FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri"

Transkript

1 FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1

2 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2

3 Feel şlkle-1 Şekldek x-z düzlem, kıılma dle ve ola k düzlem ayıa ıı yüzey olduğuu kabül edelm. açıı le gele b elekomayek dalgayı düşüelm Gelş düzlem o k, ω y : Işığı gelş oamı kıılma d u x z : Işığı geçğ oamı kıılma d k : gele dalgaı dalga veköü, ω : MD ı açıal fekaı o : gele dalgaı gelğ k, ω ve o değele bldğmz kabül edelm 28 HSaı 3

4 Feel şlkle-2 Gelş Düzlem: k ve düzlem omal veköü u le aımlaa düzlem u alaıı yöelm φ : Gelş düzlem le elekk ala o yaığı açı Gelş düzlem o φ o k o ( + ( 2 2 o o o o a Φ o 28 HSaı 4

5 Feel şlkle-3 Duum-I:P-kuulamaı( ala veköü (gelş düzleme aalel e o ( o, o k o o Tavee Magec (TM Kuulamaı Duum-II: S-kuulamaı (ala veköü( gelş düzleme dk e ( o, o o k o o Tavee lecc (T Kuulamaı 28 HSaı 5

6 Feel şlkle-4 Yaıya ( ve geçe dalgala ( ç elekk ala veköle ( e k ω o y o e ( k ω +φ k, ω x o e ( k ω +φ 28 HSaı 6

7 Feel şlkle-5 ve alalaıı aıl bulablz? Sıı değelede ve değele bulablz. lekomayek dalga ç ıı değe koşullaı: 1 lekk alaı eğeel bleşele k oamı ııı boyuca üekld 2 D alaıı omal bleşele k oamı ııı boyuca üekld 3 Mayek alaı H omal bleşele k oamı ııı boyuca üekld 4 B alaıı eğeel bleşe k oamı ııı boyuca üekld Dε ve HB/μ 28 HSaı 7

8 Feel şlkle-6 Yukaıdak şalaı maemakel olaak fade emeye çalışıak: k, ω y x (lekk alaı üekllğde 1 [( ] [ ] + y ( egeel y egeel 2 [ ε ] [ ] ( + y ε omal ( y omal (Mayek alaı üekllğde ( B μ + B y ( B y egeel μ egeel [ ] [ ] omal ( B + B y ( B omal y 28 HSaı 8 1

9 Feel şlkle-7 ve B alalaıı bble cde fade edeek B c m vm B m c v m : ışığı madde çdek hızı, m : k. d 2 ε ε 2 m ε ε m μ μ μ μ o o Oamla mayek olmadığıda Yukaıdak 3 ve 4 olu deklemle şu şeklde ekada yazılabl: 3 c ( + y ( y egeel c egeel 4 c ( + y ( y omal c omal 28 HSaı 9

10 Feel şlkle-8 Faz eşleme şaıda (y da gele, yaıya ve geçe dalgaı fazlaı eş olacağıda ( e k ω o o o e e ( k ω +φ ( k ω +φ ( + y ( y eşlğ ağlamaı ç üel fadele eş olmaı geekmeked. ( k. ω y ( k. ω + φ y ( k. ω + φ y Bu fade öce zama kımıı eşlğe bakalım MD ı fekaı he oamda ayı olacağıda ω ω ω ω 28 HSaı 1

11 Feel şlkle-9 ( k. ω y ( k. ω + φ y ( k. ω + φ y Uzayal kımıa bakaak ( k. [( k k ] y ( k. + y. y φ φ ( k k. x + ( k k. z x z φ (k -k x abα (k -k z abγ αx+γzφ Bu deklem e geel duum ç αx+βy+γzφ Buada α, β ve γ doğulma coüled. αx+γzφ Bu x-z düzleme aalel ola düzlem deklemd. (k -k ııa dk k veköüü büyüklüğü k 2π/λ d. k ve k ayı oamda olduğu ç k k u bm veköü x-z düzleme dk olduğuda (k -k, u e aaleld. k u y k k k -k u x 28 HSaı 11 k k -k

12 Feel şlkle-1 y k k k -k u x Bu ebee u x(k -k u xk u xk u k (π- u k ( (π- ( y k π- u k x ( ( > y k Yaıma Kauu k x 28 HSaı 12

13 Feel şlkle-11 Işık olduğuu aıl ala? (Işığı aladığı faz eşleme bldğd y k k k -k u x ( k. y ( k. + φ y [( k - k. ] y φ Sııa aalel ve (k -k omal düzlem deklem Bu ebee u x(k -k u xk u xk u k (π- u k ( Ödev 1: u x(k -k olduğuu göez k u Oamla faklı olduğuda k k k ( k ( k ω /v ω /(c/ (ω /c. k ω /v ω /(c/ (ω /c. k y x k -k k ( ( Sell Yaaı k 28 HSaı 13

14 Gelkle şlğ Şaıda Feel şlkle-12 S-kuulamış ışı: 1 2 ( + ( uˆ o o o egeel.( ε + ε o o egeel ( ε o. uˆ (Teğeel H bleşe üekl olacakı (-kuulamış dalgada hç omal bleşe yoku B deklem ve k ae blmeye va. Dolayıı le b dekleme, k bu da mayek alaı çee deklem olacakı, daha hyacımız olacakı. 3 Bo Bo co + μ μ Oamla mayek olmadığı ç Bo co co μ μ μ μ μ o 3 B o o v c 28 HSaı 14 o co + o B o co c o o co

15 Feel şlkle-13 3 o co + o co o co olduğuda > co co o o co co + co co o o 2 co + co co 28 HSaı 15

16 Feel şlkle-14 Feel kaayılaıı Taımı: Feel kaayılaı - ve -kuulu MD ç yaıma ve geçş kaayılaıı ve. o o o o -kuulu MD ç yaıma kaayıı -kuulu MD ç geçme kaayıı o o -kuulu MD ç yaıma kaayıı o -kuulu MD ç geçme kaayıı o 28 HSaı 16

17 28 HSaı 17 Feel şlkle-15 o o co co co co + o o co co co 2 + o o co co co co + o o co co co 2 + -kuulamaı ç Feel kaayılaı -kuulamış ışı Feel kaayılaı:

18 Feel şlkle-16 Ödev 2: Yukaıdak Feel kaayılaıı dahada baleşek (Sell Kauu kullaılaak yaılabl ( ( ( + a( + a( + 2 co + ( + co( 28 HSaı 18

19 Feel şlkle-16 ğe > olduğuda > ve büü değele ç egaf. Bua kaşılık, o da ozf b değede başlayaak yavaşca azalı ve + 9 o olduğu zama ıfıa eş olu ve bu değe öedek değelede de egaf olu. Negaf değe alamı gele ve yaıya dalga aaıda 18 o lk faz fakıı oluşuğudu ıfı olduğu bu özel gelş açııa kuulama açıı de ve le göel. Hava-cam yüzey ç bu değe 56,3 o d. Kuulama açııı alamı bu değede gele kuulamamış b MD, yaıdıka oa kuuaacakı. Yüzey omal, 1,,8 k -,8,, -1, o 9 o (deece 28 HSaı Hava-cam yüzey ç Feel kaayılaı 19

20 Feel şlkle-16 Yaıma(eflecace R R 2 R 2 Nomal doğuluda gele ışı ç R ve R değele ayı değee yaklaşı R R Ödev 3: Havada cam yüzeye omal gelş açııda gele ışığı yüzde kaçı ge yaı? 28 HSaı 2

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

7. Ders Fresnel Eşitlikleri

7. Ders Fresnel Eşitlikleri 7. De Feel şlkle k k θ θ z 1 Bu bölümü bdğzde, Gelş düzlem, - ve -kuulu ışık, Feel kaayılaı, Kuulama (Bewe) açıı, Yaıma ve geçme kaayılaı koulaıda blg ahb olacakıız. 2 Bu bölümü öem, Geomek ok aa yüzeye

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3:

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3: FZM45 letr-opt 4.Hafta Işığı letrmaet Taımlaması-3: Krstal İçde letrmaet algaı İlerleş 8 HSarı 1 4. Hafta ers İçerğ Işığı rstal çde lerleş İtrp lmaa rstaller Küb rstaller Te sel Krstaller Çft sel Krstaller

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlei m=.kg olan bir taş, yükekliği h=5m olan bir kaleden yatay yönde v =5m/ hızı ile atılıyor. Cimin kinetik ve potaniyel enerjiini zamanın fonkiyonu olarak

Detaylı

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ

2. İLETİM İLE ISI TRANSFERİNE GİRİŞ üm aı alaı of. D. Büle Yeşilaa a aii. İisi çoğalılama.. İEİM İE ISI RANSFERİNE GİRİŞ. Isı ileimi deei e delemi Şeil. de göseile a üei allmış silidii bi çubua, falı A, Δ e Δ değelei ullaılaa apıla deele

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

Temel Kavram ve İfadeler : Helisel alın dişlilerin düz dişlinin vida helisinde kaydırılması ile hasıl olduğu düşünülebilir.(şekil 5).

Temel Kavram ve İfadeler : Helisel alın dişlilerin düz dişlinin vida helisinde kaydırılması ile hasıl olduğu düşünülebilir.(şekil 5). 8 HELİSEL ALIN DİŞLİ ÇARKLAR Temel Kavam ve İfadele : Heliel alı dişlilei düz dişlii vida heliide kaydıılmaı ile haıl olduğu düşüüleili.(şekil 5). Şekil 5 Heliel Alı Dişli Çak Diş doğuluu ile diş ekei

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ. Müh.

SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ. Müh. ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ SINIRLI GERĠ BESLEMELĠ UZAY-ZAMAN BLOK KODLAMASINDA YENĠ YÖNTEMLER: DENGELĠ KOD SEÇĠMĠ VE KARMA ANTEN/KOD SEÇĠMĠ YÜKSEK LĠSANS TEZĠ Mü. Sela ġahġn Aabl

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE DOKTORA TEZİ Dez UÇAR DANIŞMAN Doç. Dr. Yaşar BOLAT MATEMATİK ANABİLİM DALI TEMMUZ AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

ITAP Fizik Olimpiyat Okulu Noktasal Cismin Titreşimi: Olimpiyat Deneme Sınavı_III 17 Mart Mart 2014

ITAP Fizik Olimpiyat Okulu Noktasal Cismin Titreşimi: Olimpiyat Deneme Sınavı_III 17 Mart Mart 2014 Notasa Cismi Titreşimi: Oimpiyat Deeme Sıavı_III 7 Mart 4 Mart 4. er birii ütesi m oa ii üçü üre, yay sabiti oa bir yay ie bağı oup pürüzsüz bir masa üstüde buumatadır (şeidei gibi). Kütesi m oa üçücü

Detaylı

ğ İ Ü Ü İĞ Ğİ İ İ Ü Ü Ü Ü ğ ğ öğ ğ ö Ö ğ ç ğ ş ğ ğ ç ç ğ ğ ö ğ ş ğ ğ ç ö ş ö ş ş ğ İ ş ğ ğ ç Ö ö ö ş ş ğ ğ ğ ğ ö ş ö ş ğ ğ ğ ğ Ü ğ ç Ş ç Ü ğ ş ş ç ş ş ö ö ş ç ş ş ğ ş ş ğ ğ İ ş ğ ç ğ ç ç ö öğ Ü ğ ç ş ğ

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ 30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde .9. Smth Katı Blgsayala gelştlmeden önce letm hattı poblemlen çömek çn bçok abak gelştlmşt. Smth katı veya abağı gelştlen en yaygın patk hesaplama yöntemne sahp olup hala letm hatlılaının gafk olaak analnde

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s σ, lkk alann valğndan dola J σ akm akacak Bu duumda;

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola

Detaylı

ITAP_FOO Deneme Sınavı: Elektrostatik, 1.Seviye Soruları Başlangıç 08 Augustos-Bitiş 14 Augustos Sorular

ITAP_FOO Deneme Sınavı: Elektrostatik, 1.Seviye Soruları Başlangıç 08 Augustos-Bitiş 14 Augustos Sorular ITAP_FOO Deeme Sıavı: Elektrotatik, 1.Seviye Soruları Başlagıç 08 Auguto-Bitiş 14 Auguto 013 Sorular 1. Lieer yük yoğuluğu λ=0.(μc/m) ola homoje yüklü uzu doğrual bir teli elektrik alaıda bir elektro,

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ

ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ ELEKTROMEKANİK GERGİ DENETİM SİSTEMİ Güel Şefkat, İahim Yükel, Meut Şeniin U.Ü. Mühendilik-Mimalık Fakültei, Göükle / BURSA ÖZET Kağıt, kumaş, ac, platik ii şeit halindeki malzemelein, ulo olaak endütiyel

Detaylı

IŞIĞIN KIRILMASI BÖLÜM 27

IŞIĞIN KIRILMASI BÖLÜM 27 ŞĞ RAS BÖÜ 7 ODE SORU DE SORUAR ÇÖZÜER 4 9 = = & = 9 5 = = & = 5 = = = 9 5 3 5 olur,, ortamlarıı kırılma idisleri arasıda > > ilişkisi vardır 5 V ESE YAYAR V V,, ortamlarıı kırılma idisleri arasıda > >

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

BÖLÜM 2 D YOT MODELLER

BÖLÜM 2 D YOT MODELLER BÖLÜM YOT MOELLER.1. Bi diyodu liee olmaya davaıı lei yöde kutulamı bi joksiyouu akım-geilim kaakteistii gei bi bölgede ekil-.1 deki gibi üstel bi deiim göstei. cak, geek küçük geekse büyük akımlaa dou

Detaylı

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ İ İ İ İ Ö İ ç İ ö İ ö ö ç İ ö ç ç ö ö İç ö ç ö ö ö ö ç ç ö ö ç İ İ ç ö ç İ ç İ İ ö ö ö ö ç ç ö ö ç ö ç ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 29, Sayı: 1, 2015 187

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 29, Sayı: 1, 2015 187 Atatük Üvete İktad ve İda Blle Deg Clt: 29 Saı: 25 87 VZA SÜPER ETKİNLİK MODELLERİ İLE ETKİNLİK ÖLÇÜMÜ: KAPADOKYA DA FAALİYET GÖSTEREN BALON İŞLETMELERİ ÜZERİNE BİR UYGULAMA Nu Özgü DOĞAN Alıış Tah: 8

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

Bölüm- Parametrik Hesap

Bölüm- Parametrik Hesap MAK 0: İNAMİK r. Ahmet Tşkese Fil hzırlık ölüm- Prmetrik Hesp 1 ölüm-rijit Cisim Sbit merk. Etr. döme * θ = 6 devir dödüğüde 4(6=3θ C θ C = 8 devir 8(5=4.5(θ A θ A = 8.889 devir α A =rd/s ω A = t + 5 rd/s

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

alan ne kadardır? ; 3 3

alan ne kadardır? ; 3 3 - -. Doğa saıa kümeside f(k)=(k+) -k foksiou kuaaak k, k, k topamaı buuuz. ( + ) ( + )( + ) ( + ) 6. Topam fomüei kuaaak uzuuğu oa homoje bi çubuğu ucua göe ağıık mekezi buuuz.. Topam fomüei kuaaak uzuuğudaki

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Toprak İşleme Alet ve Makinaları Dersi

Toprak İşleme Alet ve Makinaları Dersi Toprak İşleme Alet ve Makinaları Dersi Diskli Pulluklar Prof. Dr. İlknur DURSUN e-mail: dursun@agri.ankara.edu.tr Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

Detaylı

Müh. Mehmet ÖZAKINCI. Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ

Müh. Mehmet ÖZAKINCI. Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ İTANUL TEKNİK ÜNİVERİTEİ FEN İLİMLERİ ENTİTÜÜ TAAKALI KOMPOZİT PLAKLARIN TİTREŞİM ANALİZİ YÜKEK LİAN TEZİ Mü. Memet ÖZAKINCI Anablm Dalı : MAKİNA MÜHENDİLİĞİ Pogamı : MAKİNA DİNAMİĞİ TİTREŞİM VE AKUTİĞİ

Detaylı

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ UFUK KAYA Mersi Üiversitesi Fe Bilimleri Estitüsü Matematik Aa Bilim Dalı YÜKSEK LİSANS TEZİ Tez Daışmaı Prof. Dr. Nazım KERİMOV MERSİN Hazira - 8 ÖZ Bu çalışmada

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz GAMA FONKSİYONU H. Turgay Kaptaoğlu A. Taım Gama foksiyou, < < değerleri içi Euler itegrali dediğimiz Γ( = t e t dt itegrali ile taımlaır. Öce bu ifadei e demek olduğuu alamaya çalışalım. bir gerçel sayı

Detaylı

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini KIRILMALAR Gülük hayatta çok sık rastladığımız ve gözlemlediğimiz bir olaydır kırılma. Bir su kuyusua baktığımız zama kuyuu dibii daha yakıda görürüz. Çay bardağıdaki kaşığı bardak içideyke kırık gibi

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Đçten Yanmalı Motor Tasarımı

Đçten Yanmalı Motor Tasarımı 1-Tasarımda kıyas yapılacak motor seçimi 2- Sayfa 86 dan 99 a kadar ısıl analiz yapılacak Uygulama-1 Motor hacmi 1298 cc 1000 rpm Sıkıstırma oranı (ε) 10 2000 rpm Ne 64 kw/6000 rpm Uygulanacak Motor 3000

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

BTZ Kara Deliği ve Grafen

BTZ Kara Deliği ve Grafen BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei 015 1-14 Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı Titreşi_ ITAP FOO: art Oipiyat Konu Sınavı. Şeidei esne, hafif ütei tahtanın ucunda buunan sporcu ağırına tahtanın ucunun yerine aşağı doğru h.5 adar değiştiriyor. Tahtanın dene onuuna öre titreşi periyotunu

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

11. Ders Doğrusal Olmayan Optik

11. Ders Doğrusal Olmayan Optik 11. Des Dğusal Olmayan Opik I() I() z n() düzlem dalga daklanmış dalga 1 Bu bölümü biidiğinizde, Dğusal lmayan pik, Opik dğulma, Dalga hamanlama, Kendiliğinden daklanma, Slin knulaında bilgi sahibi lacaksınız.

Detaylı

5. Ders Işığın Kutuplanması

5. Ders Işığın Kutuplanması 5. Des Işığın Kutuplanması H = H +z Bu bölümü bitidiğinizde, Işığın utuplanma özelliği, Doğusal, daiesel, elipti utuplu ışığın özellilei, Kutuplaıcıla, Jones vetö ve matis gösteimi onulaında bilgi sahibi

Detaylı