OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru"

Transkript

1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi seçilen örneklerin şansa bağlı olarak farklılıklar göstermesi ve bunun sonucunda her deneyde farklı sonuçlarla karşılaşılmasıdır. Olasılık, herhangi bir deneyin sonucunda gözlenebilecek farklı durumlar ile hangi sıklıkla karşılaşılacağı bir başka ifadeyle ortaya çıkan olayların belirsizliğinin incelenmesi anlamına gelir. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 7 yy. da şans oyunlarıyla birlikte kullanılmaya başlanan olasılık, uygulamalı matematiğin bir dalı olarak gelişim ş göstermiş ş ve istatistiksel yorumlamada önemli uygulama alanı bulmuştur. Örnekler: Madeni paranın atılması sonucu tura gelme olasılığı, ğ ir deste iskambil kağıdından çekilen kağıdın en az birinin papaz olma olasılığı, Nişanlı olan bir çiftin evlenme olasılığı.???

2 Temel Tanımlar ve Kavramlar-I Tekrarlanabilir Deney: Sonucu kesin olarak kestirimlenemeyen bir tek çıktı şans değişkeni oluşturan bir eylem, gözlem ya da süreçtir. Örnek: madeni para atılması, içinde 5 sarı 7 lacivert bilye bulunan torbadan bir top çekilmesi. asit Olay: ir deneyin çıktısı daha basit bir çıktı olarak ayrıştırılamıyorsa basit olaydır. Örnek: hilesiz bir zarın atılması sonucu gelmesi, bir deste iskambil kağıdından çekilen kağıdın maça as olması. 3 Temel Tanımlar ve Kavramlar-II Olay: irden fazla basit olayın bir araya gelmesi sonucu oluşur. Örnek: hilesiz bir zarın atılması sonucu asal sayı gelmesi, içinde 5 sarı 7 lacivert bilye bulunan torbadan top çekildiğinde birinin sarı birinin lacivert olması. Örnek Uzayı: ir deneyin sonucunda elde edilen tüm mümkün basit olaylarının oluşturduğu kümedir. Genellikle S ile tanımlanır. Örnek: Hilesiz bir zarın atılması sonucu elde edilen örnek uzayı; x: zarın üst yüzünde gelen sayı S { x; x,,3,4,5,6 } 4

3 Temel Tanımlar ve Kavramlar-III yrık Olay: Eğer ve gibi iki olay aynı anda geçekleşemiyor ise bu olaylara ayrıkbirbirini engelleyen olaylar denir Örnek: Madeni para atılması sonucunda yazı veya tura gelmesi ayrık olaylardır. Zarın atılması sonucu ve tek sayı gelmesi olayları ayrık olaylar değildirler. Çünkü aynı anda gerçekleşebilirler. Eşit Olasılıklı Olaylar: ir örnek uzayındaki tüm basit olayların ortaya çıkma olasılığı eşit ise bu olaylara eşit olasılıklı olaylar denir. Örnek: ir deste iskambil kağıdından bir adet kağıt çekilmesi. 5 Olasılığın İki Temel Kuralı; Tüm basit olayların olasılıkları 0 ile arasındadır. ir örnek uzayındaki tüm basit olayların ortaya çıkma olasılıklarının toplamı e eşittir. DİKKT!!!! Hiç bir olayın OLSILIĞI den büyük olamaz!!!! ir olayın ortaya çıkma olasılığı; şeklinde gösterilir. 6 3

4 Olasılığın Gelişim şamaları Klasik riori Olasılık Frekans osteriori Olasılığı ksiyom Olasılığı NOT:u sıralama olasılık teorisinin tarihsel gelişimini tanımlamaktadır. 7 Klasik Olasılık Eğer bir örnek uzayı ns adet ayrık ve eşit olasılıkla ortaya çıkan basit olaylardan oluşuyor ve örnek uzayındaki basit olaylardan l n adedi di olayının özelliğinesahipise nın olasılığı: n / ns kesri ile elde edilir Klasik olasılık TÜMDENGELİME dayanan çıkarımlar yaparak olasılığı bulur. 8 4

