTEMLERİ Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl itegrsyo vey itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

BAĞIMSIZ UYARILMIŞ DC JENERATÖR DENEY

BAĞIMSIZ UYARILMIŞ DC JENERATÖR DENEY İNÖNÜ ÜNİVRSİTSİ MÜHNDİSLİK FAKÜLTSİ LKTRİKLKTRONİK MÜH. BÖL. 35 LKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC JNRATÖR DNY 3503. AMAÇ: Bğımsız uyrılmış DC jenertörün çlışmsını incelemek.. UYGULAMALAR:.

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06

BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 325-06 İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜH. BÖL. 35 ELEKTRİK MAKİNALARI LABORATUVARI I BAĞIMSIZ UYARILMIŞ DC MOTOR DENEY 3506. AMAÇ: Bğımsız uyrılmış DC motorun moment/hız ve verim

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

Hafta 7: Sürekli-zaman Fourier Dönüşümü

Hafta 7: Sürekli-zaman Fourier Dönüşümü Hf 7: Sürli-zmn ourir Dönüşümü El Alınc An Konulr Sürli-zmn ourir dönüşümü Sürli-zmn priyodi işrlr için ourir dönüşümü Sürli-zmn ourir dönüşümünün özllilri Doğrusl, sbi syılı difrnsiyl dnlmlrl nımlnn sismlr

Detaylı

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır.

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır. BİRDEN AZA KAPİTAE İİŞKİN AİZ İŞEMERİ: =,,,, >0 olmk üzere syıdk kpller, süreler ç fz orlrı üzerde fze verldğde oplu olrk bs fz urlrı: = formülü le hesplblr. ork fz orı olmk üzere, syıdk kpl ork fz orı

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler Difrsil Dklmlr Doç. Dr. Slhi MADEN Ord Üivrsisi F dbi Fkülsi Mmik Bölümü DĐFERANSĐYEL DENKLEMLER Birii Mrbd Birii Drd Difrsil Dklmlr Birii Mrbd Yüksk Drd Difrsil Dklmlr Yüksk Mrbd Bzı Özl Difrsil Dklmlr

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ

KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ Gzi Üi. Müh. Mim. Fk. Der. Jourl o he Fculy o Egieerig d Archiecure o Gzi Uiersiy Cil, No, 487-5, 5 Vol, No, 487-5, 5 KESİR DERECELİ TÜREVİN YENİ YAKLAŞIMININ ÖZELLİKLERİ Ali KARCI İöü Üiersiesi, Mühedislik

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

ĐNÖNÜ ÜNĐVERSĐTESĐ MÜHENDĐSLĐK FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜH. BÖL. DC ŞÖNT MOTOR DENEY

ĐNÖNÜ ÜNĐVERSĐTESĐ MÜHENDĐSLĐK FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜH. BÖL. DC ŞÖNT MOTOR DENEY ĐNÖNÜ ÜNĐVRSĐTSĐ MÜHNDĐSLĐK FAKÜLTSĐ LKTRĐK-LKTRONĐK MÜH. BÖL. DC ŞÖNT MOTOR DNY 34-0 1. AMAÇ: Şönt bğlnmış DC motorun moment/hız ve verim krkteristiklerini ve ln kımıyl nsıl değiştiklerini incelemek..

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

Sönümlü Serbest Titreşim

Sönümlü Serbest Titreşim .5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

Sistem Dinamiği ve Modellemesi

Sistem Dinamiği ve Modellemesi 8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir.

formundadır. Burada verilen bir f fonksiyonu F fonksiyonuna dönüşür ve F fonksiyonuna f in fonksiyon dönüşümü denir. K(s,t) ye çekirdek denir. LPLCE DÖNÜŞÜMÜ Lpl dönüşümü yrdımı il ğ rflı difrniyl dnklmin ğ rfınd bulunn fonkiyonun ürkliliği bozul bil(bmk,impul fonkiyonu) difrniyl dnklmlr çözülbilkir. Bu ip dnklmlrl lkrik imlrini çözrkn krşılşılır.

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C.

V ort CEVAP: B CEVAP: E CEVAP: B CEVAP: A 3V CEVAP: D. 10. I- Doğru: 2t anında ikiside 4x konumundalar. Y A Y I N D E N İ Z İ CEVAP: C. OU 7 OĞRUS HRT Çözümler TST 7-1 ÇÖÜMR 1. meleri ynıır ikisi e poziifir. er eğişirmeler nin +X nin X olup frklıır. X Orlm sür ir. 7. V or = yer eğişirme oplm zmn. 1 = = 1 & & 3 = 1. = = 3. - leri yöne.

Detaylı

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

2017 Yazokulu BLNT6NBS Dersnotu

2017 Yazokulu BLNT6NBS Dersnotu İşreler ve Sisemler www.bulelibs.com.r 7 - SAÜ Y Oulu Ders Nolrı/ Bilgisyr Mühedisliği 6 Seçi ARI ri@sry.edu.r 7 Youlu BLNT6NBS Dersou hp://www.bulelibs.com.r/isreler_ve_sisemler_6nbas_dersnou.pdf 7 Youlu

Detaylı

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s)

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s) Kök-Yer Eğrileri: Kplı-dögü deeti iteii geçici-duru dvrışıı teel özellikleri kplı-dögü kutuplrıd belirleir. Dolyııyl probleleri çözüleeide kplı-dögü kutuplrıı - krşık yı düzleideki dğılıı rştırılı gerekir.

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Müdslk Mmrlık Fkülts İşt Müdslğ Bölümü E-Post: ogu.mt.topcu@gml.com W: ttp://mmf.ogu.du.tr/topcu Blgsr Dstkl Nümrk Alz Drs otlrı 0 Amt TOPÇU I f ( x I x x ( x [ ( x f (

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

DENEY 3 Kararlı-Durum Hatası

DENEY 3 Kararlı-Durum Hatası DENEY 3 Krrlı-Durum Htsı DENEYİN AMACI 1. Çıkış tpksinin krrlı-durum htsını inclmk. 2. Frklı sistm tiplri için, frklı tst girişlrin vriln tpkdn krrlı-durum htsını ölçmk. GENEL BİLGİLER Bir kontrol sistmi

Detaylı

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN ANALİZ III DERS NOTLARI Prof. Dr. Nuretti ERGUN İ Ç İ N D E K İ L E R Syf No BÖLÜM Foksiyo Dizi ve Serileri... BÖLÜM Fourier Serileri... BÖLÜM 3 Özge Olmy Tümlevler...48 BÖLÜM 4 Dik Poliom Serileri...7

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş BÖLÜM II. FOURIER DÖNÜŞÜMÜ. Giriş Yr ürmizd gözl joizi olaylar zamaa yada uzalığa bağlı olara glişir. Gözl joizi olay zamaı bir osiyou is zama oramı im Domai uzuluğu bir osiyou is uzalı oramı Spac Domai

Detaylı

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları Bölü : Frekn-doeninde Modellee yf 4. Öteleeli Meknik Sitelerin rnfer Fonkiyonlrı Meknik itelerin dvrnışlrı kütle, yy ve vikoz ürtüne ile odelleneilir. ütle ve yy, elektrik devrelerindeki kondntör ve endüktör

Detaylı

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ . ANTALYA MATEMATĐK OLĐMPĐYATI (00) SORULARININ ÇÖZÜMLERĐ PROBLEM : vrdır? + y y deklemii pozitif tmsyılrd kç (, y ) çözüm ikilisi A) B) 6 C) 4 D) 8 E) Sosuz çoklukt ÇÖZÜM (L. Gökçe): + deklemide pyd eşitleyip

Detaylı

TOPLAM SEMBOLÜ TÜMEVARIM n=n(n+1) n-1= n

TOPLAM SEMBOLÜ TÜMEVARIM n=n(n+1) n-1= n TÜMEVARIM Mtemtite ulldığımız pe ço ispt yötemi vrdır.bu yötemlerde biride tümevrım yötemidir. P() bir çı öerme öermeyi doğru yp e üçü doğl syı, P() öermesii doğrulu ümesi N olsu B.P() olduğu gösterilir.yi

Detaylı

İntegral Alma Teknikleri

İntegral Alma Teknikleri Bölüm İnegrl Alm Teknikleri. Yerine Koym Kurlı Kurl. u g(x) değer kümesi I rlığı oln ürevlenebilir bir fonksiyon ve f fonksiyonu I rlığınd sürekliyse, f(g(x)) g (x) f(u) du (.) olur. Örnek. x 3 cos(x 4

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

DEĞİŞİME AÇIK OLUN 1

DEĞİŞİME AÇIK OLUN 1 İiylılık : Olsı Gidrlr içi iiylı dvrılıp krşılık yrılır Olsı glirlr içi krşılık yrılmz 120 ALICILAR HS 128 HS 121 ALACAK SNT HS 129 ALACAK KARŞ HS (-) Alğı şüpli drm glmsi 128 ŞÜP TİC HS XXX 120 ALICILAR

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

YÜKSEK BYPASSLI TURBOFAN MOTORLARININ PERFORMANS ANALĐZLERĐ ĐLE ĐLGĐLĐ BĐLGĐSAYAR YAZILIMI

YÜKSEK BYPASSLI TURBOFAN MOTORLARININ PERFORMANS ANALĐZLERĐ ĐLE ĐLGĐLĐ BĐLGĐSAYAR YAZILIMI Niğde Üniversiesi Mühendislik Bilimleri Dergisi, Cil Syı, (), -4 YÜKSEK BYASSLI UBOFAN MOOLAININ EFOMANS ANALĐZLEĐ ĐLE ĐLGĐLĐ BĐLGĐSAYA YAZILIMI GELĐŞĐME Önder UAN, Đlky OHAN,.Hikme KAAKOÇ Andolu Üniversiesi,

Detaylı

DENEY 2: AM MODÜLASYON / DEMODÜLASYON

DENEY 2: AM MODÜLASYON / DEMODÜLASYON DENEY 2: AM MODÜLASYON / DEMODÜLASYON AMAÇ: Genlik odülyonu ve deodülyonun ilişkin teorik heplrın ypılı, odültör ve deodültör devrelerinin gerçeklenerek teel kvrlrın inelenei. MALZEMELER Oilokop, güç kyngı

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

EKLEMELİ DC KOMPOUND MOTOR DENEY AMAÇ: Eklemeli kompund bağlanmış DC motorun moment/hız ve verim karakteristiklerini incelemek.

EKLEMELİ DC KOMPOUND MOTOR DENEY AMAÇ: Eklemeli kompund bağlanmış DC motorun moment/hız ve verim karakteristiklerini incelemek. ĐNÖNÜ ÜNĐVRSĐTSĐ MÜHNDĐSLĐK FAKÜLTSĐ LKTRĐK-LKTRONĐK MÜH. BÖL. KLMLİ DC KOMPOUND MOTOR DNY 324-03. AMAÇ: klemeli kompund bğlnmış DC motorun moment/hız ve verim krkteritiklerini incelemek. 2. UYGULAMALAR:.

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Cebir Notları. Diziler Mustafa YAĞCI,

Cebir Notları. Diziler Mustafa YAĞCI, www.mustfygci.com, 006 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Diziler Mtemtiği e zevkli ve sürükleyici koulrıd birie geldik. Pek zorlcğımı thmi etmiyorum, çükü yei esil diziler e oldukç merklı. Kurtlr

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ BÖÜ ŞĞ RAS DE SRU - DEİ SRUAR ÇÖZÜERİ Sell bağıtısıda, si si olur i i sıvısı 0 0 sıvısıı ışığı kırma idisi, h si h si si si0 yasıya ıflı k r la ıflı c si ic h si ih c si 0 si c olur c 0 r cam olur δ açısı,

Detaylı