GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım."

Transkript

1 GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür Platon un açtığı kapıdan birlikte geçelim. Geometri bilmeyen bu kapıdan giremez diyen düşünüre saygılarımızla. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. NOKTA, DOĞRU, DÜZLEM ve UZAY Tanımsız Terim olarak alınacaktır. Terimlerin tanımları yapılmayacak, ne anlamda kullanıldıkları sezginize ve hayal gücünüze bırakılacaktır. Hayal gücümüzü sınamaya aşağıdaki örnekle başlayalım. Şekildeki küpte; Küp ün köşeleri birer Nokta dır. A, B, C, D, A, B, C, D Sekiz nokta. Küp ün ayrıtları (kenarları) her iki uçtan sonsuza uzatılırsa birer Doğru dur. AB, BC, CD, DA, AA, BB, CC, DD, A B, B C, C D, D A Oniki doğru. Küp ün yüzleri her yönden sonsuza uzatılırsa birer Düzlem oluşturur. ABCD, A B C D, ABB A, DCC D, BCC B, ADD A Altı düzlem.

2 Tanımsız terimleri biraz daha irdelersek, Noktanın boyutunun olmadığını, Doğrunun bir boyutlu, Düzlemin iki boyutlu ve Düzlemin de üç boyutlu olduğunu söyleyebiliriz. Boyut kavramını açtığımızda; Doğru üzerindeki bir noktanın yerini belirtmek için bir gerçek sayı yeterlidir. Sayı ekseni üzerindeki A noktasına karşı gelen 2 sayısı, A nın başlangıç noktası O dan 2 birim uzaklıkta olduğunu, B noktasına karşı gelen -3 sayısı, B nin başlangıç noktası O dan (diğer tarafında) 3 birim uzaklıkta olduğunu gösterir. A(2), B(-3) olarak gösterilir. Düzlemdeki bir noktanın yerini belirtmek için bir gerçek sayı ikilisi gerekir. Düzlemde (R 2 de) A noktasına karşı gelen (2,3) gerçek sayı ikilisi, A nın x ekseninden3, y ekseninden 2 birim uzakta olduğunu, B noktasına karşı gelen (-2,4) gerçek sayı ikilisi, B nin x ekseninden 4, y ekseninden (diğer tarafında) 2 birim uzaklıkta olduğunu gösterir. A(2,3) ve B(-2,4) olarak gösterilir. Uzayda bir noktanın yerini belirtmek için bir gerçek sayı üçlüsü gerekir.

3 Uzayda (R 3 de) A noktasına karşı gelen (3,4,5) sıralı üçlüsü, A nın y0z düzleminden 3, x0z düzleminden 4, x0y düzleminden 5 birim uzaklıkta olduğunu gösterir. A(3,4,5) olarak gösterilir. A noktasına karşı gelen sayı (sayılar), noktanın koordinatlarıdır. Doğruda bir sayı, düzlemde iki sayı, uzayda üç sayı kullanıldığından, doğru bir boyutlu, düzlem iki boyutlu ve uzay üç boyutludur. Bir başka deyimle; Noktanın boyu, eni ve yüksekliğinden söz edilemeyeceğinden nokta boyutsuz. Doğruda yalnızca uzunluktan söz edilebileceğinden doğru bir boyutlu. Düzlemde uzunluk ve genişlikten söz edilebileceğinden düzlem iki boyutlu. Uzayda uzunluk, genişlik ve yükseklikten söz edilebileceğinden uzay üç boyutludur. Verilen bir noktadan, verilen uzaklıkta bulunan noktaların geometrik yeri nedir? Sorusunun yanıtı, Düzlemde veya Uzayda sorulmuş olmasına göre değişiktir. Düzlemde (R 2 de) verilen bir noktadan, verilen uzaklıkta bulunan noktaların geometrik yeri ÇEMBER. Uzayda (R 3 de) verilen bir noktadan, verilen uzaklıkta bulunan noktaların geometrik yeri KÜREdir. Yolculuğa başlamış iken, AB doğrusu üzerindeki A ve B noktalarının doğruyu kaç bölgeye ayırdığını, E düzleminde alınan d ve l doğrularının düzlemi kaç bölgeye ayırdığını, Uzayda alınan E ve F düzlemlerinin uzayı kaç bölgeye ayırdığını şimdilik soru olarak bırakıp daha temel konulara dönelim. Geometriyi anlayabilmek için öncelikle şekilleri ve sembolleri iyi okumak gerekir. Örneğin; A ve B noktalarından geçip, C noktasından geçmeyen d doğrusu (A ve B noktaları d doğrusu üzerinde, C noktası d doğrusunun dışında) şekil olarak; Ve semboller ile A d, B d, C d biçiminde gösterilir. Nasıl bazı terimleri tanımsız olarak aldıysak, bazı önermeleri de irdelemeden kabul edeceğiz. Doğruluğunu ispatsız olarak kabulleneceğimiz bu önermelere Aksiyom adı verilir. Hiç vakit kaybetmeden Aksiyomlarımızı sıralayıp Geometri yapımızı kuralım. AKSİYOM: Farklı iki nokta bir ve yalnız bir doğru belirtir. Bu demektir ki; farklı iki nokta verildiğinde bu noktalardan geçen bir doğru, bir doğru verildiğinde üzerinde farklı iki nokta düşünülmelidir. Herhangi üçü doğrusal olmayan (aynı doğru üzerinde bulunmayan) 5 farklı nokta kaç doğru belirtir? sorusunun yanıtı: C(5,2)=. =10.

4 Analitik geometride: İki nokta verildiğinde, bu iki noktadan geçen doğrunun denklemi, doğru denklemi verildiğinde de, üzerindeki iki nokta (genellikle, eksenleri kestiği noktalar) düşünülmelidir. SONUÇ: Farklı iki doğru en çok bir noktada kesişir. Genelleme yapıldığında: n tane farklı nokta (herhangi üçü doğrusal olmayan) C(n,2)= ( ) n tane farklı doğru en çok C(n,2) = n(n 1) 2 noktada kesişir. doğru belirtir. Aynı düzlem içinde olup kesişmeyen doğrulara paralel doğrular denir. İki doğrunun paralel olması için ortak noktalarının olmaması yetmez, aynı düzlem içinde olmaları da gerekir. d 1 E, d 2 E ve d 1 d 2 =Ø d 1 //d 2 Farklı düzlemler içinde olup kesişmeyen doğrulara aykırı doğrular denir. d 1 E, d 2 F ve d 1 d 2 =Ø d 1 ve d 2 Aykırı doğrulardır. Geometri ile sayılar arasındaki ilişkilere başlamış iken aşağıdaki problemlerin çözümüne de bir göz atalım. Bakalım altından ne gibi gerçekler çıkacak. Bir demir çubuğu 2 dakikada kesebilen demirci, 12 m. uzunluğundaki demir çubuğu 3 parçaya kaç dakikada ayırır? Bir kesim 2 dakika sürdüğüne göre, 3 kesim 3.2=6 dakika sürer diyenler yanılgıya düşecektir. Çünkü, çubuğu 3 parçaya ayırmak için iki kesim yapılacaktır. Doğru yanıt 2.2=4 dakika olmalıdır.

5 100 metre uzunluğundaki bir yol kıyısına tek taraflı 5 metrede bir ağaç dikilecektir. Yolun başına ve sonuna da ağaç dikileceğine göre kaç ağaç gerekir? 100:5=20 ağaç gerekir yanıtı yanlış olacaktır. Evet, 5 er metrelik 20 aralık var ve her aralık için bir ağaç dikilecektir fakat yolun başına da dikilecek ağacı unutmamak gerekir. Bu yüzden 100:5=20 ve 20+1=21 ağaç gerekir yanıtı doğru yanıt olacaktır. Yukarıdaki soruların çözümlerindeki mantık, doğru üzerindeki noktalar doğruyu kaç parçaya ayırır sorusunun çözümünde gizlidir. Doğru üzerinde herhangi bir nokta seçilmediğinde, doğru tek parçadır. Seçilen nokta sayısı: 0 Parça sayısı: 1 Adım adım ilerlediğimizde, Seçilen nokta sayısı: 1 Parça sayısı: 2 Seçilen nokta sayısı: 2 Parça sayısı: 3... Seçilen nokta sayısı: n Parça sayısı: n+1 Parça sayısı = C(n,0)+C(n,1) = n+1 Düzlem üzerine herhangi bir doğru çizilmediğinde, düzlem tek parçadır. Çizilen doğru sayısı: 0 Parça sayısı: 1 Çizilen doğru sayısı: 1 Parça sayısı: 2 Çizilen doğru sayısı: 2 Parça sayısı: 3 veya 4 Çizilen doğru sayısı: 3 Parça sayısı: 4 veya 7... Çizilen doğru sayısı: n Parça sayısı: en az n+1, en çok Parça sayısı (en çok)=c(n,0)+c(n,1)+c(n,2)= Aşağıda düzlemde çizilen 4 doğrunun düzlemde ayırdığı parçalar araştırılmıştır. d 1 //d 2 //d 3 d 1 //d 2 d 1 d 2 d 3 ={A} d 1 d 2 ={A} d 3 d 2 ={B} d 1 d 3 ={C}

6 Çemberin, n tanekeseni ile birlikte düzlemi kaç bölgeye ayırabileceğini ve n tane düzlemin uzayı kaç bölgeye ayırabileceğini ve de benzer soruları ilerideki konularda incelemek üzere tekrar doğruya dönelim. AKSİYOM: Bir doğrunun noktaları ile gerçek sayılar arasında bire-bir bir eşleme yapılabilir. Doğru üzerindeki her noktaya bir gerçek sayı, her gerçek sayıya da doğru üzerinde bir nokta karşı gelir. Sayılar ile birlikte bu doğruya Sayı Ekseni, sayı ekseni üzerindeki bir noktaya karşı gelen sayıya da bu noktanın Koordinatı denir. A(a) şeklinde gösterilir. A(a) ve B(b) noktaları arasındaki uzaklık: AB = a-b dir. A, B, C d ve AB + BC = AC ise B noktası, A ile C arasındadır denir. A(a), B(b), C(c) iken a < b < c ise B noktası, A ile C arasındadır. Örneğin; sayı ekseninde koordinatları sırasıyla 9 10, , olan A, B, C noktalarından arasındadır. < < eşitsizliği gereği B noktası A ve C Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] doğru parçası denir. [AB] = {C: AC + CB = AB } [AB] doğru parçasının uzunluğu AB biçiminde gösterilir. Uzunlukları eşit doğru parçalarına eş doğru parçaları denir. AB = CD [AB] [CD]

7 UYARI: Eşlik ve Eşitlik kavramları birbirine karıştırılmamalıdır. A(2), B(5), C(6) ve D(9) noktaları için; AB = 2-5 =3 ve CD = 6-9 =3 AB = CD =3 [AB] [CD] dir. Farklı noktalar kümesi olduklarından [AB] = [CD] yazılamaz. [AB] [CD] dir. C [AB] için AC = CB ise C noktası [AB] nin orta noktasıdır. x = a b 2 orta noktanın koordinatı.(aritmetik orta) [AB] doğru parçası ile, B noktası A ile C arasında olacak biçimde alınan bütün C noktaları kümesinin birleşimine [AB ışını denir. [AB = {C: AB + BC = AC } [AB] [AB ve [AD zıt ışınlardır. Tüm geometrik şekiller, elemanları noktalar olan kümelerdir demiştik. Gelin bu kümelerle birkaç işlem yapalım. [AB [AD = d [AB [AD = {A} [AB [BD = [AB] A noktası dışında [AB ışınının noktalarının kümesine ( [AB {A} = ]AB ) ]AB yarı doğrusu denir. ]AB = {C: AB + BC = AC } ]AB]

8 ]AB ]AD = d-{a} ]AB ]AD = Ø Biraz daha doğru parçası ile ilgilenirsek; EK BİLGİ: Bir doğru üzerinde A(a) ve B(b) gibi iki nokta verildiğinde: CA k, a kb k 1 olan C(x) noktası için x dır. CB 1 k ( k< 0 alınırsa C arada, k > 0 alınırsa C dıştadır. ) Verilen bir doğru parçasını,verilen bir oranda içten ve dıştan bölen iki noktaya,bu doğru parçasını HARMONİK olarak böler denir. Harmonik bölme yapan dört noktanın koordinatları arasında: (a+b)(c+d) = 2(ab+cd) bağıntısı vardır. Örneğin; gelecek bölümlerde ayrıntılı olarak inceleyeceğimiz bir teorem: Üçgenin bir açısının iç ve dış açı ortayları, karşı kenarı harmonik olarak böler. Bu kadar bilgi birikimini şimdi birkaç soruda kullanalım. P her hangi bir nokta, AO 2OB iken: PA 2 PB k PO ise k sayısı kaçtır? ÇÖZÜM: PA =x ve AB =3y dersek; PB =x+3y, PO =x+2y değerlerini PA 2 PB k PO eşitliğinde yerlerine yazdığımızda x+2(x+3y)=k(x+2y) 3x+6y=k(x+2y) 3(x+2y)=k(x+2y) eşitliğinden k=3 bulunur.

9 Bir [AB] doğru parçasının orta noktasının aynı tarafında P ve Q noktaları alınıyor. P noktası [AB] yi 3 2 oranında, Q noktası ise [AB] yi 4 3 oranında bölüyor. PQ 2 ise AB değeri kaçtır? ÇÖZÜM: 2 PA 2 P noktası [AB] yi oranında böldüğünden 3 PB 3 = = PA = 5 2 AB dir. 3 QA 3 Q noktası ise [AB] yi oranında böldüğünden 4 QB 4 3 QA = AB dir. 7 = = PQ = QA - PA = 7 3 AB AB = 35 1 AB =2 AB =70 birimdir. 1 1 AB AC AD ve CD 2 ise; 3 5 [AB] ve [AD] nin orta noktaları arasındaki uzaklık kaç birimdir? ÇÖZÜM: AB =x dersek, AC =3x ve AD =5x olur. AD - AC = CD CD =5x-3x =2x=2 [AB] nin orta noktası O 1, [AD] nin orta noktası O 2 alınırsa; AO 1 = ve AO 2 = O 1 O 2 = AO 2 - AO 1 = = 2x O 1 O 2 =2 bulunur.

10 AP 4 PB, AQ 3QB, AB 3 PQ kaç birimdir olduğuna göre, ÇÖZÜM: AP + PB =4 PB + PB =5 PB = AB =3 PB = AQ + QB =3 QB + QB =4 QB = AB =3 QB = PQ = QB - PB = birim bulunur. AB =6 br. AP 2 + PB 2 P [AB] olduğuna göre, toplamının en küçük değeri kaçtır? ÇÖZÜM: C noktası [AB] nin orta noktası olarak alındığında; AC = CB =3 olur. PC =x dersek; AP =3-x ve PB =x+3 AP 2 + PB 2 =(3-x) 2 +(3+x) 2 toplamın en küçük değeri alması için x=0 olmalıdır. AP 2 + PB 2 = =9+9=18 bulunur.

11 Geometride bir adım daha atarak Düzlem kavramını incelemeye başlayabiliriz. AKSİYOM: Doğrusal olmayan üç nokta bir ve yalnız bir düzlem belirtir. SONUÇLAR: Bir doğru ve dışındaki bir nokta, bir düzlem belirtir. Kesişen iki doğru, bir düzlem belirtir. Paralel iki doğru, bir düzlem belirtir. Bu önermelerden sonra, doğrusal olmayan üç nokta gördüğümüzde bir düzlem, Bir düzlem verildiğinde de üzerinde doğrusal olmayan üç nokta düşünülmelidir. TEOREM: Bir doğru içinde bulunmadığı bir düzlemi keserse arakesit kümesi bir tek noktadan oluşur. d E={A} DİKKAT: Düzlemde çizilen doğru, düzlemin bir alt kümesidir. DOĞRUNUN DÜZLEME PARALELLİĞİ: Düzlem ile ortak noktası olmayan doğrular, düzleme paraleldir denir. d E = Ø d//e

12 AKSİYOM: Kesişen farklı iki düzlemin arakesiti bir doğrudur. E 1 E 2 = d d E 1 ve d E 2 PARALEL İKİ DÜZLEM: Ortak noktaları olmayan düzlemler bir birine paraleldir. E 1 E 2 = Ø E 1 //E 2 KONVEKS KÜMELER : Kümeden alınan iki noktayı uç kabul eden doğru parçası kümenin bir alt kümesi ise kümeye Konvekstir denir. A,B K için; [AB] K ise K nokta kümesi konvekstir. ÖRNEK:

13 KONU TARAMA TESTİ: 1 1. Aşağıdakilerden hangisi tanımsız terim değildir? A) Nokta B) Doğru C) Düzlem D) Açı E) Uzay 2. Aşağıdaki geometrik şekillerden hangisi iki boyutludur? A) Nokta B) Doğru C) Doğru parçası D) Üçgen E) Işın 3. Bir düzlemin doğrusal olmayan en az a, uzayın düzlemsel olmayan en az b noktası vardır. Aksiyomunda a+b toplamı kaçtır? A) 4 B) 5 C) 6 D) 7 E) 8 4. n kenarlı çokgeni taban kabul eden prizmada ayrıtların belirttiği kaç tane doğru vardır? A) n+2 B) 2n C) n 2 D) 3n E) 4n 5. Herhangi üç düzlem uzayı en çok kaç bölgeye ayırır? A) 5 B) 6 C) 7 D) 8 E) 9 6. Bir çemberin iki tane keseni çemberle birlikte düzlemi en az kaç bölgeye ayırır? A) 3 B) 4 C) 5 D) 6 E) 7 7. Sayı ekseni üzerindeki A, B, C noktalarının koordinatları sırasıyla x-2, x+2, x-3 olduğuna göre, hangi nokta diğer ikisi arasındadır? A) A B) B C) C D) A=B E) B=C

14 8. Aşağıdaki önermelerden hangisi yanlıştır? A) A ve B konveks kümeleri için A B kümesi konvekstir. B) A ve B konveks olmayan kümeleri için A B kümesi konveks olabilir. C) Doğru parçası konvekstir. D) Farklı üç noktadan en çok bir düzlem geçer. E) Farklı iki noktadan en çok bir doğru geçer. 9. Farklı on nokta en çok kaç doğru belirtir? A) 25 B) 36 C) 45 D) 49 E) 50 YANIT ANAHTARI: 1.D 2.D 3.D 4.D 5.D 6.E 7.A 8.D 9.C

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan baģlayarak gezimize çıkacağız.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan baģlayarak gezimize çıkacağız. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakıģ açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düģünür

Detaylı

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «.

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «. UZAY GEOMETRİ BAZI KAVRAM ve TANIMLAR Geometride nokta, doğru, düzlem ve uzay gibi bazı kavramlar tanımsız olarak kabul edilir. Kalemin veya sivri bir şeyin ucunun bıraktığı ize nokta diyebiliriz. Cetvelin

Detaylı

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER 1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER 1. TANIMSIZ KAVRAM, AKSİYOM, TEOREM VE İSPAT NE DEMEKTİR? 2. NOKTA, DOĞRU, DÜZLEM VE UZAY KAVRAMLARI * Nokta, Doğru ve Düzlem * Doğru Parçası *

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n İLMO 008. Aşama Sınavı Soru Kitapçığı - A. 009 009 009 + +... + n toplamı hiçbir n doğal sayısı için aşağıdakilerden hangisiyle bölünemez? A) B) n C) n+ D) n+ E). ( x!)( y!) = z! eşitliğini sağlayan (x,

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

Örnek: Eş doğru parçalarının uzunlukları eşittir. Örnek:

Örnek: Eş doğru parçalarının uzunlukları eşittir. Örnek: ĐFL GEOMETRĐK KAVRAMLAR VE ÇALIŞMA SORULARI (Eylül-011) Terim, Geometrik Terim, Tanımsız Terim, Önerme, Aksiyom (Postülat), Teorem (Hipotez ve Hüküm), Đspat: Bir bilim dalında özel anlamı olana kelimelere

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır.

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır. 1 TEMEL ZI KVRMLR Nokta: Kalemin kâğıda, tebeşirin tahtaya bıraktığı ize nokta denir. Nokta boyutsuzdur. Yani; noktanın eni, boyu ve yüksekliği yoktur. ütün geometrik şekiller noktalardan oluşur. Noktalar

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

Üç Boyutlu Uzayda Koordinat Sistemi

Üç Boyutlu Uzayda Koordinat Sistemi Üç Boyutlu Uzayda Koordinat Sistemi Yrd. Doç. Dr. Didem COŞKAN MAT 1010 Matematik II 1/ 104 Üç Boyutlu Uzayda Koordinat Sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

MAT239 AYRIK MATEMATİK

MAT239 AYRIK MATEMATİK MAT239 AYRIK MATEMATİK 11. Bölüm Emrah Akyar Eskişehir Teknik Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2018 2019 Öğretim Yılı Köşegenlerin Arakesiti Köşegenlerin Arakesiti Geometri ve Kombinatoriğin

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

25 Nisan 2010 Pazar,

25 Nisan 2010 Pazar, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 18. ULUSAL MATEMATİK OLİMPİYATI - 2010 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 25 Nisan 2010 Pazar, 13.00-15.30

Detaylı

TEOREMLER İSPATLAR SONUÇLAR

TEOREMLER İSPATLAR SONUÇLAR TEOREMLER İSPATLAR SONUÇLAR TANIM: Birer kenarları ortak ve iç bölgeleri ayrık iki açıya KOMŞU AÇILAR denir. TANIM: Komşu iki açının ortak olmayan kenarları zıt ışınlar ise bu iki açıya DOĞRUSAL AÇI ÇİFTİ

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır? 99 ÖYS. Üç basamaklı abc sayısının birler basamağı tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 97 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?.,

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 ) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 010 ) 1) Dar açılı ABC üçgeninde BB 1 ve CC 1 yükseklikleri H noktasında kesişiyor. CH = C H, BH = B H ise BAC açısını bulunuz. 1 1 A)0 0 B)45 0 C) arccos

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir.

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir. GEOMETRĐK KAVRAMLAR Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. 1. Nokta:. biçiminde gösterilir. Boyutu yoktur. 2. Doğru: Đki uçtan sınırsız noktalar kümesidir. 3. Düzlem:

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Doç. Dr. Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2011 2012 Güz Dönemi Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI Soru 1: Bir üçgenin iç açılarının ölçüleri aritmetik dizi oluşturmaktadır. Bu üçgenin en kısa kenar uzunluğu 6 cm ve en uzun kenarı 14 cm ise, ortanca kenar uzunluğu kaç cm dir? A) 2 37 B) 39 C) 13 D)

Detaylı

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar 11. SINIF No Konular Kazanım Sayısı GEOMETRİ Ders Saati Ağırlık (%) 11.1. TRİGONOMETRİ 7 56 26 11.1.1. Yönlü Açılar 2 10 5 11.1.2. Trigonometrik Fonksiyonlar 5 46 21 11.2. ANALİTİK GEOMETRİ 4 24 11 11.2.1.

Detaylı

9SINIF MATEMATİK. Denklemler ve Eşitsizlikler

9SINIF MATEMATİK. Denklemler ve Eşitsizlikler 9SINIF MATEMATİK Denklemler ve Eşitsizlikler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim ile

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

Örnek...1 : Şekildek i kare piramitte paralel, a yk ır ı k esişen doğru parçalar ına örnek ler verini z. UZAYIN ANALİTİĞİ UZAY

Örnek...1 : Şekildek i kare piramitte paralel, a yk ır ı k esişen doğru parçalar ına örnek ler verini z. UZAYIN ANALİTİĞİ UZAY UZYIN NİİĞİ 1 M KVRMR UZY ümü düzlemsel olmayan bütün noktaların kümesine uza y denir. UZY NOK, OĞRU, ÜZM V UNR RSINKİ İİŞKİR 1)Uzayda farklı iki noktadan bir tek doğru geçer. UZY OĞRURIN URUMU 1.Uzayda

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 2. a bir gerçel sayı olmak üzere, karmaşık sayılarda eşitliği veriliyor.

Detaylı

Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 10

Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 10 Ö.S.S. 99 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44.. 0 00 0 0,4 0. + 4 + + 6 işleminin

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

NOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ

NOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ Başlangıç noktasında birbirine dik olan iki saı doğrusunun oluşturduğu sisteme "Dik Koordinat Sistemi" denir. Dik Koordinat Sisteminin belirttiği

Detaylı

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12 8 ÖYS a c. olduğuna göre b d çarpımının değeri nedir? A). B) C) 7 a b b D) 5 c d c E) a a 5. a a ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) a B) C) E) a+ a a D) a 6. 5 kız, 5 erkek

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI ., x x 0,,4 0,7 eşitliğinde x kaçtır? 4. a b b c 3 olduğuna göre a b c ifadesinin değeri kaçtır? A) 0, B) 0,5 C) 0, D) 0,5 A) 9 B) 8 C) D) 4 3. x.y 64, y.x 6 olduğuna göre, x.y ifadesinin değeri kaçtır?

Detaylı

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır.

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır. AYT 08 MATEMATİK ÇÖZÜMLERİ ai i İçler dışlar çarpımı yapalım. ai ai i ai ai aii ai ai ai ai 0 ai a 0 olmalıdır. Cevap : E 8 in asal çarpanları ve 3 tür. 8.3 3 40 ın asal çarpanları ve 5 tir. 40.5 İkisinde

Detaylı

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10 Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44..

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur.

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur. DERS : GEOMETRİ KONU : GEOMETRİK KAVRAMLAR Geometrinin temelinde her soruda karşılaşacağımız terimler kavramlar vardır bu derste onları işleyeceğiz. Geometride özel anlamı olan ifadelere geometrik terim

Detaylı

Cahit Arf Matematik Günleri 10

Cahit Arf Matematik Günleri 10 Cahit Arf Matematik Günleri 0. Aşama Sınavı 9 Mart 0 Süre: 3 saat. Eğer n, den büyük bir tamsayı ise n 4 + 4 n sayısının asal olamayacağını gösteriniz.. Çözüm: Eğer n çiftse n 4 +4 n ifadesi de çift ve

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

MAKSİMUM-MİNİMUM PROBLEMLERİ

MAKSİMUM-MİNİMUM PROBLEMLERİ 1 MAKSİMUM-MİNİMUM PROBLEMLERİ En büyük veya en küçük olması istenen değer (uzunluk, alan, hacim, vb.) tek değişkene bağlı bir fonksiyon olacak şekilde düzenlenir. Bu fonksiyonun türevinden ekstremum noktasının

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2009 Birinci Bölüm Soru kitapçığı türü SINAV TARİHİ

Detaylı

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 25 Nisan 2009 Cumartesi, OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2009 Birinci Bölüm Soru kitapçığı türü SINAV TARİHİ

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları Doğrusal Denklem Sistemlerinin Çözümleri BÖLÜM 04 Test 0. y = y = 6 denklem sisteminin çözüm kümesi aşağıdakilerden A) {(, 4)} B) {(, )} C) {(, 4)} D) {( 4, )} E) {(, )}./ y = / y = 6 5 = 5 = = için y

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+ ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. a+ = b 4. a = b 0+ a b a b = b a+ b = 0. A ( a + 4, a) noktası y ekseni üzerinde ise, ( + ) a + 4 = 0 A 0, 5 a = 4 B b, b 0 noktası x ekseni

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Parametrik doğru denklemleri 1

Parametrik doğru denklemleri 1 Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P

Detaylı

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2 HAZİNE-1 HAZİNE-2 Bir eksen üzerinde verilen noktadan geçen ve eksen ile belirli açı yaparak dönen doğrunun oluşturduğu yüzeye konik yüzey denir. Konik yüzeyin değişik düzlemler ile arakesit kümeleri çember,

Detaylı

MAT239 AYRIK MATEMATİK

MAT239 AYRIK MATEMATİK MAT239 AYRIK MATEMATİK 12. Bölüm Emrah Akyar Eskişehir Teknik Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2018 2019 Öğretim Yılı 11. Bölümde Düzlemde bazı özel çizgeler çizildiğinde bu çizgeler

Detaylı

YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM

YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM YAYIN KURULU Hazırlayanlar Filiz SOYUÇETİN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK & Ezgi Güler & Meltem Temel

Detaylı

ÜN TE I. ANAL T K DÜZLEM

ÜN TE I. ANAL T K DÜZLEM ÜN TE I. ANAL T K DÜZLEM 1. G R fi. SAYI DO RUSU. ANAL T K DÜZLEM 4. K NOKTA ARASINDAK UZAKLIK 5. B R DO RU PARÇASININ ORTA NOKTASININ KOORD NATLARI 6. B R DO RU PARÇASINI, VER LEN B R ORANDA BÖLEN NOKTALARIN

Detaylı

2010 oldu¼gundan x 2 = 2010 ve

2010 oldu¼gundan x 2 = 2010 ve ) 444400 say s ndaki rakamlar n yerleri de¼giştirilerek 7 basamakl kaç farkl say yaz labilir? Çözüm : Bu rakamlar n bütün farkl 7 li dizilişlerinin say s 7! olacakt r. Bu dizilişlerin 4!! soldan ilk rakam

Detaylı

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır?

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? 996 ÖYS. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin saısı kaçtır? 8 C) 6 D) E) 6. Saatteki hızı V olan bir hareketti A ve B arasındaki olu

Detaylı

B)10!.15! C)10!.P(15,2).13! D)25! E) Hiçbiri

B)10!.15! C)10!.P(15,2).13! D)25! E) Hiçbiri 1.) Dış bükey ABCD dörtgeninde DA = AB =2 3, m(a)=96 o,m(c)=132 o ise AC nin yarısı kaçtır? A) 2 B) 2 6 C) 6 D) 2 3 E) 3 2.) Bir mağazada Ocak ayında satılan ayakkabı sayısı bir tamkaredir.şubat ayında

Detaylı

VI. OLİMPİYAT SINAVI SORULAR

VI. OLİMPİYAT SINAVI SORULAR SORULAR 1. N sayısı 1998 basamaklı ve tüm basamakları 1 olan bir doğal sayıdır. Buna göre N sayısının virgülden sonraki 1000. basamağı kaçtır? A)0 B)1 C)3 D)6 E) Hiçbiri. n Z olmak üzere, n sayısı n sayısına

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI . a 6 b a b 8 ifadesinin açılımında b çarpanının bulunmadığı terim aşağıdakilerden hangisidir?. Bir toplulukta en az iki kişinin yılın aynı ayı ve haftanın aynı gününde doğduğu kesin bilindiğine göre,

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

12. SINIF. Uzayda Vektörler-1 TEST. 1. Uzaydaki doğru parçaları için aşağıdaki önermelerden hangisi yanlıştır?

12. SINIF. Uzayda Vektörler-1 TEST. 1. Uzaydaki doğru parçaları için aşağıdaki önermelerden hangisi yanlıştır? 1. SINIF Uada Vektörler-1 1. Uadaki doğru parçaları için aşağıdaki önermelerden hangisi anlıştır? Akırı doğru parçaları farklı dülemlerdedir. Akırı doğru parçaları farklı doğrultudadır. İki doğru parçasının

Detaylı

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

OLİMPİYAT DENEMESİ 2

OLİMPİYAT DENEMESİ 2 OLİMPİYAT DENEMESİ 2 1.)Dış bükey ABCD dörtgeninde = =, m(a)=,m(c)= ise nin yarısı kaçtır? A) 2 B) C) D) E) 2.) Bir mağazada Ocak ayında satılan ayakkabı sayısı bir tamkaredir.şubat ayında satılan ayakkabı

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 5 Nisan 990 Matematik Soruları ve Çözümleri. 0,0703.(0,3 0,) işleminin sonucu kaçtır? A) 0,00703 B) 0,0703 C) 0,703 D) 0,0703 E) 0,00703 Çözüm 0,0703.(0,3 0,) 0,0703.0, 0,00703.

Detaylı