İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ"

Transkript

1 GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 1. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: Fizik I Vektörler, tek boyutta hareket, iki boyutta hareket, hareket kanunları, dairesel hareket ve Newton kanunlarının uygulamaları, iş ve enerji, potansiyel enerji ve enerjinin korunumu, çizgisel momentum ve çarpışma, katı cisimlerin sabit eksen etrafında dönmesi, yuvarlanma hareketi, açısal momentum ve tork. Dersin Kodu ve Adı: Analiz I Kümeler ve sayılar, tümevarım metodu, fonksiyonlar, trigonometrik fonksiyonlar ve tersleri, üstel ve logaritmik fonksiyonlar, diziler ve limitleri, bir fonksiyonun limiti, süreklilik, türev, türevin geometrik anlamı, türevin fiziksel anlamı, belirsizlik şekilleri. Dersin Kodu ve Adı: Soyut Matematik I Önermeler ve önermeler cebiri, kümeler ve kümeler cebiri, niceleme mantığı, bağıntılar, fonksiyonlar, işlemler, matematik yapılar. Dersin Kodu ve Adı: Analitik Geometri I Analitik geometri hakkında genel bilgi, lineer denklem sistemleri, matrisler, determinantlar ve lineer denklem sistemlerinin çözümü, vektörler ve vektörlerle işlemler, vektörel çarpım ve karma çarpımın geometrik yorumları ve kullanışları. Düzlemsel koordinatlar, uzayda koordinat çatıları ve koordinat sistemleri, uzayda doğru-düzlem ilişkileri. Dersin Kodu ve Adı: Algoritma ve Programlamaya Giriş I Algoritma kavramı, Akış diyagramları, Programlama ve programlama dili, Yapısal programlama kavramı, Dizi (vektör) kavramı, Dizilerde (vektörlerde) arama ve sıralama algoritmaları, Çok boyutlu diziler (matrisler), Altprogram kavramı, Özyineleme kavramı, Özyinelemeli altprogram örnekleri, Format kavramı ve girdi-çıktı formatlama, Dosya (file) kullanımı ve dosyalarla ilgili temel kavramlar, Güncel algoritma örnekler.

2 BAHAR DÖNEMİ DERSLERİ VE İÇERİKLERİ 1. SINIF BAHAR DÖNEMİ Dersin Kodu ve Adı: Fizik II Elektrik alanları, Gauss kanunu, elektrik potansiyeli, sığa ve dielektrikler, akım ve direnç, doğru akım devreleri, magnetik alanlar, magnetik alan kaynakları, Faraday kanunu. Dersin Kodu ve Adı: Analiz II Eğri çizimleri, belirsiz integral, integral alma yöntemleri, belirli integral, belirli integral uygulamaları, alan hesabı, yay uzunluğu, hacim hesabı, dönel yüzeylerin alanları. Dersin Kodu ve Adı: Soyut Matematik II Grup, halka, tamlık bölgeleri, cisim, sayı sistemleri, doğal sayılar kümesi, tamsayılar kümesi, rasyonel sayılar kümesi, reel sayılar kümesi, kompleks sayılar kümesi. Dersin Kodu ve Adı: Analitik Geometri II Koordinat dönüşümleri, eğriler ve eğrilerin sınıflandırılarak incelenmesi. Yüzeyler, yüzeylerin kapalı, parametrik ve vektörel denklemleri. Yüzeylerin grafikleri, dönel yüzeyler ve denklemlerinin elde edilmesi. İkinci dereceden (kuadrik) yüzeyler ve sınıflandırılması. Konikler ve kuadrikler arasındaki ilgi. Dersin Kodu ve Adı: Algoritma ve Programlamaya Giriş II Programlamaya giriş, Programlama temelleri, Döngüler ve kararlar, Kayıtlar, Fonksiyonlar, Nesneler ve Sınıflar, Diziler ve Karakter Katarları, Değer geçirme, Adres geçirme, Operatörler, İşaretçiler, İşaretçiler, Akışlar ve dosyalar.

3 GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 2. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: Doğrusal Cebir I Vektörler, vektörlerin toplamı ve skalar ile çarpımı, bir cisim üzerinde vektör uzayı, standart vektör uzayları, alt vektör uzayları, iç çarpım ve iç çarpım uzayları, ortogonal ve ortonormal vektör sistemleri, lineer bağımlılık ve lineer bağımsızlık, vektör uzaylarının bazları, alt uzayların boyutları, direkt toplam uzayı, lineer dönüşümler, ortogonal izdüşüm, matrisler ve matris uzayları, lineer izomorfizm. Dersin Kodu ve Adı: İleri Analiz I Vektör değerli fonksiyonların limit, süreklilik, türev ve integrali. Çok değişkenli fonksiyonlar, çok değişkenli fonksiyonların limit ve sürekliliği, kısmi türevleri. Zincir kuralı, tam diferansiyel, kapalı fonksiyonların türevi, herhangi bir yönde türev, iki değişkenli fonksiyonların Taylor açılımı, maksimum ve minimum, bölge dönüşümleri, kısmi türevlerin geometrik anlamı. İki katlı integrallerde bölge dönüşümleri ve iki katlı integrallerin uygulama alanları. Üç katlı integrallerde bölge dönüşümleri ve üç katlı integrallerin uygulama alanları. Birinci ve ikinci çeşit eğrisel integraller ve uygulama alanları. Birinci çeşit yüzey integralleri. Yönlendirilmiş yüzeyler üzerinde integraller. Green, Stokes ve Divergens teoremleri, yüzey integrallerinin uygulama alanları. Dersin Kodu ve Adı: Dönüşümler ve Geometriler Bir geometrik dönüşümün tanımı, dönüşüm grupları, geometrik değişmezler, düzlemin kendisi üzerine dönüşümleri, denklemleri lineer olan dönüşümler, öklid düzleminde haraketler, düzlemde hareket çeşitleri, ötelemeler, dönmeler, yansımalar, ötelemeli yansımalar, benzerlik dönüşümleri, afin dönüşümler, afin dönüşümlerin bazı özellikleri. Dersin Kodu ve Adı: Nümerik Analiz I Genel hata analizi, sayısal işlemlerde hatalar, cebirsel denklemlerin çözümü için yöntemler (Regüle-False, Newton-Rabson, sabit nokta iterasyonu), lineer cebirsel denklem sistemlerinin çözümü için yöntemler (Gauss-eliminasyon, Gauss-Jordan, Gauss Seidell, Jacobi ), lineer olmayan cebirsel denklem sistemlerinin çözümü için yöntemler. Dersin Kodu ve Adı: Görsel Programlama Görsel programlama editörü kurma ve ayarlarını yapma, Formlar ve özellikleri, Standart nesneler, Giriş ve mesaj pencereleri, Diyalog pencereleri, Gelişmiş nesneler, Operatörler, Fonksiyonlar, Karar yapıları ve döngüler, Diziler, Grafik uygulamaları.

4 BAHAR DÖNEMİ DERSLERİ VE İÇERİKLERİ 2. SINIF BAHAR DÖNEMİ Dersin Kodu ve Adı: Doğrusal Cebir II Cebir, matrisler ve lineer dönüşümler, lineer dönüşümün rankı, baz değişimleri, elemanter işlemler ve uygulamaları, iç çarpım uzaylarının lineer dönüşümleri, permütasyonlar, çok lineer fonksiyonlar, determinantlar, lineer dönüşümün determinantı, lineer denklem sistemleri ve çözüm uzayları, matrislerin ve lineer dönüşümlerin polinomları, karakteristik değerler ve karakteristik vektörler, karakteristik uzay, karakteristik polinom ve karakteristik denklem. Dersin Kodu ve Adı: İleri Analiz II Pozitif terimli seriler ve pozitif terimli seriler için yakınsaklık kriterleri, alterne seriler ve alterne seriler için Leibntiz kriteri, herhangi terimli seriler ve herhangi terimli seriler için yakınsaklık kriterleri. Düzgün yakınsak diziler ve limit, integral ve türev ile ilişkileri. Fonksiyon serilerinin düzgün yakınsaklığı. kuvvet serileri, kuvvet serilerinin türev ve integrali. Taylor polinomları ve Taylor serileri. Sonsuz çarpımlar. Genelleştirilmiş integraller ve genelleştirilmiş integraller için yakınsaklık kriterleri. Gamma ve Beta fonksiyonları. Laplace dönüşümü ve ters Laplace dönüşümü. Dersin Kodu ve Adı: İstatistik İstatistiğin tarihçesi ve tanımı; istatistiğin önemi; betimsel istatistik ve çözümsel istatistik; ana kütle ve örnekler; birim, zaman ve mekan serileri; ham veri; sözel seriler; sayısal seriler; grafik çizimleri; duyarlı ortalamalar; duyarlı olmayan ortalamalar; tartılı ortalamalar; değişim aralığı; standart sapma ve varyans; değişim katsayısı; toplanma oranı ve toplanma eğrisi; simetri ve basıklık ölçüleri; momentler; olasılık; binom, poisson ve normal dağılımlar. Dersin Kodu ve Adı: Nümerik Analiz II İnterpolasyon yöntemleri (Lagrange, Newton bölünmüş fonksiyonlar, Spline interpolasyonu ), nümerik türev, nümerik integral (Yamuk yöntemi, Romberg yöntemi, Simson yöntemi), adi türevli diferansiyel denklemlerin nümerik çözüm yöntemleri (Euler yöntemi, Runge-Kutta yöntemi), kısmi türevli diferansiyel denklemlerin nümerik çözümleri. Dersin Kodu ve Adı: Veri Tabanı Yönetim Sistemleri Veritabanı Yönetim Sistemleri ne Giriş, Varlık-ilişki modeli, İlişkisel Veri Modeli, İlişkisel Cebir ve Hesap, SQL, Normalizasyon, Veritabanı Yönetim Sistemi, Web veritabanı uygulaması geliştirme.

5 GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 3. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: Soyut Cebir I Tamsayılarda bölünebilme, kalanlı bölme, Euclidean algoritması, asal çarpanlara ayrılışın tekliği, modüler aritmetik, lineer kongrüanslar, Diophantine denklemler, polinom kongrüanslar, lineer kongrüans sistemleri, Euler φ-fonksiyonu, tek işlemli cebirsel yapılar, iki işlemli cebirsel yapılar, alt cebirsel yapılar ve bölüm yapıları, cebirsel yapılarda homomorfizma ve izomorfizma, alt gruplar, permütasyon grupları, devirli gruplar Dersin Kodu ve Adı: Kompleks Fonksiyonlar Teorisi I Karmaşık sayılar ve özellikleri, karmaşık fonksiyonlar, karmaşık sayıların geometrik temsili, karmaşık fonksiyonlarda limit ve süreklilik, karmaşık fonksiyonlarda türev, analitik fonksiyonlar, karmaşık fonksiyonların integrali. Dersin Kodu ve Adı: Reel Analiz I Reel sayılar sistemi ve inşası, küme kavramı ve bazı özellikleri, en küçük üst sınır, en büyük alt sınır, reel sayı dizileri, limit süperyör, limit inferyör, metrik uzaylar, metrik uzaylarda dizi kavramı, fonksiyonların sürekliliği, IRn nin topolojisi, kompakt kümeler, bağlantılı kümeler, süreklilik ve kompaktlık, bağlantılı bileşenler. Dersin Kodu ve Adı: Web Tasarımın Temelleri İnternet ve WEB Tanımları, Html Temel Etiketleri, Metin ve Görünüm Etiketleri, Bağlantı (Köprü) Oluşturma, Tablo İşlemleri, Formlar, Çerçeveler, Çoklu Ortam Araçları, Stil Şablonu(CSS) Temelleri, Stil Şablonu(CSS) Özellikleri, Stil Şablonu(CSS) Özellikleri, Stil Şablonu(CSS) Menü İşlemleri, Stil Şablonu(CSS) Menü İşlemleri. Dersin Kodu ve Adı: Diferansiyel Denklemler I Diferansiyel denklemler ve çözümleri, birinci mertebeden diferansiyel denklemler, birinci mertebeden diferansiyel denklemlerin uygulamaları, yüksek mertebeden diferansiyel denklemler, varlık ve teklik teoremi. Dersin Kodu ve Adı: Topoloji I Kümeler teorisi, metrik uzaylar, topolojik uzaylar, sürekli fonksiyonlar, topoloji elde etme metodları, indirgenmiş (alt uzay) topoloji, bölüm topolojisi, çarpım uzayları.

6 BAHAR DÖNEMİ DERSLERİ VE İÇERİKLERİ 3. SINIF BAHAR DÖNEMİ Dersin Kodu ve Adı: Soyut Cebir II Bir grubun bir alt grubuna göre kalan sınıfları, gruplarda homomorfizma ve izomorfizma, normal alt gruplar ve bölüm grupları, eşlenikler, esınıfları, iç otomorfizmalar, invaryant alt gruplar, gruplarda homomorfizma teoremi, normalizatör ve merkez, halkalar, alt halkalar, idealler ve bölüm halkaları, esas ideal halkası, halkalarda homomorfizma ve izomorfizma, tamlık bölgesi, tamlık bölgesinin kesirler cismi, polinom halkaları, tamlık bölgesinde bölünebilme, Euclidean halka, asal ve maksimal idealler, cisimler ve cisim genişlemeleri. Dersin Kodu ve Adı: Kompleks Fonksiyonlar Teorisi II Cauchy integral teoremi, Cauchy formülleri ve sonuçları, karmaşık sayıların dizi ve serileri, fonksiyon dizi ve serileri, Taylor ve Laurent serileri, aykırılıkların sınıflandırılması ve Rezidü teoremi, Rezidü teoreminin gerçel integral hesabına uyarlanması, logaritmik türeve bağlı sonuçlar. Dersin Kodu ve Adı: Reel Analiz II Kümeler, fonksiyonlar, diziler, sayılabilir kümeler, bazı küme sınıfları, ölçüler, dış ölçü, Lebesque dış ölçüsü, ölçülebilir fonksiyonlar, basit fonksiyonların integrali, pozitif fonksiyonların integrali, integrallenebilir fonksiyonlar, Lebesque integrali ve Riemann integrali, Lp uzayı, L uzayı, Lp yakınsaklık, ölçüsel yakınsaklık. Dersin Kodu ve Adı: İnternet Programcılığı Web 2.0, XHTML, CSS, JavaScript, XML ve RSS, Web Sunucuları ve Veritabanları, PHP, Ruby, ASP.NET ve ASP.NET Ajax, ASP.NET, Java Server Faces, Web Servisleri. Dersin Kodu ve Adı: Diferansiyel Denklemler II Lineer diferansiyel denklemlerin seri çözümleri, Lineer diferansiyel denklem sistemleri, Laplace dönüşümü ve uygulamaları, varlık ve teklik teoremi. Dersin Kodu ve Adı: Topoloji II Diziler, ağlar, süzgeçler, ayrılma aksiyomları, Kompakt uzaylar, bağlantılı uzaylar, yol bağlantılı uzaylar.

7 GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 4. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: Fonksiyonel Analiz I Cümleler cebiri, metrik uzaylar, ayrılabilir uzaylar, topoloji ve topolojik uzaylar, metriklenebilirlik, yakınsaklık, Cauchy dizisi ve tamlık, metrik uzayın tamlanması, izometri ve izometrik uzaylar, eş yapılı uzaylar, Banach uzayları, lineer uzay, bölüm uzayı, normlu uzaylar, Euclidean ve uniter uzaylar, sonlu boyutlu uzaylar, konveks küme, kapalılık, denk normlar, kompaktlık, lineer operatörler, izomorf lineer uzaylar, sınırlı (sürekli) lineer operatörler, lineer fonksiyoneller ve dual uzaylar, izomorfi, homeomorfi, cebirsel dual. Dersin Kodu ve Adı: Diferansiyel Geometri I Afin uzayı, öklid uzayı, topolojik manifold, bir fonksiyonun diferansiyeli, diffeomorfizm, diferansiyellenebilir atlas, tanjant vektör, tanjant uzayı, yöne göre türev, integral eğrisi, vektör alanı, kovaryant türev, 1-formlar, gradient, divergens ve rotasyonel fonksiyonlar, koordinat fonksiyonları, bir dönüşümün jakobiyeni, eğri tanımı, parametre değişimi, Frenet vektörler, eğrilikler, eğrilik çemberi, eğrilik küresi. Dersin Kodu ve Adı: Kısmi Diferansiyel Denklemler Kısmi türevli denklemlerin genel sınıflandırılması, kısmi türevli denklemlerin elde edilmesi, teğet düzlemler, uzayda doğrular ve yüzeyler, birinci basamaktan doğrusal denklemler, birinci basamaktan yarı doğrusal denklemler, Lagrange yöntemi, birinci basamaktan doğrusal olmayan denklemler, Charpit yöntemi, bağdaşabilir sistemler, Lagrange-Charpit yöntemi, Cauchy problemi, ikinci basamaktan sabit katsayılı doğrusal denklemler, sabit katsayılı denklemlerin genelleştirilmesi, Euler denklemi, homojen olmayan doğrusal denklemler, ikinci basamaktan hemen hemen doğrusal denklemler, dalga denklemi, ısı denklemi, Laplace denklemi. Dersin Kodu ve Adı: Nesne Tabanlı Programlama Java ya Giriş, Kontrol komutları, Metot ve arrayler, Sınıf ve nesneler, Kalıtsallık, çok biçimlilik ve arayüzler, Windows formları ile grafiksel kullanıcı arayüzleri, WPF ile grafiksel kullanıcı arayüzleri, WPF grafikler ve çoklu ortam, İstisna işleme, Dosyalar, LINQ, Nesneye Dayalı Programlama Prensipleri, Genel Örnekler.

8 BAHAR DÖNEMİ DERSLERİ VE İÇERİKLERİ 4. SINIF BAHAR DÖNEMİ Dersin Kodu ve Adı: Fonksiyonel Analiz II Hahn-Banach teoremi, Baire teoremi, açık dönüşüm teoremi, eş yapı dönüşümü, kapalı lineer operatör, kapalı grafik teoremi, türev operatörü, ikinci dual uzayı, Banach-Steinhause teoremi, iç çarpım uzayı, Hilbert uzayı, iç çarpım uzayında diklik, Pytha Gorean bağıntısı, Schwarz ve üçgen eşitsizliği, l2 Hilbert uzayı, kapalı alt uzaylar, tam alt uzaylar, minimum vektör ve dik izdüşüm, dik izdüşüm operatörü, Hilbert uzaylarında fonksiyonellerin tespiti, Riesz-Frechet teoremi, bir operatörün Hilbert eşleniği, iki değişkenli s-lineer dönüşümler. Dersin Kodu ve Adı: Diferansiyel Geometri II Bir eğrinin küresel göstergeleri, eğilim çizgisi, involüt ve evolüt, Bertrand eğri çifti, yüzey tanımı, bir yüzeyin regüler noktası, bir yüzeyin normal ve Gauss dönüşümü, bir yüzeyin yönlendirilmesi, bir yüzeyin teğet düzlemi, yüzey ve eğri ilişkileri, bir yüzeyin şekil operatörü, bir yüzeyin eğrilikleri, temel formlar, geodezikler, yüzey örnekleri, Meusnier teoremi, Gauss denklemi, dönel yüzeyler. Dersin Kodu ve Adı: Sembolik Programlama Sembolik programlamaya giriş, Sembolik programlama temelleri, Sayısal Hesaplamalar ve Kütüphane fonksiyonları, Fonksiyon, denklem ve ifadelerin grafikleri, Listeler ve Tablolar, Nesneler ve Sınıflar, Matris ve Vektörler, Matris ve Vektörle Çalışmak, Lineer Denklem Sistemlerinin Çözümleri, Lineer Olmayan Denklem Sistemlerinin Çözümleri, Alt program yazılımı, Karar ve döngü yapıları, Sembolik Programlama ile Kullanıcı Programlarının yazılımı. Dersin Kodu ve Adı: Bitirme Çalışması Öğrenciler, dönem başında bölüm öğretim üyelerinden aldıkları konuları hazırladıktan sonra öğretim üyelerinden oluşan bir jüri karşısında sunarlar.

9 GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ SEÇMELİ DERSLER GÜZ DÖNEMİ Dersin Kodu ve Adı: Mekanik Bir Parametreli Hareketler, Dönme Polü ve Pol Yörüngeleri, Ters Hareket, İvmeler ve İvmelerin Terkibi, Yörünge Eğrisinin Eğriliği, Kanonik İzafe Sistemi, Zarflar, Kapalı Hareketler, Kapalı Yörüngeler için Steiner Alan Formülü, Yörünge Alanları için Holditch Teoremi, İki Paremetreli Hareketler. Dersin Kodu ve Adı: Fourier Analiz Periyodik Fonksiyonlar (Periyodik Fonksiyon, Düzgün Süreklilik Noktası, Parçalı Sürekli Fonksiyon), Fourier Serileri (Dirichlet Şartları, 2n Peryodlu Fonksiyonun Fourier Serisi)Tek ve Çift Fonksiyonlar (Tek ve Çift Fonksiyonlar için Fourier Serisi, Değişik Aralıklarla Fourier Serisi), Parseval Özdeşliği ve Uygulamaları, Kompleks Formda Fourier Serileri, Fourier Serilerinin Diferensiyel Denklemlerin Çözümlerinde kullanılması. Dersin Kodu ve Adı: Matematik Tarihi Matematiğin amacı, matematiğin temel alanları, matematiğin diğer bilimlerle ilgisi, rakamların tarihsel gelişimi, aritmetik, cebir ve geometri, eski medeniyetler ve tarih. Dersin Kodu ve Adı: Lebesgue İntegral Kuramı Giriş, Ölçülebilir Fonksiyonlar, Ölçümler, İntegral, İntegrallenebilir Fonksiyonlar, Lebesgue Uzayları, Yakınsama Türleri, Ölçümlerin Ayrışımı, Ölçümlerin Doğruluşu, Çarpım Ölçümleri. Dersin Kodu ve Adı: Metrik Uzaylar Sayılabilir kümeler, sıralama ve denklik bağıntısı, mutlak değer, bazı önemli eşitsizlikler, Reel sayı dizileri, süreklilik, doğrusal uzaylar (vektör uzayları), Metrik Uzaylar, Normlu uzaylar, Alt metrik uzaylar ve normlu alt uzaylar, Metrik uzayda açık ve kapalı kümeler, Komşuluklar ve yığılma noktaları, Metrik uzaylarda dizilerin yakınsaklığı, Metrik uzaylarda fonksiyonların sürekliliği, Normlu uzaylarda yakınsaklık ve süreklilik, Metrikten topoloji elde etme. Dersin Kodu ve Adı: Topoloji Uygulamaları Bulanık kümeler, bulanık topoloji, yumuşak (soft) kümeler, kaba kümeler, yakın kümeler, bulanık-yumuşak-kaba ve yakın kümeler aralarındaki ilişkiler ve günlük hayata uygulamaları. Dersin Kodu ve Adı: Doğrusal Programlama Doğrusal programlama kavramı, doğrusal programlama problemlerinin formüle edilmesi, grafik yöntemi, grafik yöntemi ile çözümde özel durumlar, Simpleks yöntemi, Simpleks çözüm yönteminde özel durumlar, doğrusal programlama probleminin ikili (duali), doğrusal programlamada bilgisayar kullanımı, ulaştırma problemleri, Atlama taşı yöntemi, MODI yöntemi, VAM yöntemi, ulaştırma probleminde özel durumlar.

10 Dersin Kodu ve Adı: C Programlama C Programlamaya giriş, C Programlama temelleri, Döngüler ve kararlar, Yapılar, Fonksiyonlar, Dosyalar, Diziler ve Karakter Katarları, Operatörlerin aşırı yüklenmesi, Operatörlerin aşırı yüklenmesi, Kalıtım, İşaretçiler, Akışlar ve dosyalar. Dersin Kodu ve Adı: Vektörel Analiz Vektör cebiri, vektör fonksiyonlar cebiri, uzay eğrileri, Serret-Frenet formülleri, eğrisel hareketlere uygulamalar, Yönlendirilmiş türev, gradiyent, eğrisel integraller, yüzey integraller, Green teoremi, Divergens ve Stokes teoremi. Dersin Kodu ve Adı: Mesleki Yabancı Dil İngilizce dilinin temel parçaları, Teknik kavramlar, Şekiller, boyutlar, açılar, edatlar, Sıfatlar, zarflar, Aktif ve pasif yapılar, Kipler ve kullanımları, Okuduğunu anlama çalışmaları, Sebep ve etkiler, Ön ve son ekler, Sonuç çıkarma, Gerçekler ve rakamlar, Kendi cümleleri ile yeniden ifade etme, Ettirgen yapılar. Dersin Kodu ve Adı: Latex ile Doküman Hazırlama Bu derste, akademik ortamda gerekli olabilecek her türlü dokümanın LATEX ile oluşturulması üzerinde durulacaktır.

11 BAHAR DÖNEMİ DERSLERİ VE İÇERİKLERİ SEÇMELİ DERSLER BAHAR DÖNEMİ Dersin Kodu ve Adı: Fraktal Geometri Fraktal ve fraktal örnekleri, Sierpinski, Koch Kartanesi, ters kartanesi, çokgen ve çember fraktallar, uzay dolduran eğriler, tarihi park fraktalı düzlemde dönüşümler I, ölçekler, yansımalar, düzlemde dönüşümler II, ötelemeler,küçültmeler, fraktallarda kendine benzerlik, bazı özel fraktallarda boyut kesirsel boyut Koch eğrisi ve boyutunun hesabı, Minkowski fraktalının boyutu Hausdorff boyutu, bir fraktal eğrinin uzunluğu, kutu sayma metodu ile boyut, benzerlik boyutu, Moran Denklemi, Fraktallara ait doğadaki uygulamalar. Dersin Kodu ve Adı: Projektif Geometri Geometri, Öklid Geometrisi, Afin Düzlemler, Projektif Düzlemler, Afin ve Projektif Düzlemler Arasındaki İlişkiler, Alt Düzlemler, Dezarg Düzlemleri, Pappus Düzlemleri. Dersin Kodu ve Adı: Analitik Fonksiyonlar Düzlemde analitik kompleks fonksiyonların topolojik özellikleri, Mobius Dönüşümleri, üstel, logaritma, trigonometrik ve ilgili fonksiyonlar, integrasyon ve Cauchy Teoremi, Cauchy İntegral Formülü, rezidü, harmonik fonksiyonlar, analitik devam, tam ve meremorf fonksiyonlar, konform dönüşümlerin bazı özellikleri, Riemann Dönüşüm Teoremi. Dersin Kodu ve Adı: Dizi Analizi Diziler, alt diziler Cauchy dizisi, dizilerde limit, limit kuralları, limitin tekliği teoremi, sıkıştırma teoremi, sınırlı ve monotone diziler, Sierpinski halısı, Napier sabiti, fibonacci dizisi, iç içe aralıklar dizisi, komşu diziler. Dersin Kodu ve Adı: Kategori Teori Kategori, altkategori, geniş altkategori, tam altkategori, başlangıç ve bitiş nesneleri, çarpım, dual çarpım, eşitleyiciler ve dual eşitleyiciler, kategoriler arasındaki dönüşümler (funktorlar), doğal dönüşümler, adjoint funktorlar, funktor kategorileri, kategorilerin denkliği, kategorilerde limit ve dual limit. Dersin Kodu ve Adı: Sonlu Fark Yöntemleri Kısmi diferansiyel denklemlerin sınıflandırılması, kısmi türevler için sonlu fark yaklaşımları, eliptik kısmi diferansiyel denklemlerin sonlu fark yöntemleri ile çözümü, Liebmann yöntemi, tutarlılık, kararlılık ve yakınsaklık kavramları, Lax ın denklik teoremi, spectral yarıçap, parabolik kısmi diferansiyel denklemlerin sonlu fark yöntemleri ile çözümü, ısı denklemi için açık, kapalı ve Crank-Nicolson yöntemleri, yöntemlerin kararlılık analizi, hiperbolik kısmi diferansiyel denklemlerin sonlu fark yöntemleri ile çözümü.

12 Dersin Kodu ve Adı: Sayılar Teorisi Bölünebilme, Bölme algoritması, EBOB VE EKOK, Asal Sayılar, Taban Aritmetiği, Bir tamsayının bölenleri, Diyafon Denklemleri, Kongrüanslar, Lineer Kongrüansların Çözümü, Euler - fonksiyonu, ilkel kökler ve indeksler, xn a (mod p) kongrüansların çözümü. Dersin Kodu ve Adı: Kuaterniyonlar Teorisi Dual Sayılar Halkası, Dual Sayılar Halkasının Matris Gösterimi, Dual Vektörlerin Uzayı, D Modül, D Modül üzerinde iç Çarpım, Dual Vektörlerin Normlanması, E.Study Dönüşümü, Dual Açı, D Modülde lineer bağımlılık-lineer bağımsızlık, Reel Kuaterniyonlar ve Temel İşlemler, Matris Gösterimi, Dual Kuaterniyonlar ve Dual Kuaterniyonlar Üzerindeki Temel İşlemler. Dersin Kodu ve Adı: Bilim Tarihi Bilim tarihi, eski uygarlıklarda bilimsel gelişmeler, modern dönemde bilimsel gelişmeler, Görecelik, belirsizlik ve olasılık kuramlarını açıklama. Dersin Kodu ve Adı: Geometri Öklid geometrisi, aksiyom, teorem ve tanımsız kavramlar. Düzlemde açılar, açıların eşliği ve açı çeşitleri. Üçgenlerde kenar, açı bağıntıları ve üçgen çeşitleri. Üçgenlerde açı ortay, kenar ortay ve bunlarla ilgili bağıntılar. Çokgenler ve bunlarla ilgili temel bağıntılar. Çemberler, daireler ve bunlarla ilgili bagıntılar. Katı cisimler, katı cisimlerin yüzey alanları ile hacimleri. Dersin Kodu ve Adı: Graf Teori Graf tanımı ve örnekleri, yönlendirilmiş graflar, graf çeşitleri, graf teorinin günlük hayattaki uygulamaları. Dersin Kodu ve Adı: Uygulamalı Matematik Bir Boyutlu Dalga Denklemi ve D Alembert çözümleri, İki Boyutlu Dalga Denklemi, Bir Boyutlu Isı Denklemi, Dikdörtgensel Bölgede Isı Akışı, Laplace Denklemi, Kutupsal Koordinatlarda Laplace Denklemi, Laplace Dönüşümü - Temel Tanımlar, Laplace Dönüşümünün Özellikleri, Ters Laplace Dönüşümü ve Kısmi Diferansiyel Denklemlerin Laplace Dönüşümü ile Çözümü, Özel Fonksiyonlar, Green Fonksiyonları ile Sınır değer Problemlerinin Çözümü.

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ DERSLER T P K DERSLER T P K 1.Sınıf Güz Dönemi 1.Sınıf Bahar Dönemi

Detaylı

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI ZORUNLU DERSLER Matematiğin Temelleri (3-0) 3: Sembolik Mantık; Kümeler Kuramı; Kartezyen Çarpım; Bağıntılar; Fonksiyonlar; Birebir ve Örten Fonksiyonlar;

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL ( Güz) II.YARIYIL (Bahar) DERSİN DERSİN ADI T P K AKTS DERSİN DERSİN ADI T P K AKTS MAT101 ANALİZ I 4 2 5 7 MAT102

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. YARIYIL DERSLERİ MAT101 Analiz I Kredi(Teorik-Pratik-Lab.): 5 (4-0-2) AKTS: 6 Matematik Analizin temel kavramları,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2014-2015) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progdersplan_tr.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐRĐNCĐ YIL KODU DERSĐN ADI T U K A KODU DERSĐN ADI T U K A MAT101 ANALĐZ I 4 1 5 7 MAT102 ANALĐZ II 4 1 5 7 MAT103

Detaylı

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ 2012 2013 Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları AÇILAN DERSLERİN İÇERİKLERİ MAT 1001 ANALİZ-I (4 2 5) DERSİN KODU VE ADI KREDİ Kontenjan

Detaylı

SAYFA:1/8 I. YARIYIL DERSLERİ

SAYFA:1/8 I. YARIYIL DERSLERİ SAYFA:1/8 I. YARIYIL DERSLERİ MAT1001 ANALİZ I (4 2 5) AKTS:7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti,

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2013-2014) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progamac.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli dersin

Detaylı

T.C. CUMHURİYET ÜNİVERSİTESİ Fen Fakültesi Matematik Bölümü Lisans Ders İçerikleri

T.C. CUMHURİYET ÜNİVERSİTESİ Fen Fakültesi Matematik Bölümü Lisans Ders İçerikleri T.C. CUMHURİYET ÜNİVERSİTESİ Fen Fakültesi Matematik Bölümü Lisans Ders İçerikleri MAT 1001 Analiz-I (425): 1. Küme kavramı, Bağıntı ve Fonksiyon tanımları, Doğal sayılar, rasyonel sayılar, irrasyonel

Detaylı

ÖABT İLKÖĞRETİM MATEMATİK

ÖABT İLKÖĞRETİM MATEMATİK KPSS 2017 önce biz sorduk 50 Soruda 30 soru ÖABT İLKÖĞRETİM MATEMATİK ANALİZ - DİFERANSİYEL DENKLEMLER Eğitimde 30. yıl Fikret Hemek ÖABT İlköğretim Matematik Öğretmenliği Analiz-Diferansiyel Denklemler

Detaylı

Yüksek Lisans Cebir (in Turkish) Başlık: Grup Teorisi I Seviye: - İçerik: Gruplar, bölüm grupları, temel izomorfizma teoremleri, alterne, simetrik ve dihedral gruplar, direkt çarpımlar, otomorfizma grupları

Detaylı

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6 KIRGIZİSTAN TÜRKİYE MANAS ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ UYGULAMALI MATEMATİK VE ENFORMATİK LİSANS PROGRAMI DERSLERİN YARIYILLARA GÖRE DAĞILIMI BİRİNCİ YIL 1. YARIYIL TAR - 153 Ata Meken Tarihi

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti.

ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI. 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık Turizm Hizmetleri Ticaret İth. İhr. Ltd. Şti. ÖZEL ÖĞRETİM KURSU MATEMATİK-V ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI :ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ANALİZ I Ders No : 0310250035 : 4 Pratik : 2 Kredi : 5 ECTS : 8 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi Zorunlu

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR

1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi. 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 1. KURUMUN ADI : Özel Osmaniye Artı Bilim Temel Lisesi 2. KURUMUN ADRESİ : Cumhuriyet Mah. Akyar Cad. No:87/B 3. KURUCUNUN ADI : Sinerji Eğitimcilik San. Tic. Ltd. Şti./Celal DEMİR 4. PROGRAMIN ADI : MATEMATİK

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ I. YARIYIL

MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ I. YARIYIL MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ I. YARIYIL ANALİZ I: (4.2.0) Bağıntılar ve Bağıntı Grafikleri, Fonksiyonlar, Limit. Süreklilik, Türev ve Türev Kuralları, Diferansiyel.Max.Min.Problemleri, Eğri Çizimler,

Detaylı

Kompleks Değişkenli Fonksiyonlar Teorisi

Kompleks Değişkenli Fonksiyonlar Teorisi Kompleks Değişkenli Fonksiyonlar Teorisi Ders Notları Dr. Serkan Aksoy 2016 http://www.gyte.edu.tr/dosya/102/~saksoy/ana.html 1 Gelecek önerileri için, lütfen Dr. Serkan Aksoy (saksoy@gyte.edu.tr) ile

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ ( ) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl)

MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ ( ) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ (2012-2013) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) MATH 111 Analiz I (3, 2, 4) (6 AKTS) Tek Değişkenli Fonksiyonlar, Limit ve Süreklilik, Türev ve Türevlenebilirlik,

Detaylı

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ 1. SINIF, 1. YARI YIL(GÜZ DÖNEMİ) UNV13101 TÜRK DİLİ I 2 0 2 2 2 ZORUNLU Türkçenin yapı ve anlam bakımından

Detaylı

LİSANS DERS İÇERİKLERİ

LİSANS DERS İÇERİKLERİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ LİSANS DERS İÇERİKLERİ I. YARIYIL FIZ-125 Fizik I (Zorunlu) T=2 P=1 U=0 AKTS=3 Fiziksel Büyüklükler, Standartlar, Birimler. Vektörler.

Detaylı

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010)

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) 1. SINIF GÜZ YARIYILI 6913130 Atatürk İlkeleri ve İnkılap

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI.

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI. BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E -BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI Hasibe ŞENOL 16104210046 Danışman: Yrd. Doç. Dr. Murat BABAARSLAN YOZGAT 201 ÖZET

Detaylı

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS Analiz I MT101 1. Sınıf 1. Dönem 4 Teo.+2 Uyg. 5 7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti, Limit

Detaylı

T.C. SDÜ. FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. SINIF I.YARI YIL

T.C. SDÜ. FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. SINIF I.YARI YIL T.C. SDÜ. FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. SINIF I.YARI YIL MAT-101 ANALİZ I 4 2 6 5 6 Zorunlu Matematik Analizin temel kavramları, Küme ve sayı kavramları, Fonksiyonlar ve özel

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP KURULLAR ÜNİVERSİTE SENATOSU REKTÖR Prof.Dr. Recep BİRCAN DEKAN V. Prof. Dr. Ekrem MEMİŞ ÜNİVERSİTE YÖNETİM KURULU FAKÜLTE KURULU

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ I. YARIYIL EGİ 1023 EĞİTİM BİLİMİNE GİRİŞ (3-0-3) Eğitimin temel kavramları, eğitimin diğer bilimlerle

Detaylı

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1 MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T: Teorik (saat/hafta) U: Uygulama (saat/hafta) AKTS: Avrupa Kredi Transfer Sistemi YIL: I; DÖNEM: 1 YIL: I; DÖNEM: DERSLER T+U K AKTS DERSLER T+U K AKTS Analiz-I + 5 7

Detaylı

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP KURULLAR ÜNİVERSİTE SENATOSU REKTÖR Prof.Dr. Nihat DALGIN DEKAN V. Prof. Dr. Kamil DEMİRCİ ÜNİVERSİTE YÖNETİM KURULU FAKÜLTE KURULU

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

Vektörler, vektörler üzerinde işlemler. Vektör uzayları ve uygulamaları, alt vektör uzayları

Vektörler, vektörler üzerinde işlemler. Vektör uzayları ve uygulamaları, alt vektör uzayları .Yarıyıl Dersin Adı : Analitik Geometri-I Dersin İçeriği : Vektörler, vektörler üzerinde işlemler, vektör uzayları ve uygulamaları, alt vektör uzayları, vektörlerin lineer bağımlılığı, bağımsızlığı ve

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 15:00-16:30 C 012, C 013 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 23.06.2015 15:00-16:30 C 012, C 013 Bilgisayar (A Grubu) Mat.

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 01.06.2015 08:30-10:00 C 012, C 013, C 118, C 119 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 10.06.2015 15:00-16:30 C 117, C 118, C 119, C 013

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL I. YARIYIL MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI Analiz I (3-2-4) Doğal Sayılar / Rasyonel Sayılar / İrrasyonel Sayılar / Reel Sayı Cümleleri / Lineer Nokta Cümlelerinin

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI

MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI I.Sınıf I.YARIYIL (Güz) D.Kodu Dersin Adı T U K AKTS MAT 1101 Analiz I 4 0 4 7 MAT 1103 Lineer Cebir I 4 0 4 6 MAT 1105 Soyut Matematik I 4 0 4 6 MAT 1107 Temel Bilgi

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2 EKİM 2014 TÜRKÇE 425 60 MATEMATİK GEOMETRİ FİZİK KİMYA BİYOLOJİ 80 50 45 30 50 ARİFE 1 Çarşamba 2 Perşembe 3 Cuma TATİL COĞRAFYA TARİH FELSEFE 45 45 20 KURBAN BAYR. 4 Cumartesi TATİL 1.GÜN KURBAN BAYR.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-II ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

D.Saati AKTS Zorunlu Ders (Z) 23 28 Meslek Dersi (M) 60 62 Seçmeli Ders (S) 13 30 TOPLAM 96 120

D.Saati AKTS Zorunlu Ders (Z) 23 28 Meslek Dersi (M) 60 62 Seçmeli Ders (S) 13 30 TOPLAM 96 120 SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI NORMAL ÖĞRETİM DERS DAĞILIM ÇİZELGESİ 1. SINIF GÜZ YARIYILI ( I. YARIYIL) 1 6913130 Atatürk

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme

Detaylı

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Yrd. Doç. Dr. Erhan Pişkin 1 Yrd. Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 1 ISBN 978-605-318-249-8 Kitap içeriğinin tüm sorumluluğu yazarına aittir.

Detaylı

11. SINIF KONU TARAMA TESTLERİ LİSTESİ / DİL VE ANLATIM

11. SINIF KONU TARAMA TESTLERİ LİSTESİ / DİL VE ANLATIM DİL VE ANLATIM 01 Metinlerin Sınıflandırılması 02 Anlatım Türleri Adı 03 Öğretici Metinler / Mektup 04 Öğretici Metinler / Günlük - Anı 05 Ses Bilgisi 06 Anlatım Bozuklukları 07 Zarf (Belirteç) 08 Öğretici

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

3. Yarıyıl Ders Planı Kodu Ders Z/S Dil T+U Saat Kredi AKTS BBP 209

3. Yarıyıl Ders Planı Kodu Ders Z/S Dil T+U Saat Kredi AKTS BBP 209 SAKARYA ÜNİVERSİTESİ KAYNARCA SEYFETTİN SELİM MESLEK YÜKSEKOKULU BİLGİSAYAR PROGRAMCILIĞI PROGRAMI 2012-2013 EĞİTİM-ÖĞRETİM YILI DERS PLANI AKTS KREDİLERİ 1. Yarıyıl Ders Planı MYO 101 İLETİŞİM VE ETİK

Detaylı

SINIF DERS KONU SORU SAYISI

SINIF DERS KONU SORU SAYISI TÜRKÇE 9. SINIF TEMEL MATEMATİK TOPLAM 0 Tarih Bilimine Giriş 6 İlkçağ Uygarlıkları 8 İslamiyet Öncesi Türk Tarihi 9 Doğa ve İnsan 1 Harita Bilgisi 2 Yerkürenin Şekli ve Hareketleri 3 İklim Bilgisi 3 Yerin

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

:00. Şube Sıra. Genel Sıra. Genel Puan Ortalaması. Lys_Geometri DC ÖC SNÇ

:00. Şube Sıra. Genel Sıra. Genel Puan Ortalaması. Lys_Geometri DC ÖC SNÇ Sor S. 528 BEYZA BICE R İlçe İl 95 218 Lys_Matematik 50 29 6 15 27,50 25,50 28,42 16,38 3 48 58 Lys_Geometri 22 17 1 4 16,75 9,75 8,81 5,05 2 20 21 Lys_Analitik Geo. 8 5 2 1 4,50 3,00 1,87 1,02 2 14 15

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BİNGÖL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMINDA YER ALAN DERSLERİN İÇERİKLERİ

BİNGÖL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMINDA YER ALAN DERSLERİN İÇERİKLERİ BİNGÖL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMINDA YER ALAN DERSLERİN İÇERİKLERİ BİRİNCİ YIL/BİRİNCİ YARIYIL (GÜZ DÖNEMİ) AİT 101 ATATÜRK İLKELERİ VE İNKILAP TARİHİ (2 0) 2-2

Detaylı

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI Paragraf 4 Sözcükte Anlam 3 Edebi Türler 1 Noktalama 2 Dillerin Sınıflandırılması 1 Şiir Bilgisi 9 İletişim 1 Dilin İşlevleri 2 Ses Olayları 1 Dil Dışı Göstergeler 1 TÜRKÇE Yazım Kuralları 2 Dil ve Kültür

Detaylı

OMÖ1003 SOYUT MATEMATĐK-I

OMÖ1003 SOYUT MATEMATĐK-I Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı