AKIŞ REJİMİNİN BELİRLENMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AKIŞ REJİMİNİN BELİRLENMESİ"

Transkript

1 AKIŞ REJİMİNİN BELİRLENMESİ 1. Deneyin Amacı Kimyasal proseslerde, akışkanlar borulardan, kanallardan ve prosesin yürütüldüğü donanımdan geçmek zorundadır. Bu deneyde dairesel kesitli borularda sıkıştırılamayan bir akışkanın laminer ve türbülent akış rejiminin belirlenmesi ve laminer akışta boru merkezindeki hızın ve ortalama hızın ölçülerek teorik oranla karşılaştırılması amaçlanmıştır. 2. Deney Teorisi 2.1. Kuramsal Temeller Laminer Akış: Akışkanın birbirine paralel ve düzgün tabakalar halinde akış biçimidir. Türbülent Akış: Akışkanın düzensiz, çapraz akışlar ve girdaplar halindeki akışıdır. Reynolds Sayısı: Reynolds, akışın bir tipten diğer tipe dönüştüğü şartları incelemiş ve laminer akışın türbülent akışa dönüştüğü kritik hızın dört büyüklüğe bağlı olduğunu bulmuştur. Bu büyüklükler boru çapı, akışkanın viskozitesi, yoğunluğu ve çizgisel hızı olup boyutsuz tek bir grup içinde birleştirilebilir. Akışın şeklinde olabilecek bir değişim bu grubun belirli bir değerinde olmalıdır. Reynolds sayısının büyüklüğü, kullanılan birimlerin birbirine uygun olması şartıyla birimlere bağlı değildir. Laminer akıştan türbülent akışa geçiş bir Re sayısı aralığında olabilir. Kapalı dairesel kesitli borularda laminer akışta çoğunlukla Re sayısının yaklaşık olarak 2100 den küçükür. Normal akış şartlarında Re sayısının yaklaşık olarak 4000 den büyük değerlerinde akış türbülenttir. Re sayısının arasındaki değerlerinde giriş şartlarına bağlı olarak akış şekli ne tam laminer ne de türbülent olmayıp, bu aralıktaki akış genellikle geçiş bölgesi diye adlandırılır. Borusal bir akışta akışın ve hız profilinin gelişmesi Şekil 1 de gösterilmektedir. Bu şekilde dairesel bir boruya giren akışkan, duvarlarla temas ettiğinde kaymazlık şartından dolayı, duvarlarda hız sıfır olmakta ve duvarlardan boru merkezine doğru uzaklaştıkça hız artmaktadır. Sonuç olarak borunun herhangi bir kesitinde r yönünde değişen bir hız profili oluşmaktadır. Hız 1

2 profili, yüzeye dik yönde yerel hızların mesafe ile değişimini veren grafiktir. Duvarla akış arasında yerel hızların değiştiği bölgeye sınır tabakası adı verilir. Şekil 1. Dairesel kesitli bir boruda hız profilleri ve hızın gelişmesi. Boru içinde akış yönünde belirli bir mesafeye kadar, hız değişimi merkeze ulaşıncaya kadar, hız profillerinin şekli yönünde değişir. Daha sonar hız profillerinin şekli sabit kalır ve akış yönünde değişmez. Hız profillerinin yönünde değiştiği bölgeye, hidrodinamik olarak gelişmekte olan akış, sabit kaldığı bölgeye ise tam gelişmiş akış denir. Laminer akış için hidrodinamik giriş bölgesinin uzunluğu aşağıdaki eşitlikten hesaplanır: Türbülent akış için ise tam gelişmekte olan bölgenin uzunluğu yaklaşık 10 boru çapı uzunluğu olarak alınır. (2) 2.2. Borularda Akış Rejimleri Düzgün bir boruda laminer ve türbülent akışla akan Newtonian bir akışkan için tipik bir hız dağılımı Şekil 2 de gösterilmektedir. Şekilde aynı zamanda aynı türbülent akışta hız bölgeleri de gösterilmektedir. Türbülent akış için dağılım eğrisinin, laminer akış için olandan daha geniş bir parabol olduğu görülüyor. Aynı zamanda maksimum hız ve ortalama hız arasındaki fark daha küçüktür. 2

3 Şekil 2. Tam gelişmiş laminer ve türbülent akışta radyal yönde hız dağılım profili. Laminer akışta borunun tüm kesit alanında akış laminerdir. Katı yüzeye yakın çok ince bir tabakada akış çok yavaştır ve akış rejimi lanimerdir. Bu tabakaya girdap (edi) nadiren ulaşır. Belirli bir kalınlığı olan ve içerisinde sürekli olarak girdap bulunmayan laminer özelliğe sahip bu tabakaya viskoz alt tabaka denir. Viskoz alt tabaka akış kesitinin sadece küçük bir bölümünü kaplar. Viskoz alt tabaka üzerinde değişik büyüklükteki girdapların etkisinden, dolayı herhangi bir noktada viskoz alt tabaka kalınlığı zamanla değişir. Viskoz alt tabakada sadece viskoz sürtünme önemlidir. Viskoz alt tabaka ile türbülent merkez arasında, hem viskoz sürtünmenin hem de girdap sürtünmesinin olduğu bir geçiş tabakası bulunur. Bu geçiş bölgesi tampon bölge olarak isimlendirilir ve nispeten ince bir tabakadır. Kalan akış alanı, türbülent merkez olarak isimlendirilen akış tarafından kaplanır. Türbülent merkez içinde viskoz kesme, türbülent viskoziteden kaynaklanan kesmeye nazaran ihmal edilir. Şekil 3 te Reynolds deneyi ve akış rejimlerinde boya izi şematik olarak gösterilmektedir. Şekil 3. Reynolds deneyi ve akış rejimleri. 3

4 2.3. Laminer Akış Şekil 4 de, içinde Newtonian bir akışkanın bir boyutlu kararlı hal laminer akışta aktığı bir borunun yatay kesiti gösterilmektedir. Akış tam gelişmiştir; yani akış giriş etkileri tarafından etkilenmemekte ve -yönünde akış ekseni boyunca değişmemektedir. Şekil 4. Borusal akışta kuvvet denkliği. Silindirik kontrol hacmi, iç çapı r, kalınlığı r ve uzunluğu olan bir kabuktur. Kararlı halde, momentum korunum eşitliği r yarıçapındaki silindirik yüzeye etki eden kayma kuvveti veya sürükleme kuvveti, kayma gerilimi ( r ) ile akış kesitinin ( 2 r ) çarpımı kadardır. Bununla birlikte bu büyüklük, aynı zamanda kabuğun silindirik yüzeyine momentum akış hızı olarak ta düşünülebilir. Bundan dolayı, net momentum akışı: ve + halkasal yüzeylerden net taşınım momentum akısı sıfırdır, çünkü akış tam gelişmiş olup terimler ten bağımsızdır. Bu doğrudur çünkü teki, + teki e eşittir. Eşitlik (3) ve (4) bir birine eşitlenir ve yeniden düzenlenirse aşağıdaki ifade elde edilir: ( r r) r r ( r r) r r( p p r ) r (5) Tam gelişmiş akışta, basınç gradienti ( p/ ) sabittir ve ( p/l) ye eşit olur; burada p, L uzunluğundaki boru için basınç düşüşüdür. r sıfıra yaklaştığında, aşağıdaki eşitlik elde edilir, 4

5 d( r r) p r dr L (6) Değişkenlerine ayrılır ve integre edilirse aşağıdaki ifadeyi verir: p r C1 r L 2 (7) r r = 0 da momentum akısı sonsuz olmadığından, integrasyon sabiti C 1 = 0 olmalıdır. Bundan dolayı; p p0 pl r r r (8) 2L 2L Bu ifade, momentum akısının, akışkanın aktığı borunun çapı ile doğrusal olarak değiştiğini gösterir ve maksimum değer r = R de (duvarda) meydana gelir. Aşağıdaki (9) eşitliği ile verilen Newton viskozite yasası, Eşitlik (7) de yerine yazılırsa, hız için aşağıdaki diferansiyel eşitlik (10) elde edilir: r du dr du (9) dr p0 pl r (10) 2L Duvarda, r = R (duvar), u = 0 sınır koşulu kullanılarak integrasyon yapılırsa, hız dağılımı için aşağıdaki bağıntı (11) elde edilir: u p 0 pl 2 r R 1 4L R 2 (11) Bu sonuç, laminer bir akış için yarıçapa göre hız dağılımının, boru ekseninde maksimum olan bir parabol şeklinde olduğunu gösterir. U ort 1 A A 2 R 1 1 uda urdrd u 2rdr 2 2 R R 0 0 R 0 (12) (11) ve (12) eşitlikleri birleştirilir ve integre edilirse aşağıdaki ortalama hız eşitliği (13) elde edilir: U ( p p ) 8L ( p p ) 32L 0 L 2 0 L 2 ort R D (13) 5

6 Burada çap D = 2R dir. Dolayısıyla, Hagen Poiseuille eşitliği olan Eşitlik (13), yatay bir borudaki laminer akış için basınç ve ortalama hız arasındaki bağıntıyı verir. Bir boruda akan akışkanın maksimum hızı r = 0 (boru merkezinde) meydana gelir ve Eşitlik (10) dan hesaplanabilir, U ma p p 4L 0 L 2 R (14) (13) ve (14) eşitlikleri birleştirilir ve düzenlenirse ortalama hız ile maksimum hız arasında aşağıdaki eşitlik elde edilir. U ma U ort (15) 2 3. Deney Düzeneği Deney düzeneği Şekil 5 de kabaca gösterilmektedir. Deney düzeneği bir su tankı, popa, akış kontrol vanası, şeffaf bir boru (cam veya akrilik) ve bir de boya haznesinden ibarettir. a b Şekil 5. Deney düzeneği; A: Pompa, B: Vana, C: Renkli sıvı haznesi, D: Cam boru Deney esnasında akış bölgeleri, boruya merkezden enjekte edilen renkli sıvının akış deseni görsel olarak incelenerek belirlenecektir. Üç farklı akış bölgesinin karakteristik özellikleri, akış desenindeki sürekli değişim gözlenerek ve ortalama hızları ölçülerek laminerden geçiş bölgesine, geçiş bölgesinden türbülent akışa dönüşümlerin hangi Reynolds sayılarında meydana geldiği belirlenecektir. 6

7 Deney düzeneğini çalıştırmak ve deneyleri yapmak için; Pompa çalıştırılarak suyun tüm akış borusunda hiçbir hava kabarcığı kalmaksızın akışı sağlanmalıdır. Renkli sıvının musluğu yeterli ölçüde açılarak akış borusuna enjektörden renkli sıvı girişi sağlanmalıdır. Akış hızı, vana kullanılarak akışı minimuma getirerek renkli sıvının, dalgalanma ve kopma olmadan ince bir iplikçik halinde akışı sağlandığında gözlenen durum laminer akış şartlarıdır. Laminer akış konumunda, boyanın boru merkezine verildiğini kabul ederek, iki nokta arasında renkli sıvı hattında oluşturulacak bir iz takip edilerek belirlenen iki nokta arasında bu izin geçiş süresi belirlenir. Bu verilerden akışkanın merkezdeki maksimum hızı hesaplanır. Akışın ortalama çizgisel hızını belirlemek amacıyla, hızı değiştirmeden, su çıkışına yerleştirilecek ölçekli bir kapla mevcut akışın hacimsel debisi ölçülür. Bunun için belirli bir hacmi ne kadar sürede doldurduğunu belirlenir ve bu verilerden ortalama çizgisel akış hızı hesaplanır. Bu değerlerden laminer akışta ortalama ve maksimum hızların oranı ve Reynolds sayısı hesaplanır. Daha sonra vana çok yavaş ve kontrollü bir şekilde açılarak, akışın laminerden geçiş bölgesine dönüştüğü hızı yakalanmaya çalışılır (ince boya izinin dalgalanmaya başladığı hız). Bu hızda yine ölçekli bir kap ile ortalama hız belirlenir ve gözlemlenen akışın Reynolds sayısı hesaplanarak 2100 le karşılaştırılır. Yine vana çok yavaş ve kontrollü bir şekilde açılarak, akışın geçiş bölgesinden türbülente dönüştüğü hız yakalanmaya çalışılır (dalgalanmakta olan boya izinin kırılmalara maruz kalıp, boru kesit alanına yayılmaya başladığı hız). Bu hız da, yine ölçekli bir kap ile ortalama hız belirlenir ve gözlemlenen akışın Reynolds sayısı hesaplanarak 4000 le karşılaştırılır. 4. Deney Sonuçlarının Değerlendirilmesi Her denemede hacimsel debi ölçümünde elde edilen veriler kullanılarak cm 3 /s olarak hacimsel debiler hesaplanacaktır. Süreklilik eşitliği kullanılarak boru için elde edilen hacimsel debi verilerinden boruda akan akışkanın ortalama lineer hızı belirlenecektir. 7

8 Elde edilen U ort. hızları kullanılarak bu veri çiftlerinin elde edildiği adımlardaki Re sayıları, yani akış bölgeleri belirlenecek ve gözlemlerinizle farklı çıkıp çıkmamaları irdelenecek ve yorumlanacaktır. Laminer akışta renkli sıvının a ve b noktaları arasındaki mesafeyi alma süreleri borudaki akışkanın maksimum hızını belirlemek için kullanılacaktır. U ma = (/t), (cm/s) bağıntısı kullanılarak farklı her deneme için U ma. değerleri hesaplanacaktır. Laminer bölge için elde edilen U ma. ve U ort hızları kullanılarak (U ort. /U ma ) oranları hesaplanarak, laminer bölge için U ort. /U ma = 0.5 literatür değeri ile kıyaslanacak ve sonuçların bu değerden farklı çıkması halinde bunun sebepleri izah edilerek yorum şeklinde yazılacaktır. Akış desenindeki sürekli değişim gözlenerek ve ortalama hızları ölçülerek deneylerden tespit edilen laminer akıştan geçiş bölgesine, geçiş bölgesinden türbülent akışa dönüşüm gözlemlerinden elde edilen Reynolds sayısı değerlerinin teorik değerlerle karşılaştırılarak sonuçları yorumlanır. 4. Semboller D: boru çapı F: kuvvet F s : sürtünme kuvveti F g : yerçekimi kuvveti P: basınç(kg.m 2 ) U ort : ortalama lineer hız U ma : maksimum hız u : yerel r: radyal yöndeki mesafe R: boru cidarından olan radyal yöndeki uzaklık : eksenel yöndeki mesafe r : kesme gerilimi w : boru cidarındaki kesme gerilimi : akışkanın yoğunluğu : akışkanın viskozitesi, (kg/m.s) : akışkanın kinematik viskozitesi, (m/s) 8

9 5. Kaynaklar 1- Taşınma Süreçleri ve Ayırma Süreci İlkeleri, Christie John Geankoplis, Çev. SinanYapıcı, 4. Baskıdan Çeviri, İzmir Güven Kitabevi, Akışkanlar Mekaniği: Temelleri ve Uygulamaları, Yunus A. Cengel, John M. Cimbala, Çev. Editör: Tahsin Engin, 3. Baskıdan Çeviri, İzmir Güven Kitabevi, Deneyle İlgili Çalışma Soruları 1. Akışkan nedir, akışkanlar mekaniğinde akışkanlar kaç guruba ayrılır, açıklayınız? 2. Akış nedir ve akış hangi kriterlere göre kaç şekilde sınıflandırılabilir, laminer akış ve türbülent akış nedir, bu akış türleri neye göre ayırt edilir? 3. Çizgisel hız, hacimsel hız ve kütlesel hız kavramlarını açıklayarak birbirleri ile olan ilişkilerini matematiksel olarak ifade ediniz. 4. Süreklilik eşitliği nedir? 5. Reynolds sayısının fiziksel anlamını yazınız. 6. Kayma gerilimi, viskozite ve kaymazlık şartı nedir kısaca açıklayınız. 7. Hız profili ve sınır tabaka nedir açıklayınız? 8. Borusal sistemlerde, gelişmekte olan akış ve tam gelişmiş akış ne demektir? 9. Ortalama hız ve lokal hız nedir? 10. Edi (girdap, burgaç, anafor) ne demektir? 11. Akış görüntüleme nedir? 12. Dairesel kesitli bir sistemde maksimum akış hangi konumdadır? 13. Akış içeren herhangi bir sistemde, katı yüzey üzerindeki akış hızının değeri ne olur, fiziksel olarak yorumlayınız? 14. Tam gelişmiş, dairesel kesitli laminer akışta U ort /U ma = 0.5 olduğunu ispat ediniz. 15. Hagen Poiseuille eşitliği nedir, nasıl türetilebilir? 9

AKIŞ REJİMİNİN BELİRLENMESİ

AKIŞ REJİMİNİN BELİRLENMESİ AKIŞ REJİMİNİN BELİRLENMESİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Kimyasal proseslerde, akışkanlar borulardan, kanallardan ve prosesin yürütüldüğü donanımdan geçmek zorundadır.

Detaylı

Bölüm 8: Borularda sürtünmeli Akış

Bölüm 8: Borularda sürtünmeli Akış Bölüm 8: Borularda sürtünmeli Akış Laminer ve Türbülanslı Akış Laminer Akış: Çalkantısız akışkan tabakaları ile karakterize edilen çok düzenli akışkan hareketi laminer akış olarak adlandırılır. Türbülanslı

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Akış Boru ve kanallardaki sıvı veya gaz akışından, yaygın olarak ısıtma soğutma uygulamaları ile akışkan

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Makina Mühendisliği Bölümü Makine Laboratuarı

Makina Mühendisliği Bölümü Makine Laboratuarı Makina Mühendisliği Bölümü Makine Laboratuarı Reynolds Sayısı ve Akış Türleri Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün akım çizgileriyle belirtilen

Detaylı

VENTURİMETRE DENEYİ 1. GİRİŞ

VENTURİMETRE DENEYİ 1. GİRİŞ VENTURİMETRE DENEYİ 1. GİRİŞ Genellikle herhangi bir akış esnasında akışkanın tabakaları farklı hızlarda hareket ederler ve akışkanın viskozitesi, uygulanan kuvvete karşı direnç gösteren tabakalar arasındaki

Detaylı

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6 Şube NÖ-A NÖ-B Adı- Soyadı: Fakülte No: Kimya Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Bahar yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru Çözümleri 30.05.2017 Adı- Soyadı: Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I OSBORN REYNOLDS DENEY FÖYÜ 1. Deney Amacı Bu deneyin amacı laminer (katmanlı)

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz. Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

SU ÜRÜNLERİNDE MEKANİZASYON

SU ÜRÜNLERİNDE MEKANİZASYON SU ÜRÜNLERİNDE MEKANİZASYON 8 Yrd.Doç.Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları & Teknolojileri Mühendisliği Bölümü Su Ürünleri Teknolojileri Su temini Boru parçaları

Detaylı

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

Borularda Akış. Hesaplamalarda ortalama hız kullanılır. En yaygın karşılaşılan akış sistemi Su, petrol, doğal gaz, yağ, kan. Boru akışkan ile tam dolu (iç akış) Dairesel boru ve dikdörtgen kanallar Borularda Akış Dairesel borular içerisi ve dışarısı arasındaki

Detaylı

KAYMALI YATAKLAR I: Eksenel Yataklar

KAYMALI YATAKLAR I: Eksenel Yataklar KAYMALI YATAKLAR I: Eksenel Yataklar Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Eksenel yataklama türleri Yatak malzemeleri Hidrodinamik

Detaylı

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 BERNOLLİ DENEYİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Yapılacak olan Bernoulli deneyinin temel amacı, akışkanlar mekaniğinin en önemli denklemlerinden olan, Bernoulli (enerjinin

Detaylı

Deneye Gelmeden Önce;

Deneye Gelmeden Önce; Deneye Gelmeden Önce; Deney sonrası deney raporu yerine yapılacak kısa sınav için deney föyüne çalışılacak, Deney sırasında ve sınavda kullanılmak üzere hesap makinesi ve deney föyü getirilecek. Reynolds

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I DENEY 2 : BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ (AKIŞKANLAR MEKANİĞİ) DENEYİN AMACI:

Detaylı

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No: Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 05.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 AKIŞKANLAR MEKANİĞİ DENEY FÖYÜ (BORULARDA SÜRTÜNME KAYIPLARI) Hazırlayan: Araş. Gör.

Detaylı

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları 4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Sıkıştırılamayan bir akışkan olan suyun silindirik düz bir boru içerisinde akarken

Detaylı

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr.

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr. Taşınım Olayları II MEMM009 Akışkanlar Mekaniği ve Isı Transferi 07-08 bahar yy. borularda sürtünmeli akış Prof. Dr. Gökhan Orhan istanbul üniversitesi / metalurji ve malzeme mühendisliği bölümü Laminer

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

Viskozite, Boyutsuz Reynolds Sayısı, Laminer ve Türbülanslı akımlar

Viskozite, Boyutsuz Reynolds Sayısı, Laminer ve Türbülanslı akımlar Borularda Akış Tipleri Viskozite, Boyutsuz Reynolds Sayısı, Laminer ve Türbülanslı akımlar Reynolds Osborne Deney Sistemi Viskozitenin tanımı; Bir akışkanın (sıvı veya gaz) viskozitesi, akışkan üzerine

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 DOĞAL VE ZORLANMIŞ TAŞINIMLA ISI TRANSFERİ DENEYİ ÖĞRENCİ NO: ADI SOYADI:

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ ONDOKUZ MAYIS ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MM30 MAKİNA MÜHENDİSLİĞİ LABORATUARI DERSİ BORULARDA BASINÇ KAYBI E SÜRTÜNME DENEYİ Hazırlayan Yrd.Doç.Dr. Mustafa ÖZBEY SAMSUN

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli

Detaylı

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ 1 3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ (Ref. e_makaleleri) Isı değiştiricilerin büyük bir kısmında ısı transferi, akışkanlarda faz değişikliği olmadan gerçekleşir. Örneğin, sıcak bir petrol

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

(2) Sürtünme doğmaz, dolayısıyla mekanik enerji ısıya dönüşmez.

(2) Sürtünme doğmaz, dolayısıyla mekanik enerji ısıya dönüşmez. 1 2. AKMA OLAYI (Ref. e_makaleleri) Akan bir akışkanın davranışı, katı-sınırlamaların etkisinde olup olmamasına göre değişir. Sabit duvarların etkisinde olmayan bir akışkanda kayma ve kayma gerilimleri

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 2015-2016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1 SORU 1) Şekildeki sistemde içteki mil dönmektedir. İki silindir arasında yağ filmi vardır. Sistemde sızdırmazlık sağlanarak yağ kaçağı önlenmiştir. Verilen değerlere göre sürtünme yolu ile harcanan sürtünme

Detaylı

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ Kimya Mühendisi, bir prosesin belirlenen koşullarda çalışıp çalışmadığını denetlemek için, sıcaklık, basınç, yoğunluk, derişim, akış hızı gibi proses değişkenlerini

Detaylı

< 2100 Laminer Akım > 4000 Türbülent Akım Arası : Kararsız durum (dönüşüm)

< 2100 Laminer Akım > 4000 Türbülent Akım Arası : Kararsız durum (dönüşüm) Sıvıların Viskozluğu Viskozluk : η (Gazlarda sıvılar gibi akmaya karşı direnç gösterirler, bu dirence viskozluk denir) Akıcılık : φ (Viskozluğun tersi olan niceliğe akıcılık denir, viskozitesi yüksek olan

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

Maddelerin Fiziksel Özellikleri

Maddelerin Fiziksel Özellikleri Maddelerin Fiziksel Özellikleri 1 Sıvıların Viskozluğu Viskozluk: Gazlar gibi sıvılar da akmaya karşı bir direnç gösterirler. Akışkanların gösterdiği bu dirence viskozluk denir ve ƞ ile simgelenir. Akıcılık:

Detaylı

VİSKOZİTE SIVILARIN VİSKOZİTESİ

VİSKOZİTE SIVILARIN VİSKOZİTESİ VİSKOZİTE Katı, sıvı veya gaz halinde bütün cisimler, kitlelerinin bir bölümünün birbirine göre şekil ya da göreceli yer değiştirmelerine karşı bir mukavemet arz ederler. Bu mukavemet değişik türlerde

Detaylı

5. BORU HATLARI VE BORU BOYUTLARI

5. BORU HATLARI VE BORU BOYUTLARI h 1 h f h 2 1 5. BORU HATLARI VE BORU BOYUTLARI (Ref. e_makaleleri) Sıvılar Bernoulli teoremine göre, bir akışkanın bir borudan akabilmesi için, aşağıdaki şekilde şematik olarak gösterildiği gibi, 1 noktasındaki

Detaylı

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ 1. Teorik Esaslar: Isı değiştirgeçleri, iki akışın karışmadan ısı alışverişinde bulundukları mekanik düzeneklerdir. Isı değiştirgeçleri endüstride yaygın olarak kullanılırlar

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

AKIŞKANLAR MEKANİĞİ-II

AKIŞKANLAR MEKANİĞİ-II AKIŞKANLAR MEKANİĞİ-II Şekil 1. Akışa bırakılan parçacıkların parçacık izlemeli hızölçer ile belirlenmiş cisim arkasındaki (iz bölgesi) yörüngeleri ve hızlarının zamana göre değişimi (renk skalası). Akış

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BERNOULLİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız ve yükseklik arasındaki

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SINIR TABAKA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMAN

Detaylı

ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ

ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ Pompa; suya basınç sağlayan veya suyu aşağıdan yukarıya terfi ettiren (yükselten) makinedir. Terfi merkezi; atık suların, çamurun ve arıtılmış suların bir bölgeden

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

Reynolds Sayısı ve Akış Rejimleri

Reynolds Sayısı ve Akış Rejimleri 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün akım çizgileriyle belirtilen çok düzenli akış hareketine laminer akış denir. Düşük hızlarda yağ gibi yüksek viskoziteli

Detaylı

T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ

T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ Hazırlayan Arş. Gör. Hamdi KULEYİN RİZE 2018 TERMAL

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Bölüm 2: Akışkanların özellikleri Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Giriş Bir sistemin herhangi bir karakteristiğine özellik denir. Bilinenler: basınç P, sıcaklıkt,

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 Deney Sorumlusu ve Uyg. Öğr. El. Prof. Dr. İhsan DAĞTEKİN Prof. Dr. Haydar EREN Doç.Dr. Nevin ÇELİK ArĢ.Gör. Celal KISTAK DENEY NO:1 KONU: Su jeti deneyi. AMAÇ: Su jetinin

Detaylı

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya BÖLÜM 10 BORULAR İÇERİSİNDE AKIM 10.1. HAREKET DENKLEMİ v Zamanla değişmeyen akımı v Hareket denklemini (d) HAREKET DENKLEMİ (p + L1p) m 2 - pnr 2 - y (m 2 L1x) sina - 't (2m L1x) Kütle x DEĞERLENDİRME:

Detaylı

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE)

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE) 5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE) Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Yapılacak olan deneyin temel amacı, akışkanların

Detaylı

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ Reoloji Yunanca da rheos akış demektir. Yunan filozofu Heraclitus reolojiyi panta rei akan herşey olarak tanımlamıştır. Bir maddenin bir zorlayıcı kuvvet karşısında

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 015-016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

CMK-202 / CMT204 Hidrolik - Pnömatik. Prof. Dr. Rıza GÜRBÜZ

CMK-202 / CMT204 Hidrolik - Pnömatik. Prof. Dr. Rıza GÜRBÜZ CMK-202 / CMT204 Hidrolik - Pnömatik Prof. Dr. Rıza GÜRBÜZ Hafta 1 Hidrostatik ve hidrodinamikle ilgili temel kanunları kavrayabilme Çankırı Karatekin Üniversitesi - 2016 2 Bu Derste İşlenecek Konular

Detaylı

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3.1 Gemi Direnci Bir gemi viskoz bir akışkanda (su + hava) v hızıyla hareket ediyorsa, gemiye viskoziteden kaynaklanan yüzeye teğet sürtünme kuvvetleri

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BORULARDA VE HİDROLİK ELEMANLARDA SÜRTÜNME KAYIPLARI DENEY FÖYÜ 1. DENEYİN AMACI Borularda

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü KAYMALI YATAKLAR Prof. Dr. İrfan KAYMAZ Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Eksenel yataklama türleri Yatak malzemeleri Hidrodinamik

Detaylı

Özel Laboratuvar Deney Föyü

Özel Laboratuvar Deney Föyü Özel Laboratvar Deney Föyü Deney Adı: Mikrokanatlı borlarda türbülanslı akış Deney Amacı: Düşey konmdaki iç yüzeyi mikrokanatlı bordaki akış karakteristiklerinin belirlenmesi 1 Mikrokanatlı Bor ile İlgili

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

Hidrostatik Güç İletimi. Vedat Temiz

Hidrostatik Güç İletimi. Vedat Temiz Hidrostatik Güç İletimi Vedat Temiz Tanım Hidrolik pompa ve motor kullanarak bir sıvı yardımıyla gücün aktarılmasıdır. Hidrolik Pompa: Pompa milinin her turunda (dönmesinde) sabit bir miktar sıvı hareketi

Detaylı

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar KAYMALI YATAKLAR II: Radyal Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

Orifis, Nozul ve Venturi Tip Akışölçerler

Orifis, Nozul ve Venturi Tip Akışölçerler Orifis, Nozul ve Venturi Tip Akışölçerler Bu tür akışölçerlerde, akışta kısıtlama yapılarak yaratılan basınç farkı (fark basınç), Bernoulli denkleminde işlenerek akış miktarı hesaplanır. Bernoulli denkleminin

Detaylı

Bölüm 13 AÇIK KANAL AKIŞI

Bölüm 13 AÇIK KANAL AKIŞI Akışkanlar Mekaniği: Temelleri ve Uygulamaları 3. Baskı Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2014 Bölüm 13 AÇIK KANAL AKIŞI Slaytları Hazırlayan: Prof. Dr. Suat CANBAZOĞLU Yayın hakkı The McGraw-Hill

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Yoğunluğu 850 kg/m 3 ve kinematik viskozitesi 0.00062 m 2 /s olan yağ, çapı 5 mm ve uzunluğu 40

Detaylı

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin BURMA DENEYİ Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin genel mekanik özelliklerinin saptanmasında

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI SU JETİ DENEYİ FÖYÜ 2 1. GENEL BİLGİLER Akışkan hareketi sonucu kuvvet oluşması bilinen

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin 05-06 GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin 7-9 Termodinamik alanında kullanılan ve aşağıda verilen değişkenlerin her birinin ana boyutlarını

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

ADIYAMAN ÜNİVERSİTESİ

ADIYAMAN ÜNİVERSİTESİ ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ MAK 421 MAKİNE LABORATUVARI II TERMAL İLETKENLİK (SIVI ve GAZLAR için) EĞİTİM SETİ DENEY FÖYÜ 2018 İÇİNDEKİLER TEORİK BİLGİLER... 3 Radyal

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı