İNTEGRAL KONU ANLATIMI ÖRNEKLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İNTEGRAL KONU ANLATIMI ÖRNEKLER"

Transkript

1 İNTEGRL KONU NLTIMI ÖRNEKLER

2 Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid göstrilir df d F d d d d d d d d, d d d d d d d d d d d d d d d d sc d t csc d cot sc t d sc csc cot d csc d F d

3 d d t d t d sc d d t d t d d d d d sc d sc t d sc d csc d t cot TEOREM:, [,] rlığıd sürkli ir oksio F = t dt, [,] is F oksio, rlığıd türi lıilir ir oksio olp F =,, dir d t dt d d d t t dt TEOREM:, [,] rlığıd sürkli ir oksio ir ilkli F is ; d F F dır 7 d d d d = ğrisi, =, = doğrlrı ksi il sıırlı ölgi lı : d dir d d t dt

4 d d d UYRI: Foksio = içi TNIMSIZ sürksiz olğd itgrl sıırlrı içid olsdı itgrl lm iģlmi pılmzdı = - ğrisi ksi il sıırlı ölgi lı kç irim krdir? -=-+= =-, =, = d d d d d EK BİLGİ : Prol ksi il sıırlı l = T Yüksklik= d, [,] d sürkli ir oksio c [, ] içi ; d d c d c

5 ? d - = içi = d d d d d = - doğrs = prolü il sıırlı ölgi lı kç r dir? = - doğrs = prolü - =, +-=, =- = oktlrıd ksiģirlr = d d = =g ğrilri il sıırlı ölgi lı ; d g = ğrisi ksi il sıırlı ölgi lı kç r dir? =-, =, = d d d 7

6 = = ğrilri il sıırlı ölgi lı kç r dir? d d = =- ğrilri il sıırlı ölgi lı kç r dir? =- < içi ; --+ =, =- içi ; -+ =, = d d d ORTLM DEĞER TEOREMĠ:, [,] d sürkli ir oksio ik ; c d Ģitliğii sğl ir c[,] rdır = = + oksio içi ; [-,] rlığıd ortlm dğr tormi g c dğrii lz? d c c c d = -, = UYRI: Dikdörtg dıģıd kl trlı lı, Dikdörtg içid kl trmmıģ l Ģitliği dikkt diiz

7 7 ğrilri il sıırlı ölgi lı kç r dir?, d ğrilrii, rlığıd sıırldığı ölgi lı kç r dir? d d g ] [ ğrilri il sıırlı ölgi lı kç r dir? d UYRI: d d

8 , ir çit oksio is : d d, ir tk oksio is : d dır d dğri kçtır? tk oksio olğd d dır d d ğrilri il sıırlı ölgi lı kç r dir?,, d d +=- =-, = ] [ d d

9 d? olğd ; d d d d N içi : çit ik ; d tk ik ; d dır r poziti rsol sılrı içi : r r d d ; - < < içi - ; < < içi ; < < içi '' d ' ' d =? d d d d d d rc rc < >, <

10 ? d d d rc rc rc d d rct d rct ğrilri il sıırlı ölgi lı kç r dir? =-, = d d rct d l d l d l d 7 l 7 d d d l l d l ' d l d d d l sc l t '

11 d sc l t d l d l d d l l d d l l l t t dt l l l l d d l cot d l cot d d l l l l l d d d d d l l l l d l l

12 l l d l d ' d d l l d d d d d 7 7 d d d d d d d d sc d sc t sc d sc d sc t sc t sc d sc t sc t sc t sc l l sc t sc d l sc t csc d l csc cot ' d

13 l d l l l d l d d d d d d d d d d d l d d l d d d l l l d l l d ds s s ds s s s s rct ds s s rct rct UYRI : Ġtgrli lıck id d, hgi oksio, hgi d d dilcğii kollģtır ir ol : LPTÜ klimd ; L ; logritm ; rc, rc gii trs trigoomtrik oksiolr P ; poliom oksio T ; trigoomtrik oksio Ü ; üstl oksio olmk üzr iki dğiģik oksiod öc gl oksio, diğr kısım d il göstrilir

14 d l l d d d d d l l l rct d rct d d d l l rct rct rct d d d d d d d d d d d d d sc sc sc d d d t sc t sc sc d sc t t sc sc t d d d sc sc t sc sc sc t sc d d sc t sc sc d t l sc t sc sc d d d d d d d d d d d d d

15 d d d =,, d d d d d d d d d d d d d =,, d d d d d d d d d d d d d d d d d d d d d d d d d d

16 m d ġklidki itgrl iģlmlrid: tk is: m d zılır = - kllılır m tk is: m zılır d m m d d = d = d d = drsk = d olr d = = + U = 7 + = + + = - kllılır = + + m çit is: = -, = + = 7 d kllılır d = + d = + d = + d d = d = d = drsk = d olr 7 d = = + = + d = + d = + d = d = d = drsk = olr d = = = = = dğrlri rlri zıldığıd: d = + +

17 t sc d = t sc sc d = t t + sc d = t drsk = sc d olr t sc d = + = + = = 7 t 7 + t + cot csc d = cot csc csccot d cot = csc Ģitliği klıldığıd; = csc csc d csc = csc csc d csc = csc + csc + t sc d = t sc sct d = sc sc sct d = sc sc sct d = sc drsk = sct d olr t sc d = d d d ġklidki itgrl iģlmlrid; = + + = + + = + TrsdöüĢüm ormüllri kllılır = = 7 sc7 sc + t sc d = sc sc d = sc d sc d = sc d = sc d drsk = sc t d = t olcğıd; d = kısmi itgrlid sc d = sc sc d = sc t t sc d olr Yri zıldığıd; t sc d = sc t sc d sc d = sct + l sc + t + t sc d = sc t sct l sc + t + d = 7 d = d = d + = + + d = d = + d d d 7

18 d > d ġklidki itgrl iģlmlrid; = π π d = drsk; = + rc = rc = π = π = = UYRI = = olğd d = = + = + + k = + + k lr d = + + =, = rc = = d = Blirli itgrl tımıd d idsi, + = çmrii I Bölgd sıırldığı lı rir = + rc + kçtır? d itgrlii soc ÖYS Ġtgrl iģlmi grikt trlı dir dilimii lıı rir = π = π

19 d ++ d Ġtgrli; + = çmri ++ = + + = prolü il sıırlı ölgi lıı rir ++ d = + d + d = + + l + + d = d = d d + d = rct + = + rc = + π π = + π + + d + + = + B = B = = + d + d = d + d + d + = + + l = l + l

20 HĠM: ++ + d ++ + = B + D +E = B = = D = E = ++ + d = d + d + = l l + rct + + d d = ğrisi, =, = doğrlrı ksi il sıırlı R ölgi ksi trıd o dödürülmsil olģ döl cismi hcmi: V = π d = π d d = + B+ ++ = B = = d = d d =l l rct + + =g ğrisi, =, = doğrlrı ksi il sıırlı R ölgi ksi trıd o dödürülmsil olģ döl cismi hcmi: V = π d = π g d

21 = r doğrs, ksi =h doğrs il sıırlı ölgi ksi trıd o dödürülmsil olģ döl cismi hcmi: V = π = πr d = π r = r ğrisi ksi il sıırlı ölgi ksi trıd o dödürülmsil olģ küri hcmi: YOL: r V = π r d = π r d = π r r r = πr =m doğrs O ksi trıd o dödürülmsil olģ h döl cismi hcmi: V = d =m doğr dklmid m= r =- ğrisi, ksi, = = doğrlrı il sıırlı ölgi ksi trıd dödürülmsil olģ döl cismi hcmi: =π = πm = π r V = d = π r d = πr V = π d = π d = π = π

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com Tiri ml rklrii rlıklı vr yömi gör izly bir işlmd döm s iibriyl sk rklrii drm şğıdki gibidir DB Ml Mvd 2 000 Döm içi Ml Alışı 50 000 Alış İd 3 000 Tiri Ml Hs Al Tp 5 000 Tiri Ml Hs Brç Klı 52 000 Yriçi

Detaylı

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları

Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları - Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

Ü ş ş ş ş ş Ü ş Ü ç ş Ö ç Ü ç ç ş ç ş ş ş ş ş Ç ş ş ş ş ş Ç Ö Ü Ö Ü Ü Ü ş ç ç ş ş ş ş ç ç ş ş ç ş ş ç ç ş ç ş ç ç ç ç ş ç ç ş ş ç ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ş ç ş ş ş ş

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)).

İNTEGRAL - 6 ALAN HESABI. Bazı Önemli Fonksiyonların Grafikleri: y = mx3. y = mx 2. Taralı Alan = x = my 2. f g. y.x = m. g f. (f(x) g(x)). SEÇKÝN GRUP DERSHANESÝ Kurtuluþ Mh. Hkký Yðcý C. - 76 / UÞAK İNTEGRAL - 6 ALAN HESABI.. Bzı Önemli Fonksionlrın Grikleri: = m = m () = () = Trlı Aln = (). Trlı Aln = (). = m. = m 5. 6. g g Trlı Aln = Trlı

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları İNTEGRAL İÇ KAPAK B kitın ütün ın hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI n ittir. Kısmen de ols lıntı pılmz. Metin, içim ve sorlr, ımln şirketin izni olmksızın, elektronik, meknik, fotokopi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

İ İ İ» Ö

İ İ İ» Ö ğğ İ İ İ Ğ ğ ş ğ ş Ş Ğ Ğ İ Ğ ş ş ğ ş ş ç ğ İ Ğ İ İ İ» Ö İ Ö Ğ İ ş ğ Ö Ğ İ ş ğ ç Ğ ş Ç ğ ğ İ İ ğ İ ç ğ Ç ğ ğ ç ş ğ İ ş ş ğ İ ş İ İ ş İ Ğ ş Ö ğ ğ ğ Ş İş ş ğ ğ ç Ç ğ ğ Ö ş Ç İ Ö Ö ğ ş İ İ Öğ ş ğ ş ç ğ ş ğ

Detaylı

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

FONKSĠYONLAR. f Ģeklinde tanımlanan

FONKSĠYONLAR. f Ģeklinde tanımlanan Fonksion kvrmı, memiğin en önemli konsr ÖSS Memik II sorlrını çözeilmek için onksion konsn çok ii ilmek ve özümsemek gerekir TANIM: A kümein er elmnını, B kümein ir ve lnız ir elemnı ile eģleen A n B e

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

UYGUNLUK TESTİ. Müşterinin Adı Soyadı / Ticari Unvanı: Yaşınız 18-30 yaş 31-50 yaş 51-65 yaş 66 ve üzeri Kurumsal Müşteri

UYGUNLUK TESTİ. Müşterinin Adı Soyadı / Ticari Unvanı: Yaşınız 18-30 yaş 31-50 yaş 51-65 yaş 66 ve üzeri Kurumsal Müşteri UYGUNLUK TESTİ Bu nktin mı siz sunulk ürün vy hizmtin risklrini nlyilk ilgi v trüy ship olup olmığınızın nlşılmsı, öyl siz h uygun hizmt sunulmsının sğlnmsıır. Bu konu ir ğrlnirm ypılilmsi sizn grkli ilgilrin

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ . Ulusal Tasarım İmalat v Analiz Kongrsi 11-1 Kasım 010- Balıksir YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ Aydın DEMİRCAN*, M. Ndim

Detaylı

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B 6 LYS/MAT MATEMATİK ÇÖZÜMLERİ DENEME. ( ab) ( ab) 6( ab) 6. 6 y z ( ab) ( ab) 6( ab) 6 6 6y y z 6y ( ab) 6 6( y) ( y z) ab.. olur. y v y z. 7 z y / y z k k z y z y t bulunur. 7 9y y 8y k, y k zk A) y 8,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MTEMTİK ENEME ÇÖZÜMLERİ nm -. ^ + h ^ - + h ^h - 7 ^^h - h 7 ^^h - h 7. 7- ^+ ch 7- ^+ ch 7- ^+ h + + + c + c + 7 7 7 - + - + - + c + c + vp 7c + c + + c + m- +. + + + 8^7+ h + + 7 + ^7+ h vp 7 7-9

Detaylı

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan.

Magnetic Materials. 4. Ders: Paramanyetizma-2. Numan Akdoğan. Mgntic Mtrils 4. Drs: Prmnytizm-2 Numn Akdoğn kdogn@gyt.du.tr Gbz Institut of Tchnology Dprtmnt of Physics Nnomgntism nd Spintronic Rsrch Cntr (NASAM) Kuntum mkniği klsik torinin özlliklrini dğiştirmdn,

Detaylı

YERİNDELİK TESTİ. *Profesyonel Müşteriler 1,2,4,7,8 ve 9. soruları cevaplamak zorunda değildirler. MÜŞTERİNİN ADI-SOYADI / TİCARİ UNVANI :

YERİNDELİK TESTİ. *Profesyonel Müşteriler 1,2,4,7,8 ve 9. soruları cevaplamak zorunda değildirler. MÜŞTERİNİN ADI-SOYADI / TİCARİ UNVANI : YERİNDELİK TESTİ Bu nktin mı, irysl portföy yöntiiliği vy ytırım nışmnlığı kpsmın siz sunulk hizmt il ytırım mçlrınız, mli urumunuz il ilgi v trünizin uyumlu olup olmığının ğrlnirilmsiir. Bu konu ir ğrlnirm

Detaylı

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ Ordu Üniv. Bil. Tek. Derg.,Cilt:,Syı:,,3-4/Ordu Univ. J. Sci. Tech.,Vol:,No:,,3-4 İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ İmdt İŞCAN *, Selim

Detaylı

TLE 35128R Serisi CATV Hat Tekrarlayıcılar

TLE 35128R Serisi CATV Hat Tekrarlayıcılar TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x)

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x) ÖLÜM - İNTEGRL KVRMI - İlel Fosiyo vey elirsiz İtegrl ir osiyou türevii sıl lıdığıı iliyoruz.u ölümde türevi lımış ir osiyou ileliiöei hlii sıl uluğıı ieleyeeğiz.ypğımız u işleme İtegrl lm vey osiyou ilelii

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

TLE 35128R Serisi CATV Hat Tekrarlayıcılar

TLE 35128R Serisi CATV Hat Tekrarlayıcılar TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç

Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç Ğ ç ç Ş Ğ Ş Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç ç ç ç ç Öç ç ç ç Ç ç ç ç ç ç Ş ç ç ç ç ç ç Ğ ç Ü Ü ç ç Ü Ğ ç ç ç Ş Ş ç Ç ç Ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç ç Ü Ğ ç Ç ç ç Ş ç Ç Ç ç Ö ç ç ç ç ç Ş ç Ş Ş ç ç ç

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com

SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 stajbaslatmasinavi@gmail.com DEĞİŞİME AÇIK OLUN 1 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 2 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 3 sjbslmsivi@gmilm 1 Bir işlmi bzı bilgilri şğıdki gibidir: (Bi TL) Öki Döm Cri Döm Alıılr 940 610 Alk Slri

Detaylı

Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç

Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç Ğ Ğ Ü Ğ Ğ Ü Ğ Ş Ğ ş ğ ç ş ö ğ ş ş Ş Ş ş ş ğ Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ö ğ ğ ş ş ö ş ğ ç ç ç ç ş ş ş ğ ö ö ğ ö ç ş ç ş ğ

Detaylı

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş Ğ Ğ Ğ Ğ Ğ Ş Ğ ş ğ ç ş ö ğ ş ş Ş Ş Ş» ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ö ğ ğ ş ş ö ş ğ ç ç ç ç ş ş ş ğ ö ö ğ ö ç ş ç ş ö ö ş ş ğ

Detaylı

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ö Ğ Ç Ü Ü Ç Ç Ç Ö Ü Ü Ü Ü ÖÜ» Ç Ş Ş Ö Ç Ğ Ü Ü Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ş Ş «Ş Ö Ü Ü Ü Ş Ş Ş Ç Ç Ş Ç Ş Ç ŞÇ Ö Ü Ç Ç Ş Ç «Ö Ç Ğ Ç Ü Ç Ç Ş Ü Ğ Ş Ç Ş Ç Ö Ç «Ö Ö «Ö Ç Ç Ö Ş Ü Ç Ş Ş Ş Ş «Ç ŞÇ Ö Ü Ş Ş

Detaylı

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI: ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ

Detaylı

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ü Ğ Ş Ğ ş ğ ç ş ğ ş ş ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ç ç ç ç ğ ş ş ç ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ ç ş ğ ğ ş ş ş ğ ç ç ç ç ş ş ş ğ ğ ç ş ç ç ş ş ş ç ç ç ğ

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

ç Ç Ş Ş Ü Ş Ş Üş ş Ö Ç ç ş ç ş ş ü ç ş Ş ü ş ş ç ç ş ç ş ö ş ş ö ö ü Ş ü ü ş ü ü ü ş ç Ü «Ö ç ş ü ş ş ö Ş ç ç ş ç üç ö ş ç ş ç Ş ü ö üç ş Ş ü Ş Ç Ç Ç Ö ç ş ü ü ö ö ü ş ç ş ç Ş ç ş ü ü ş ş ş ö ş ç ş ö ş

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ö ğ ç ğ ğ ğ ö ğ ö ö ğ ç ö ö ç ğ ğ ğ ğ ç ö ö Ü Ş Ç ö ö ö Ş ö ç ğ ğ Ş Ç ğ Ç ç Ş ö ö ö ö ö ç ğ ö ç ö Ş çö ç Ş ğ ğ ğ Ş Ç ğ ö ö ğ ö ö ç ç Ç ğ ğ ğ ö ğ Ö Ş ğ ğ Ş ğ ö ç ğ ö ç ğ ç ç ğ Ş ç ö ö ğ ç ç ğ ç ç ğ ç ç

Detaylı

Ü Ş Ü

Ü Ş Ü Ğ Ö Ü Ü Ğ Ü Ğ Ü Ş Ü Ç Ü ÇŞ Ç Ş Ş Ü Ö Ö Ş Ö Ş Ö Ö Ç Ş Ö Ö Ö Ü Ö Ş Ö Ç Ş Ş Ö Ğ Ş Ö Ö Ç Ş Ö Ş Ö Ş Ş Ü Ü Ş Ş Ö Ö Ö Ş Ö Ğ Ö Ş Ö Ü Ö Ş Ü Ş Ç Ö Ö Ö Ö Ü Ö Ş Ğ Ö Ü Ç Ö Ü Ş Ö Ü Ç ŞÇ Ş Ş Ç Ş Ö Ö Ö Ö Ö Ö Ö ŞÇ Ö Ö

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

Ö Ç

Ö Ç Ğ Ö Ç Ç Ğ Ş Ş Ş Ç Ç Ç Ç Ş Ç Ç Ç Ş Ş Ç Ş ŞÇ Ş Ş Ö Ö Ş Ö Ö Ç Ç Ç Ç Ç Ş Ş Ş Ş Ç Ç Ş Ş Ö Ş Ç Ş Ş Ş Ö Ş Ç Ş Ş Ş Ç Ş Ş Ö Ş Ş Ş Ş Ş Ö Ç Ş Ç Ö Ç Ş Ç Ş Ö Ö Ç Ç Ş Ş Ö Ö Ş Ğ Ş Ş Ş Ö Ş Ş Ğ Ş Ç Ö Ş Ş Ç Ğ ÇÖ Ğ Ş Ğ Ö

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

2011 LYS MATEMATİK Soruları

2011 LYS MATEMATİK Soruları 0 LYS MATEMATİK Sorulrı. 0, ( 0, ) işlminin sonuu kçtır? A) B) C) 0 D) E). x y = oluğun gör, x + 4y 4x y y + x ifsinin ğri kçtır? A) 4 B) C) 8 D) 9 E). v < x < v oluğun gör, x şğıkilrn hngisi olilir? 4

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi;

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi; S i s t e m - a t i k M e m b r a n K a p a k S i p a r i T a k i p v e Ü r e t i m T a k i p S i s t e m i ; T ü r k i y e l d e b i r i l k o l a r a k, t a m a m e n m e m b r a n k a p a k ü r e t

Detaylı

GELİR TABLOSU NET SATIŞLAR BRÜT SATIŞ KARI/ZARARI ESAS FAALİYET KARI/ZARARI. fuathoca.net 1

GELİR TABLOSU NET SATIŞLAR BRÜT SATIŞ KARI/ZARARI ESAS FAALİYET KARI/ZARARI. fuathoca.net 1 İlk Mdd Mlzm DB Dirk İlk Mdd Mlzm Sğ Döm içi Dirk İlk Mdd Mlzm lımı (+) Kllılbilir Dirk ilk Mdd Mlzm DS Dirk İlk Mdd Mlzm Sğ(-) Kllıl Dirk İlk Mdd Mlzm Kllıl Dirk İşçilik Gidri Kllıl Gl Ürim Gidri Tplm

Detaylı

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek...

Örnek...4 : Örnek...5 : Örnek...6 : Örnek...7 : ( 3x2 + x 3) dx=? Örnek...1 : Örnek...2 : Örnek...8 : ln2 (e 2x +e x )dx=? ln1. Örnek... KURALLARI. f ( )= f ( ). f ( )= Örnk... : ( + 7+ )=? 7. k. f ( ) =k. f ( ) Örnk... : sin =?. (f ( )±g ( ))= f ( )± g( ). c f ( )= f ( )+f ( ), c c< 6. (-).min(f())< f ( )=

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Hava Kirliliği Yönetimi ve Modelleme Çalışmalarında Karışım Yüksekliği. Parametresinin Önemi ve Hesaplanması

Hava Kirliliği Yönetimi ve Modelleme Çalışmalarında Karışım Yüksekliği. Parametresinin Önemi ve Hesaplanması Haa Kirliliği Yötimi Modllm Çalışmalarıda Karışım Yükskliği Özt Paramtrsii Ömi Hsaplaması Frhat Karaca, İsmail Aıl Fatih Üirsitsi, Çr Mühdisliği Bölümü, 34500, Büyükçkmc, İstabul (fkaraca@fatih.du.tr,

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

katsayıları sabit katsayılardır. Bir kez t t 0 için u(t), t=t 0 ve türevlerinin başlangıç koşulları belirlenmiş ise t t 0 için y (t)

katsayıları sabit katsayılardır. Bir kez t t 0 için u(t), t=t 0 ve türevlerinin başlangıç koşulları belirlenmiş ise t t 0 için y (t) Dfrl Dkl ol Trfr Foko ol v Dr zı ollr:. kl oll: r fzkl k vrışıı l kl kllr kl ol r. orol lk k kl oll lz v l rıı öl r ıı olşrr. orol l r vrlğ ölkl k özllklr lrl r ğşk kııı ılk rkr. Örğ korol k ğz r lkrk

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Dnm. ^ h ^ h ^h ^^h h ^^h h. ^ h ^ h ^ h Cvp C m. ^ h ^ h Cvp C 9 9 9, ulunur.. Cvp A Cvp B. İfdlri trf trf topllım.. n n n _ n n,,,,, için ifd tmsı olur. 9 ulunur. ^ h

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY ERSHNELERÝ SINIF ÝÇÝ ERS NLTIM FÖYÜ ERSHNELERÝ Konu ers dý lüm Sýnv F No. MTEMTÝK - II TRÝGNMETRÝ - V MF TM LYS1 ers nltým fleri ðrenci trfýndn dersten sonr tekrr çlýþýlmlýdýr. dý Sodý :... u kitpçýðýn

Detaylı

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2 B T - 111 A n a l o g T r a n s m i t t e r T e k n i k K ı l a v u z u R e v 1. 2 1. Ö N G Ö R Ü N Ü M, Ü S T Ü N L Ü K L E R İ VE Ö Z E L L İ K L E R İ M i k r o k o n t r o l ö r t a b a n l ı BT- 111

Detaylı

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p).

3. Bir integral bantlı fren resmi çizerek fren kuvveti ve fren açma işinin nasıl bulunduğunu adım adım gösteriniz (15p). Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R Ġ T E Ġ M Ü H E N D Ġ L Ġ K F A K Ü L T E Ġ M A K Ġ N A M Ü H E N D Ġ L Ġ Ğ Ġ B Ö L Ü M Ü I. öğrtim II. öğrtim MAK-43 MT-Trnsport Tkniği ÖĞRENCĠ ADI OYADI NUMARA

Detaylı

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar İçieiler Ceir 4.İtegrl... 4. Belirsiz İtegrl... 4.. Bir fosiou elirsiz itegrli... Alıştırmlr 4.... 4.. Belirsiz İtegrli Özellileri...... 4.. Temel itegrl lm urllrı..... 4 Alıştırmlr 4.... 8 4..4 İtegrl

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı