ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006"

Transkript

1 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X X subject to: X 1 + X 4 -X 1 + X 15 5 X 1 + X 45 X 1, X 0 Köşeler ZX 1 +4X A: (0,0) 0 B: (0, 5) 0 C: (, 6) 7 ** Optimum çözüm D: (7, 10/) 61/ E: (9, 0) 9 S 1 0 S 0 S 1 Đkinci kısıtın sağ taraf değeri 15 değil de 16 olsa idi C noktasının yeni koordinatları: ( 8/, 56/9) olurdu. Bu noktada hesaplanacak Z değeri: Z new 48/9 olurdu. U Z new - Z old 48/9-7 (48-4)/95/9 olur.

2 . a) Aşağıda verilen doğrusal programlama probleminin çözümünde aşağıda verilen simpleks tablosuna ulaşılmıştır. Bu tabloyu kullanarak verilen çözümün optimum olup olmadığını saptayınız. Çözüm optimum değilse optimum çözümü bulunuz. Gerekirse verilen boş tabloları kullanınız. Max. Z X + X s.t. X + 4X + X X + X + X 1+ 4X 1 1 X 1+ X + X X 1, X, X X 1 X X S 1 S S Basis C j RHS Ratio X 4 /4 1 1/ 1/ S 0 5/4 0 / -1/ S 0-5/4 0 1/ -/ Z j C j -Z j (/)R ---R ; (-1/)R +R 1 ---R 1 ; (-1/)R +R ---R X 1 X X S 1 S S Basis C j RHS Ratio X 4 1/ 1 0 1/ -1/ 0 0 X 5/ /6 / 0 10 S 0-5/ 0 0 -/ -1/ 1 5 Z j /6 4 5/6 / C j -Z j -11/ /6 -/ 0 Optimum Çözüm: X 1 0 X 0 X 10 S 1 0 S 0 S 5 Z110 b) Son simpleks tablosundaki bilgileri kullanarak, X nin objektif fonksiyondaki katsayısı C için mevcut çözümün optimum oluşunu bozmayacak değişim aralığını hesaplayınız. C 5 olsa çözüm nasıl değişirdi? X 1 X X S 1 S S Basis C j 4+d RHS Ratio X 4+d X S 0 Z j /6+d/ 4+d 5/6+d/ /-d/ d C j -Z j -11/6-d/ 0 0-5/6-d/ -/+d/ 0-11/6-d/ 0, -5/6-d/ 0, -/+d/ 0 eşitsizlikleri d için ortak çözülürse -5/ d bulunur ve bunun sonucu olarak da / c 6 elde edilir. C 5 olsa d1 olurdu ve bu durumda Z New 110+0(d)110+0(1)10 olur. c) Son simpleks tablosundaki bilgileri kullanarak, birinci kısıtın sağ taraf değeri olarak verilen 100 değerinin alt -üst limit değerlerini hesaplayıp bu limitlerin ne anlama geldiğini açıklayınız. Örneğin birinci kısıtın sağ taraf değeri 100 olmak yerine 105 olsa optimum çözüm değişir mi? Değişirse yeni çözümü veriniz.

3 X S new olarak da 0+ d / 0 10 d / d / 0 eşitsizlikleri ortak çözülürse 60 d 7. 5 bulunur ve bunun sonucu 40 b olur. b olsa d5 olacağı için X S new 0+ d / X 10 d / 6 5 d / S new 0+ 5/ X 10 5/ 6 5 (5) / S new 65 / 55 / 6 5 / ve Z4(65/)+(55/6)60/+165/6685/ olur. d) Eldeki kaynakların marjinal değerlerini (gölge fiyatlarını) belirtiniz. Birinci kaynaktan temin edilecek ilave her bir birimin fiyatı 0.55 olsa ve size bu fiyattan 7 birim daha satmayı teklif etseler alır mısınız? Neden? Marjinal değerler: u / 6; u / ; u Birinci kaynağın Marjinal değeri 5/60.8 olduğu; maliyet 0.55 olduğu ve ayrıca birinci kaynağa ilave edilebilecek miktarın üst sınırı da 7.5 olduğu için birim maliyeti 0.55 olan bu kaynaktan 7 birim daha almak, her bir ilave birimlik artış toplam karı (5/6-0.55) birim artıracağı için, uygun bir karar olacaktır.. Đki farklı DP probleminin simpleks metodu ile çözümünde aşağıdaki tablolara ulaşılmıştır. Tablolardaki eksikleri tamamladıktan sonra i) problemin çözümünün olup olmadığını, ii) çözümü varsa tablodan elde edilen çözümü, iii) birden fazla optimum özümü varsa en az bir optimum çözüm daha veriniz. a) Max Z 4 X X s.t. X 1 + X 10 - X 1 + X 8 X 1, X 0 X 1 X S 1 S A Basis C J M RHS X / A -M - 0-1/ -1 1 Z j 8+M 8 4+M/ M -M 40-M C j - Z j -4-M 0-4-M/ -M 0 C j - Z j değerlerinin hepsi 0 olduğu için bu tablo son simpleks tablosudur. Ancak Basis te bir yapay(artificial) değişken yer aldığı için bu problemin çözümü yoktur. (Infeasible) b) Max Z X 1 + X + X s.t. 4X 1 + X + X 4 X X + 0 X 0 4X X + X 16

4 X 1 X X S 1 A 1 S S Basis C j M 0 0 RHS Ratio X 1 1 1/ /4 4 8 S / 1 - S Z j / 8 C j -Z j M 0-1/ C j - Z j değerlerinin hepsi 0 olduğu için bu tablo son simpleks tablosudur. Buradan optimum çözüm okunursa: X 1 4 X 0 X 0 S 1 1 A 1 0 S 1 S 0 Z8 Olur. Yukarıdaki tabloda X temel değişkenlerden biri olmadığı halde C j - Z j değeri sıfırdır. Bu da bu problemin alternatif optimum çözümü olduğunun işaretidir. Yani X Basis e girer ve X 1 de çıkar. Alternatif optimum aşağıdaki tabloda verilmiştir. R 1 ---R 1 ; R 1 +R ---R ; R ---R X 1 X X S 1 A 1 S S Basis C j M 0 0 RHS Ratio X / 8 S S Z j / 8 C j -Z j M 0-1/ Bu tablodan optimum çözüm okunursa: X 1 0 X 0 X 8 S 1 1 A 1 0 S 0 S 0 Z8 Elde edilir.

5 4. Bir işletmenin cevher çıkarılan üç maden ocağı (M1, M, M) ve üç adet de Đşleme Merkezi (D1, D, D) bulunmaktadır. Aşağıdaki tablonun en son sütununda Maden ocaklarının üretim kapasiteleri (bin ton olarak); en alt satırında Maden işleme merkezlerinin işleme kapasitelerinin alt sınır değerleri (bin ton olarak); tablonun (MĐ, DJ) gözelerinde de 1000 ton madenin MĐ den DJ ye ulaştırılma maliyetleri verilmiştir. Ayrıca, M den D ye gönderilecek maden miktarı D ye gönderileceklerin en az % 50 si kadar; M1 den D e gönderilecek maden miktarı da D e gönderileceklerin en az %0 u kadar olmalıdır. Đşleme Merkezleri Maden Ocakları D1 D D Üretim M M M Kapasite Toplam ulaştırma maliyetini minimize eden çözümünü verecek DP modelini oluşurunuz. X ij M i den D j ye gönderilecek cevher miktarı olsun (1000 ton olarak) ; i, j 1,, Min Z 80 X X X X X X + 10 X X X s.t. X 11 + X 1 + X 1 0 X 1 + X + X 15 X 1 + X + X 10 X 11 + X 1 + X 1 15 X 1 + X + X 15 X 1 + X + X 15 X 0.5( M 1 Kapasitesi M Kapasitesi M Kapasitesi D 1 Talebi D Talebi D Talebi X 1 + X + X ) M den D ye gönderilecek miktarın D ye gönderilecekler içindeki payı X 1 0.(X 1 + X + X ) M 1 den D e gönderilecek miktarın D e gönderilecekler içindeki payı

6 5. Fın-Fıs(FF) 800 gramlık kutularda karışık kuru yemiş hazırlayıp pazarlamaktadır. FF nin değişik ad ve içeriklerde hazırladığı dört farklı karışımın 800 gramlık bir paketindeki kuru yemiş türleri ve miktarları(gr olarak) aşağıdaki tabloda verildiği gibidir. Karışım Fındık Ay Leblebi Antep Yer Fıstığı Badem Fiyat/kutu çekirdeği Fıstığı Özel YTL Lüks YTL Kral YTL Parti YTL Fiyat/kg.60 YTL 1.5 YTL YTL YTL.5 YTL.75 YTL Stok (kg) 00 Sınırsız FF Kral adı verilen karışımdan en az 0 kutu, Özel karışımdan da en çok 50 kutu satabileceğini öngörmektedir. FF her bir karışımdan kaçar kutu hazırlayıp satmalıdır ki toplam karı maksimum olsun. ( modelleyiniz, çözüm için uğüraşmaynız) X 1 Özel karışımdan hazırlanacak 800 gramlık kutuların sayısı XLüks karışımdan hazırlanacak 800 gramlık kutuların sayısı X Kral karışımdan hazırlanacak 800 gramlık kutuların sayısı X 4 Parti karışımdan hazırlanacak 800 gramlık kutuların sayısı olsun. Bu karışımların 800 gramlık bir kutusunun maliyetlerini hesaplayalım. 1 kutu Özelin maliyeti 0.(.60)+ 0.(1.5)+0.1()+0.1()+0.1(.5)+0.1(.75) YTL, 1 kutu Lüksün maliyeti 0.(.60)+0.()+0.(.5)+0.1(.75).155 YTL 1 kutu Kralın maliyeti 0.(.60)+ 0.( )+ 0.(.5).4 YTL, 1 kutu Partinin maliyeti 0.4( 1.5) + 0.4(.5) 1.90 YTL. Şimdi de 800 gramlık bu karışımların satışından elde edilecek net karları hesaplayalım. 1 kutu Özelden elde edilecek kar YTL; 1 kutu Lüksden elde edilecek kar YTL 1 kutu Kraldan dan elde edilecek kar YTL 1 kutu Partiden den elde edilecek kar YTL olur. DP modelimiz: Max Z X X X X 4 s.t. X 0 X X 1 +0.X + 0. X X X X X 75 Kral satışı Özel satışı Mevcut Fındık Miktarı Mevcut Leblebi Miktarı Mevcut Antep Fıstığı Miktarı 0.1 X 1 +0.X + 0. X +0.4X 4 00 Mevcut Yer Fıstığı Miktarı 0.1 X X 00 Mevcut Badem Miktarı X i1,,,4 i 0

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER Örnek 1: Bir boya fabrikası hem iç hem dış boya üretiyor. Boya üretiminde A ve B olmak üzere iki tip hammadde kullanılıyor. Bir günde A hammaddesinden

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ

Ulaştırma ve Atama. Konu 2. Ulaştırma Modeli. Doç. Dr. Fazıl GÖKGÖZ Ulaştırma ve Atama Modelleri Konu 2 Ulaştırma Modeli 1. Farklı kaynaklardan temin edilen bir ürün, mümkün olan minimum maliyetle farklı istikametlere taşınmaktadır. 2. Her kaynak noktası sabit sayıda ürün

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

SİMPLEKS ALGORİTMASI! ESASLARI!

SİMPLEKS ALGORİTMASI! ESASLARI! Fen ilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI ESASLARI Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA n n u sununun hazırlanmasında,

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI

END331 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI END33 YÖNEYLEM ARAŞTIRMASI I DERS NOTLARI İKİNCİ BÖLÜM (206-207) Dr. Y. İlker Topcu & Dr. Özgür Kabak Teşekkür: Prof. W.L. Winston'ın "Operations Research: Applications and Algorithms" kitabı ile Prof.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2.

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 11 Mayıs Matematik Soruları ve Çözümleri E) 2. Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / Mayıs 2008 Matematik Soruları ve Çözümleri 3 3. + : 7 4 7 4 işleminin sonucu kaçtır? A) 4 3 B) 4 5 C) 7 4 D) 5 7 E) 2

Detaylı

Ulaştırma Problemleri

Ulaştırma Problemleri Ulaştırma Problemleri Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir. Bu modelde, malların kaynaklardan (fabrika gibi )hedeflere (depo gibi) taşınmasıyla ilgilenir. Buradaki amaç

Detaylı

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1 EKON 305 Yöneylem Araştırması I Doğrusal Programlama Doç. Dr. Murat ATAN 1 Doğrusal Programlama Karar Verme ve Modeller Algılanan ihtiyaçlara özgü kasıtlı ve düşünceli seçim (Kleindorfer ve diğ., 1993)

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

15.010/15.011 Ara Sınav Çözümleri, 2004

15.010/15.011 Ara Sınav Çözümleri, 2004 15.010/15.011 Ara Sınav Çözümleri, 2004 1a) Yanlış. $ AC (Ortlama maliyet), MC (Marjinal Maliyet) Eğer ortalama maliyet düşüyorsa marjinal maliyet ortalama maliyetten daha azdır fakat marjinal maliyet

Detaylı

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making YÖNEYLEM ARAŞTIRMASI (Ders Akış Programı) Ders Sorumlusu : Y.Doç. Dr. Fazıl GÖKGÖZ, İletişim Bilgileri : 595 13 37, e-posta: fgokgoz@politics.ankara.edu.tr tr Applied Management Science: Modeling, Spreadsheet

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

11. HAFTA MÜHENDİSLİK EKONOMİSİ. Başabaş Analiz Yöntemi. Yrd. Doç. Dr. Tahir AKGÜL

11. HAFTA MÜHENDİSLİK EKONOMİSİ. Başabaş Analiz Yöntemi. Yrd. Doç. Dr. Tahir AKGÜL 11. HAFTA MÜHENDİSLİK EKONOMİSİ Yrd. Doç. Dr. Tahir AKGÜL Başabaş Analiz Yöntemi BAŞA-BAŞ NOKTASI ANALİZİ Başa-baş noktası, üretim miktarı, maliyet akışları ve satış gelirleri arasındaki ilişkilere dayanarak,

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

SERT KABUKLU MEYVELER VE KURU MEYVELERDE

SERT KABUKLU MEYVELER VE KURU MEYVELERDE İSTANBUL İHRACATÇI BİRLİKLERİ GENEL SEKRETERLİĞİ TABLOLARLA SERT KABUKLU MEYVELER VE KURU MEYVELERDE INC NİN KÜRESEL ÜRETİM DIŞ TİCARET VERİLERİ 2014 1 İÇİNDEKİLER Fındık......3 Badem......7 Kaju...11

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1...

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1... 114 Bölüm 12 Ders 12 Karma Kısıtlamalı Doğrusal programlama problemleri 12.1 Alıştırmalar 12 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1.... 1. Aşağıdaki problemlerde; (i) Aylak, artık ve yapay değişkenleri

Detaylı

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi 3. Ders Çok Boyutlu (Değişkenli) Veri Analizi Veri: Boy ölçüleri (boy-kol-omuz-kalça-bacak uzunluğu) Ölçü birimi: cm boy kol omuz kalca bacak 18 77 98 12 11 163 66 72 9 97 183 73 99 113 91 16 86 7 95 12

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Stok Kontrol Önceki Derslerin Hatırlatması Ders 5 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit oranlı, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik

Detaylı

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir:

2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: 2015 2016 BAHAR YARIYILI İKTİSADİ MATEMATİK VİZE SORU VE CEVAPLARI 1) Bir mala ait arz ve talep fonksiyonları aşağıdaki gibidir: a) Bu malın arz ve talep denklemlerinin grafiklerini çiziniz (5 puan) (DÖÇ.1-).

Detaylı

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1 Algoritmalara Giriş 6.06J/8.0J Ders 8 En Kısa Yollar II Bellman-Ford algoritması Doğrusal Programlama ve fark kısıtları VLSI yerleşimi küçültülmesi Prof. Erik Demaine November 6, 00 Copyright 00- by Erik

Detaylı

UYGULAMA 2. Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470, Eskişehir

UYGULAMA 2. Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470, Eskişehir UYGULAMA 2 Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470, Eskişehir HTK-224-TF-2 BOYUTLAR Kanat Alanı 77.3 m 2 Kanat Açıklığı 26.34 m Boyu 26.16 m Yüksekliği 8.61 m MOTORLAR

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Planlama Seviyelerine Bir Bakış

Planlama Seviyelerine Bir Bakış Kısa Vade Planlama Ufku Orta Vade Şimdi 2 ay 1 yıl Uzun vade Toplam planlama: Orta vadeli kapasite planlaması. Genellikle 2 ila 12 aylık dönemi kapsar. Planlama Seviyelerine Bir Bakış Kısa vadeli planlar

Detaylı

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Bölüm 11 Ders 11 Kısıtlamalı Minimizasyon Problemleri 11.1 Alıştırmalar 11 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıdaki problemlerde, dual problemi yazınız; dual problemi simpleks yöntemi

Detaylı

Mikroiktisat Final Sorularý

Mikroiktisat Final Sorularý Mikroiktisat Final Sorularý MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ MALĐYE VE ĐŞLETME BÖLÜMLERĐ MĐKROĐKTĐSAT FĐNAL SINAVI 10.01.2011 Saat: 13:00 Çoktan Seçmeli Sorular: Sorunun Yanıtı

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

II DP Model Kurma (Derste Çözülecek Örnekler)

II DP Model Kurma (Derste Çözülecek Örnekler) 1. Bir ayakkabı üretim firması 2 tür (kadın ve erkek) ayakkabı üretmektedir. Her bir ayakkabının üretim maliyeti sırasıyla 10 pb. ve 7 pb. dir. Firmanın Türkiye çapındaki bayileri; toplam olarak haftada

Detaylı

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL Problem 1 (KMS-2001) Bir endüstride iktisadi kârın varlığı, aşağıdakilerden hangisini gösterir? A)

Detaylı

HUBUBAT HUBUBAT. Toplam BAKLİYAT VE MAMÜLLERİ BAKLİYAT VE MAMÜLLERİ. Toplam YAĞLI TOHUMLAR T.C. DENİZLİ TİCARET BORSASI İKİ TARİH ARASI BORSA BÜLTENİ

HUBUBAT HUBUBAT. Toplam BAKLİYAT VE MAMÜLLERİ BAKLİYAT VE MAMÜLLERİ. Toplam YAĞLI TOHUMLAR T.C. DENİZLİ TİCARET BORSASI İKİ TARİH ARASI BORSA BÜLTENİ HUBUBAT MISIR MISIR 08/05/207-2/05/207 T.C. Sayfa: - 8 MISIR SOSLU TTS 3.30 9.00 3.882,00.00 KG 4,200.00 2 MISIR ı: 4,200.00 2 MISIR ı 4,200.00 2 HUBUBAT 4,200.00 2 BAKLİYAT VE MAMÜLLERİ NOHUT NOHUT NOHUT

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI 1-60) Dört çocuk, Ahmet, Ferit, Berk ve Mehmet koşu yarışı yapıyorlar. Yarışma sonucunda, Ahmet, "Ben birinci ve sonuncu

Detaylı

GAMS Kullanım Notları

GAMS Kullanım Notları GAMS Kullanım Notları Dilay Çelebi İstanbul Teknik Üniversitesi 1. Giriş Aşağıdaki DP problemini ele aldığımızı varsayalım. Z min = 4x 1 + 2x 2 + 33x 3 (1) x 1 4x 2 + x 3 12 (2) 9x 1 + 6x 2 = 15 (3) 5x

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 17.02.2006 Makalenin Kabul Tarihi : 16.11.2006

Detaylı

DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI

DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI DOĞRUSAL PROGRAMLAMA USULLERİNİN ARAZi VE BÜRO ÇALIŞMALARINA UYGULANMASI Hüsnü KALE Maden Tetkik ve Arama Enstitüsü, Ankara l. DOĞRUSAL (LİNEER) PROGRAMLAMANIN MADEN İŞLETMECİLİĞİNE UYGULANMASI Teknik

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

Karışımda toplam kakao: 32+5=37 gr olacaktır.

Karışımda toplam kakao: 32+5=37 gr olacaktır. 10 200 gramlık şekerli su 200 20 gr şeker vardır. 100 10 gr şeker ve 40 gram su ilave edilince; Toplam şeker 20 10 30 gr Tüm karışım 200 10 40 250 gr oluyor. 30 x 100.30 Şeker yüzdesi; x 12 buluruz. 250

Detaylı

DP Model Kurma (Derste Çözülecek Örnekler)

DP Model Kurma (Derste Çözülecek Örnekler) 1*. Bir tekstil firması 3 ebatta (S-M-L) gömlek üretmektedir. Her bir gömleğin üretim maliyeti sırasıyla 3 pb., 4 pb. ve 6 pb. dir. Firmanın Türkiye çapındaki bayileri; haftada en az 2000 adet S, 3000

Detaylı

TGK- GIDALARDAKĐ MĐKOTOKSĐN LĐMĐTLERĐNĐN RESMĐ KONTROLÜ ĐÇĐN NUMUNE ALMA, NUMUNE HAZIRLAMA VE ANALĐZ METODU KRĐTERLERĐ TEBLĐĞĐ (TEBLĐĞ NO: 2011/32)

TGK- GIDALARDAKĐ MĐKOTOKSĐN LĐMĐTLERĐNĐN RESMĐ KONTROLÜ ĐÇĐN NUMUNE ALMA, NUMUNE HAZIRLAMA VE ANALĐZ METODU KRĐTERLERĐ TEBLĐĞĐ (TEBLĐĞ NO: 2011/32) TGK- GIDALARDAKĐ MĐKOTOKSĐN LĐMĐTLERĐNĐN RESMĐ KONTROLÜ ĐÇĐN NUMUNE ALMA, NUMUNE HAZIRLAMA VE ANALĐZ METODU KRĐTERLERĐ TEBLĐĞĐ (TEBLĐĞ NO: 2011/32) 15 Ağustos 2011 PAZARTESĐ Resmî Gazete Sayı : 28026 Amaç

Detaylı

Yönetimsel Iktisat Final

Yönetimsel Iktisat Final Yönetimsel Iktisat Final 1) Aşağıdakilerden hangisi tamamlayıcı mal grubuna girer? a) kahve için: süt süt tozu b) beyaz peynir kaşar peynir c) Diş Fırçası Macun d)çay Kahve 2) Talepte bir artış, arzda

Detaylı

Üçüncü adımda ifade edilen özel kısıtları oluģturabilmek için iki genel yöntem geliģtirilmiģtir:

Üçüncü adımda ifade edilen özel kısıtları oluģturabilmek için iki genel yöntem geliģtirilmiģtir: TAMSAYILI DOGRUSAL PROGRAMLAMA ALGORİTMALARI TDP Algoritmaları, doğrusal programlamanın baģarılı sonuçlar ve yöntemlerinden yararlanma üzerine inģa edilmiģtir. Bu algoritmalardaki stratejiler üç adım içermektedir:

Detaylı

Ural Federe Bölgesi Öğretmen Evi. IX. Uluslararası Bilim Temelleri Bilgi Yarışması öğretim yılı. 1.etap. Maxim Kontsevich e ithafen

Ural Federe Bölgesi Öğretmen Evi. IX. Uluslararası Bilim Temelleri Bilgi Yarışması öğretim yılı. 1.etap. Maxim Kontsevich e ithafen Ural Federe Bölgesi Öğretmen Evi IX. Uluslararası Bilim Temelleri Bilgi Yarışması 2012-2013 öğretim yılı 1.etap Matematik 7.sınıf Maxim Kontsevich e ithafen Test soruları hazırlayan: Koutsenkova Olga,

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15.

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15. HARMONİK DENKLEM Harmonik denklemin sağ tarafının sıfır olması haline Laplace, sağ tarafının sıfır olmaması haline de Possion denklemi adı verilir. Possion ve Laplace denklemi, kısaca harmonik denklem

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

BÖLÜM 1 GİRİŞ 1.1 GİRİŞ

BÖLÜM 1 GİRİŞ 1.1 GİRİŞ BÖLÜM 1 GİRİŞ 1.1 GİRİŞ Microsoft Excel de dosyalar çalışma kitabı olarak isimlendirilir. Bu dosyalar normal belge türüdür. Dosya ismi üzerine fare ile tıklandığında dosya açılır. Excel dosyaları tablolardan

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

HUBUBAT T.C. DENİZLİ TİCARET BORSASI HAFTALIK BORSA BÜLTENİ - 6/02/2015. Tarih: Sayı: Sayfa: 1-11 Miktarı Br. Tutarı İşlem Sayısı

HUBUBAT T.C. DENİZLİ TİCARET BORSASI HAFTALIK BORSA BÜLTENİ - 6/02/2015. Tarih: Sayı: Sayfa: 1-11 Miktarı Br. Tutarı İşlem Sayısı HUBUBAT ARPA ARPA YEMLİK T.C. Sayfa: 1-11 ARPA YEMLİK MTS 0.65 0.75 0.6941 34,510.00 KG 23,955.00 3 ARPA YEMLİK TTS 0.73 0.74 0.7359 30,200.00 KG 22,224.49 3 ARPA YEMLİK ı: 46,179.49 6 ARPA ı 46,179.49

Detaylı

ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı,

ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı, ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı, 1230-1420 SOYADI: ADI: ÖĞRENCĠ #: ĠMZA: AÇIKLAMALAR Bu sınav toplam 17 sayfadan oluģmaktadır. Lütfen, bütün sayfaların elinizde olduğunu kontrol

Detaylı

T.C. DENİZLİ TİCARET BORSASI İKİ TARİH ARASI BORSA BÜLTENİ. Enaz Fiyat. Ençok Fiyat. Ortalama Fiyat

T.C. DENİZLİ TİCARET BORSASI İKİ TARİH ARASI BORSA BÜLTENİ. Enaz Fiyat. Ençok Fiyat. Ortalama Fiyat HUBUBAT ARPA ARPA YEMLİK 06/03/207-0/03/207 T.C. Sayfa: - 9 ARPA YEMLİK MTS 0.75 0.82 0.7856 45,800.00 KG 35,980.00 3 ARPA YEMLİK TTS 0.90 0.92 0.9022 63,255.00 KG 47,29.00 3 ARPA YEMLİK ı: 83,27.00 6

Detaylı