5 Örnek: ir kapta 5 sarı, 5 lacivert ve 5 adet yeşil bilye bulunmaktadır. Çekilen bir bilyenin sarı olma olasılığı nedir? : Çekilen bir bilyenin sarı olması ns: Örnek uzayı eleman sayısı 5 n: Örnek uzayındaki elemanı sayısı 5 n 5 n S Klasik Olasılık Niçin Yetersizdir? Örnek uzayının eleman sayısı sonsuz olduğu durumlarda, d Eşit olasılıklı olay varsayımı yapılamadığı durumlarda, Tümdengelim çıkarımları yapılamadığında klasik olasılık ile hesaplama yapılamayacağından dolayı yetersizdir. 0 5

6 Ne Yapılabilir? raştırılan anakütle üzerinde tekrarlı deneyler gerçekleştirilerek sonuçlar analiz edilmek üzere kayıt edilmelidir. Frekans Olasılığı raştırılan anakütle üzerinde n adet deney uygulanır. Yapılan bu deneylerde ilgilenilen olayı n defa gözlenmiş ise olayının göreli frekansı yaklaşık olasılığı: n / n olarak bulunur. 6

7 Örnek: ir fabrikanın üretmiş olduğu televizyonların hatalı olma olasılığı p nedir? Önce örnek uzayı oluşturulur: ş S{sağlam,hatalı} Klasik olasılığa göre eşit olasılıklı olaylar p0.5 olup gerçeği yansıttığı şüphelidir. Yapılması gereken örneklem alarak p nh / n olasılığını hesaplamaktır. 3 Frekans Olasılığının Kararlılık Özelliği Gerçekleştirilen deney sayısı arttıkça olasılık değerindeki değişkenlik azalacak ve giderek bir sabit değere yaklaşacaktır. u duruma kararlılık özelliği adı verilir. ir olayın olasılığı deneyin tekrarlama sayısı sonsuza yaklaşırken o olayın göreli frekansının alacağı limit değer olarak tanımlanır: p lim n n / n 4 7

8 Frekans Olasılığı Niçin Yetersizdir? Olasılığın kararlılık değerine ulaştığı deneme sayısı kaçtır? Sonsuz adet deneme yapmak mümkün değildir. ynı deney iki defa aynı tekrar sayısı ile gerçekleştirildiğinde elde edilen olasılıklardan hangisi olayın olasılığı olarak kabul görecektir? 5 ksiyom Olasılığı Nedir? Olasılığın matematiksel teorisini tanımlar. u teorinin oluşturduğu ideal modeller yaşadığımız dünyanın problemlerini çözmede kullanılır. Olasılığın iki genel tipinin sahip olduğu önemli ortak nokta: Her ikisinin de, benzer koşullarda teorik olarak aynı koşullarda uygulanan deneylere gereksinim duymasıdır. ununla birlikte benzer koşullarda tekrarlı olarak uygulanamayan durumlarda olasılıkların hesaplanmasında KSİYOM OLSILIĞI yardımcı olur. 6 8

9 enzer Koşullarda Tekrarlı Olarak Uygulanamayan Durumlara Örnekler: Türkiye nin hafta içinde Kuzay Irağa sınır ötesi operasyon düzenleme olasılığı nedir? Çok hoşlandığınız bir arkadaşınızla çıkma olasılığı nedir? Fenerbahçe - Galatasaray maçının 6-0 bitmesi olasılığı nedir? 7 ksiyom : ksiyomlar örnek uzayı S deki her olayı için 0 olan bir gerçel sayıdır. ksiyom : S { 0 } ksiyom 3: Eğer S,S,...Olaylarının her biri S deki ayrık olaylar ise,diğer bir deyişle S i S j tüm i j için ise, S S...S +S

10 Sadece ksiyomlar Yeterli mi? HYIR u aksiyomların ve onlara bağlı teoremlerin faydalı bir model geliştirilmesinde bize yardımcı olabilmesi için, S örnek uzayındaki her bir olayı için olasılığın hesaplanmasında kullanılacak bir FONKSİYON ya da bir KURL gereksinim vardır 9 u fonksiyonlar İlgilenilen anakütlenin Tanımladığı ÖRNEK UZYIN Göre Farklılık Gösterir. Sık karşılaşılanş ş üç farklı örnek uzayı; Sonlu elemanlı kesikli örnek uzayı sayılabilir sonlu Genel kesikli örnek uzayı sayılabilir sonsuz Sürekli örnek uzayı sayılamaz sonsuz olarak ifade edilir. 0 0

11 x : herhangi bir gün içinde yağmur yağması x 0 yağmur yağmaz x yağmur yağar Örnek Uzayı; S { x / 0, } veya S { x / Yağmursuz ğ, Yağmurlu ğ } olarak belirlenir ve sayılabilir sonlu bir örnek uzayıdır. x : bir zar için 6 gelinceye kadar yapılan atış sayısı Örnek Uzayı; S { x /,,3,.. } olarak belirlenir l i ve sayılabilir sonsuz bir örnek uzayıdır. kesikli şans değişkeni x: öğrencilerin boyları Örnek Uzayı; S { x / 50 < x < 00 } olarak belirlenir ve sayılamaz sonsuz bir örnek uzayıdır. sürekli şans değişkeni

12 azı Temel Olasılık ksiyomları. S olayının tümleyeni olarak gösterilir. 4. ve herhangi iki olay olmak üzere; U + 5. ve ayrık iki olay ise; U + 3 Örnek Uzayı ve Olay Sayısını elirleyen Sayma Yöntemleri Klasik olasılığın diğer bir ifade ile eşit olasılıklı olayların l geçerli olduğu ğ durumlarda: d Örnek uzayının elemansayısı, İlgilenilen olayın elemansayısının belirlenmesi gereklidir. Kullanılan iki temel prensip; Toplama Yöntemi Çarpma Yöntemi 4

13 Toplama Yöntemi ir olayı m farklı şekilde, başka bir olayı da n farklı şekilde oluşabilen ayrık olaylar ise; veya olayı n + m farklı şekilde oluşabilir. Örnek: İstanbul dan İzmir e farklı tren seferi, 4 farklı havayolua firması, 40 farklı otobüs firması ve adet denizyolu firması ile gidilebildiğine göre İstanbul dan İzmir e kaç farklı şekilde gidilir? Çarpma Yöntemi ir olayı m farklı şekilde, başka bir olayı da n farklı şekilde oluşabilen ve aynı anda oluşmaları mümkün olaylar ise; ve olayı n*mfarklı şekilde oluşabilir. Örnek: ir iskambil destesinden çekilen iki kartın birinin Kupa diğerinin Maça olması kaç farklı şekilde gerçekleşebilir? 3 * 3 69 NOT: Çarpma yöntemi bağımsız olaylar için kullanılır. 6 3

14 k farklı sonuç veren bir deney r kez tekrar edilirse ortaya çıkan tüm durumların sayısı; k r olarak hesaplanır. Örnek: ir zarı 3 kez attığımızda ortaya çıkabilecek tüm mümkün durumların sayısı sayısı; adettir. Örnek uzayının eleman sayısı 6 dır. 7 Örnek Uzayı ve Olay Sayısının üyük Olduğu Durumlar Örnek uzayı ve olay sayısının büyükük olduğu ğ durumlarda kullanılan sayma yöntemleri; ermütasyon Kombinasyon 8 4

15 ermütasyon Sıraya konulacak n adet nesne olsun ve her biri sadece bir kez kullanılmak üzere kaç farklı sıralama yapılabilir? n n- n-... n nesnenin mümkün sıralamalarının sayısı: nn-n-...n! n n n! 9 n tane nesne arasından seçilmiş x tane nesnenin permütasyon sayısı..olarak ifade edilir. n x Toplam n tane nesne arasından x tane nesne seçilir ve bunlar sıraya konulursa ortaya çıkabilecek sıralamaların sayısıdırveşu şekilde hesaplanır: n x n! n x! Kullanıldığı durumlar İadesiz örnekleme Örneğe çıkış sırası önemli 30 5

16 Örnek: 8atletinkatıldığı 00 metre yarışmasında ilk üç dereceye girenler kaç farklı şekilde belirlenir? 8! 8 3 8*7* ! Örnek:,3,5,6,7 ve 9 sayılarını kullanarak 4 basamaklı rakamları birbirinden farklı kaç sayı oluşturulur? 6! 6 4 6*5* 4* ! Kombinasyon n adet nesne arasından seçilen x tanesinin kombinasyon sayısı C n x ile gösterilir. Sıralama önemli olmaksızın tüm durumların sayısı olarak ifade edilir. u sayı şu şekilde hesaplanır: C x n n! n x!xx! Kullanıldığı durumlar; İadesiz örnekleme Örneğe çıkış sırası önemsiz 3 6

17 Örnek: eş kişilik bir topluluktan üç kişilik bir komisyon kaç farklı şekilde seçilir? 5! 5*4*3* 5 3!3! *3* 5 C3 0 Örnek: 0 bay ve 5 bayan arasından bay ve bayan üye içeren bir kurul kaç farklı şekilde oluşturulur? 0! 0*9 0 C 45 0!! 5! 5 C 5 5!! 0 bay arasından bay 5 bayan arasından bayan Çarpım kuralı uygulanarak 45 * 5 5 farklı şekilde 33 oluşturulur. Örnek: 0 işletme ve 8 iktisat öğrencisi arasından 5 kişilik bir komisyon oluşturulacaktır. Rasgele bir seçim yapıldığında komisyonda çoğunlukla işletme öğrencisi olma olasılığı nedir? 5 işletme 0 iktisat, 4 işletme iktisat, 3 işletme iktisat C C C C C C C C C 59 0, Örnek: li ve Veli isimli iki arkadaş zar atarak oyun oynuyorlar. Oyuna li başlıyor. Zar veya gelirse oyunu kazanıyor. 3,4 veya 5 gelirse oyuna devam etme hakkını kazanıyor. 6 gelirse zar atma sırası Veliye geçiyor. li nin bu oyunu kazanma olasılığı bulunuz. li nin oyunu kazanma olasılığı p olsun, li veya atar oyunu kazanır, olasılık :/6 3,4 ve 5 atar oyuna tekrar devam eder ve sonra oyunu kazanır olasılık: 3/6p İlk atışta 6 atar oyun veliye geçer ve veli oyunu kaybeder olasılık /6-p p /6 + 3/6p + /6-p 5 p3/4 34 7

18 ğaç Diyagramı Her birinin sonucunun sonlu sayıda olduğu birden fazla deneyin tüm mümkün sonuçlarını görsel bir şekilde ortaya koymakk içini kullanılır. l 35 Örnek: li ile Can masa tenisi oynamaktadırlar. 3 set kazananın galip geleceği maçın ortaya çıkabilecek tüm mümkün sonuçlarını gösteren ağaç diyagramını oluşturunuz. Olası Durumlar;,CCC C,CCC C,CCC CCC,C CC,CCC CC,CCC CCC,CC CCC,CC CC,CCC CCC,CC 0 D E T 36 8

19 Şartlı Olasılık ve gibi iki olaydan olayının gerçekleştiği bilindiği durumda olayının gerçekleşmesi olasılığına olayının şartlı olasılığı denir. / ile gösterilir. / nın gerçekleştiği bilindiğinde nin ortaya çıkma olasılığı; / /. /. 37 Örnek: ir üniversitede okuyan öğrencilerin % 70 i tiyatroya, % 35 ise sinemaya ilgi duymaktadır. a ir öğrencinin sinemaya ilgi duyduğu bilindiğinde tiyatroya ilgi duyma olasılığı 0,40 ise her iki aktiviteye birden ilgi duyma olasılığı nedir? b ir öğrencinin tiyatro veya sinemaya ilgi duyma olasılığı nedir? T:Tiyatroya ilgi duyma S:Sinemaya ilgi duyma T 0,70 S 0,35 a T/S0,40 T S? T S T/S S T S T/S *S 0,40*0,35 0,4 b T U S T + S - T S 0,70 + 0,35-0,4 0,9 38 9

20 0 Şartlı Olasılıkların ilindiği Durumlarda Tek ir Olayın Olasılığının ulunması şağıdaki şekilde olayının birbiriyle ayrık olan 5farklı olayın birleşiminden meydana geldiği görülür olayı her bir olayı ile kesişimleri cinsinden ifade edildiğinde;birbirini engelleyen olayların birleşiminin olasılığı toplama kuralına göre / i i i 40 / / / / /

21 Örnek: ir ilaç üç fabrika tarafından üretilmektedir.. Fabrikanın üretimi. ve 3. fabrikaların üretiminin katıdır. yrıca. ve. fabrikalar %, 3. fabrika % 4 oranında bozuk ilaç üretmektedir. Üretilen tüm ilaçlar aynı depoda saklandığına göre bu depodan rast gele seçilen bir ilacın bozuk olma olasılığı nedir. Seçilen ilacın bozuk olma olasılığı? i Seçilen ilacın i nci fabrikada üretilmesi olduğundan; 050 0,50 3 0,5 olarak elde edilir. / + / + / ,05 Depodan seçilen 000 ürünün 5 tanesinin hatalıdır. 4 ayes Teoremi Sonucun bilindiği durumda sebebin hangi olasılıkla hangi olaydan meydana geldiği ile ilgilenir. Ele alınan örnekte depodan rast gele seçilen bir ilacın bozuk çıkması halinde.fabrikadan gelmesinin olasılığı araştırıldığında ayes Teoremine ihtiyaç duyulmaktadır. i / / i i i k / i i i 4

22 Depodan rasgele seçilen bir ilacın bozuk olduğu bilindiğine göre nci fabrikadan gelmiş olma olasılığı; / / / + / + / / 0, ağımsız Olaylar Ele alınan olaylardan birinin gözlenip gözlenmemesinin olasılığı diğer bir olayın ortaya çıkıp çıkmama olasılığını etkilemiyorsa bu olaylara bağımsız olaylar denir. /. /. ve olayları bağımsız ise bir başka ifadeyle olayının meydana gelme olasılığı olayının meydana gelme olasılığına bağlı değil ise ve iki olay aynı anda meydana gelebiliyor ise; / ve / olur. Sonuç olarak ve olayları bağımsız iseler. eşitliği elde edilir. ynı şekilde.iseve 44 olayları bağımsızdır denir.

23 Örnek: li ve Can isimli iki avcının bir hedefi vurma olasılıkları sırasıyla 0,65ve0,40olarakverilmiştir. İki avcı hedefe birlikte ateş ettiğinde hedefin vurulma olasılığı nedir? li nin hedefi vurması 0,65 C Can ın hedefi vurması C 0,40 UC? U C + C C li ile Can nın hedefi vurmaları birbirinden bağımsız olduğundan; C. C 0,65 * 0,40 0,6 U C 0,65 + 0,40 0,6 0,79 45 Kesikli ve Sürekli Şans Değişkenleri İçin; Olasılık Dağılımları eklenen Değer ve Varyans Olasılık Hesaplamaları 46 3

24 Kesikli Şans Değişkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve x,x,..,x n bu tesadüfi değişkenin alabileceği değerler olsun X tesadüfi değişkeninin herhangi bir x değerini alma olasılığı {X r{xx} şeklinde gösterilir. u olasılık X in dağılım ya da olasılık kanunu diye adlandırılır. Kesikli X değişkeninin hangi değerleri hangi olasılıklarla alacağını gösteren fonksiyona olasılık fonksiyonu denir. ir dağılımın kesikli olasılık fonksiyonu olabilmesi için. x 0,tümx değerleri için. x Tümx şartlarını sağlaması gerekir. 47 Örnek: Hilesiz bir zarın atıldığında x şans değişkeni üst yüze gelen sayıyı ifade etmek üzere bu x şans değişkeninin olasılık fonksiyonunu elde ediniz. S { x /,,3,4,5,6 } X x i /6 X X x i / 6 / 6 / 6 / 6 / 6 / 6 X x x x x 3 x 4 x 5 x 6 d. d İki farklı şekilde ifade edilen x şans değişkeninin dağılımına bakıldığında X i 0 ve tüm x değerleri için Xx şartları sağlandığı görülmekte ve Xx in bir olasılık fonksiyonu olduğu sonucu ortaya çıkmaktadır. 48 4

25 eklenen Değer ir şans değişkeninin herhangi bir olasılık fonksiyonunda almış olduğu tüm değerlerin ortalaması o şans değişkeninin beklenen değeridir. ğ X şans değişkeninin beklenen değeri; ile gösterilir. Ex ir şans değişkenin beklenen değeri o şans değişkeninin ortalamasına eşittir. Exµ 49 eklenen Değer Kullanarak Varyansın Elde Edilmesi Ex :xşans değişkeninin karesinin beklenen değeri Var x E x [ E x ] σ E x [ E x ] Var x E x μ 50 5

26 Kesikli Şans Değişkenleri İçin eklenen Değer ve Varyans E x x x Tümx Tümx i x i E x x i x i Var Var x x E x [ E x ] x i xi tüm x tüm x x x i i 5 Örnek: ir otomobil bayisinin günlük araba satışlarının dağılımının aşağıdaki gibi olduğunu ifade etmektedir. X X 0,0 0,08 0,5 0,9 0,4 0,7 0,0 0,04 0,0 u dağılışa ğ ş göre bayinin; a 5 ten fazla araba satması olasılığını bulunuz X 6 + X 7 + X 8 0,5 b Satışların beklenen değerini hesaplayıp yorumlayınız. x x i EX 00,0+0,08+0,5+.+80,0 3,7 ayinin 00 günde 37 araba satışı yapması beklenir. c Satışların varyansını bulunuz. x x i EX 0 0,0+ 0, ,0 6,68 VarX EX - [EX] 6,68-3,7,84 5 6

27 Sürekli Şans Değişkenlerinin Olasılık Fonksiyonları Sürekli değişkenlerdeki olasılık fonksiyonuna sürekli olasılık fonksiyonu, olasılık yoğunluk ğ fonksiyonu, veya sadece yoğunluk fonksiyonu denir. Sürekli bir şans değişkenin olasılık yoğunluk fonksiyonu fx ile gösterilir. Herhangi bir fonksiyonun olasılık yoğunluk fonksiyonu olabilmesi için; X in tanım aralığı için fx i 0, x dx şartlarını sağlaması gereklidir. tüm x f 53 Sürekli Şans Değişkenleri İçin Olasılık Sürekli bir değişkenin tanımlı olduğu aralıkta sonsuz sayıda değer vardır. Değişkenin bunlar içinden belirli bir değeri alma olasılığı olur. 0 u sebepten dolayı, sürekli değişkenlere ait olasılık fonksiyonları, kesikli değişkenlerin aksine bu değişkenin belirli bir değeri alma olasılıklarının hesaplanmasına imkan vermez. u fonksiyonlarda değişkenin belirli bir değer yerine belirli bir aralıkta değer alma olasılığının hesaplanması yoluna gidilir. Sürekli bir x şans değişkenin a ile b arasında olma olasılığı; b a < x < b f x dx şeklinde hesaplanır. a 54 7

28 Örnek: fx fonksiyonu aşağıdaki gibi tanımlanıyor olsun 3 x, x f x 7 0, diger x' ler icin a fx olasılık yoğunluk fonksiyonu mudur? f tüm x 3 7 x dx x dx x 7 ise fx olasılık yoğunluk fonksiyonudur. 3 olduğundan fx olasılık yoğunluk fonksiyonudur. b,5 < x <,8?, 83,5 < x <,8 x, x dx 7, 8, 5,8 7,5 7 0,04 55 Sürekli Şans Değişkenleri İçin eklenen Değer ve Varyans E x x f x dx E Var x x x f x tüm x dx x f x dx tüm x tüm x x f x dx 56 8

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 2303 İstatistik-I Bölüm 1: İstatistiğe Giriş: Temel kavramlar ve Olasılık Teorisi Dr. Öğr. Üyesi Kemal SUBULAN http://kisi.deu.edu.tr/kemal.subulan/

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1

Dr. Mehmet AKSARAYLI OLASILIK. Ders 3 / 1 Dr. Mehmet AKSARAYLI OLASILIK Ders 3 / 1 1 0 Kesin İmkansız OLASILIK; Bir olayın gerçekleşme şansının sayısal değeridir. N adet denemede s adet başarı söz konusu ise, da başarının nisbi frekansı lim (s/n)

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

OLASILIĞA GİRİŞ P( )= =

OLASILIĞA GİRİŞ P( )= = OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması olasılığı %85 dir. Olasılık modelleri; Sıvı içindeki moleküllerin davranışlarını

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

TEK BOYUTLU RASSAL DEĞİŞKENLER

TEK BOYUTLU RASSAL DEĞİŞKENLER TEK BOYUTLU RASSAL DEĞİŞKENLER Rassal değişken: S örnek uzayının her bir basit olayını yalnız bir gerçel değere dönüştüren fonksiyonuna rassal (tesadüfi) değişken denir. İki para birlikte atıldığında üste

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Şartlı Olasılık. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Şartlı Olasılık. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Şartlı Olasılık Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr Şartlı Olasılık ir olayın olasılığından söz edebilmek için bir alt kümeyle temsil edilen bu olayın içinde bulunduğu örnek uzayının

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 6: Kesikli Olasılık Dağılımları

Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi: İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir.

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. 04 8. SINIF MATEMATiK OLASILIK OLASILIK Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. Bir zarın atılması, bir torbadan top çekilmesi, bir paranın yazı veya

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

BAYES KURAMI. Dr. Cahit Karakuş

BAYES KURAMI. Dr. Cahit Karakuş BAYES KURAMI Dr. Cahit Karakuş Deney, Olay, Sonuç Küme Klasik olasılık Bayes teoremi Permütasyon, Kombinasyon Rasgele Değişken; Sürekli olasılık dağılımı Kesikli - Süreksiz olasılık dağılımı Stokastik

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150) PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}

Detaylı

( B) ( ) PERMÜTASYON KOMBİNASYON BİNOM OLASILIK

( B) ( ) PERMÜTASYON KOMBİNASYON BİNOM OLASILIK PERMÜTASYON KOMBİNASYON BİNOM OLASILIK.... n = n! olmak üzere, ( n + )! = 0 n! + n! ise, n kaçtır? (A) ( ) A)0 B) C) D) E). ( n +,) = 6 C olduğuna göre, n kaçtır? (B) A) B)6 C) D)8 E)9. ( n, ). C( n,)

Detaylı

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Olasılık Föyü KAZANIMLAR

Olasılık Föyü KAZANIMLAR Olasılık Föyü KAZANIMLAR Bir olaya ait olası durumları belirler. Daha fazla, eşit, daha az olasılıklı olayları ayırt eder, örnek verir. Eşit şansa sahip olan olaylarda her bir çıktının olasılık değerinin

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome ÖLÜM : OLSLK Giriş: Olasılık kavramına. Fermat ile. ascal ın büyük katkıları olmuştur. ascal hesap makinesini geliştirerek Fermat ile birlikte olasılığın temellerini oluşturmuştur. Daha sonra Rus matematikçi

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

Deney Dizaynı ve Veri Analizi Ders Notları

Deney Dizaynı ve Veri Analizi Ders Notları Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı