SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ"

Transkript

1 SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz

2 SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz

3 İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr. Cüet BAYILMIŞ Sısl Alz 3

4 Eğr Udurm (Curve Fttg) Çoğu mühedslk problem çözümüde Bğımsız değşkelerde oluş foksolr d, oktlrı verlmş ver (değer) gruplrı htç duulur. Eldek verler htlı olduğu durumlrd, r değer thmde (terpolso), polom terpolsou souçlr vermez. Htlı verler Sısl değerler le ort ko br fokso t e doğru eğr elde edleblmes o fokso t e ugu fokso fdes tımlmsı bğlıdır. İhtç duul bu verler sğlck polomlrı ktsılrıı bulmk ç çeştl ötemler gelştrlmştr. E sık kullıl ötem eğr udurmdır. Foksolr polomlr eğr udurm ç kullılır. P () Ver rlığı dışıd slı polom Eğr Udurm Doç.Dr. Cüet BAYILMIŞ Sısl Alz 4

5 Eğr Udurm le Ar Değer Bulm Arsıdk İlşk f() İterpolso Eğr Udurm Doç.Dr. Cüet BAYILMIŞ Sısl Alz

6 Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Yklşık olrk elde edle (udurul) fokso değerler le ölçülerek elde edle gerçek fokso değerler rsıdk frklrı kreler toplmı mmum pılm çlışılır. Hedef, ble ölçüm souçlrı t değerlere mesfe olrk e z htlı eğr vere fokso fdes elde etmektr. Örek: ble souçlr f( ) şlem soucud elde edlecek fokso Ble okt ç; [ ] f ( ) formülüü mmum pılmsıı sğl f( ) fokso ktsılrıı elde etme şlemdr. İşlem soucud elde edlecek ol ktsılrı dzlş fokso t polom formu dereces belrler. f() Doç.Dr. Cüet BAYILMIŞ Sısl Alz 6

7 Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Örek: Br doğru deklem (brc derecede polom form) f() + Burd mç, e küçük kreler ötem le ve ktsılrıı bulmktır. Ktsılrı ded (örekte ) e küçük kreler ötemde kullılck mtrsler stır sısıı belrler. [ f ( ) ] [ + ] Burd elde edlecek ol frklrı kreler toplmıı ve ktsılrı göre mmum olmlıdır. Buu ç ukrıd eştlğ ve ktsılrı göre türevler lırk sıfır eştler. Doç.Dr. Cüet BAYILMIŞ Sısl Alz 7

8 Doç.Dr. Cüet BAYILMIŞ Sısl Alz 8 Eştlğ ve ktsılrı göre türevler lırk sıfır eştler. İşlemler düzelerse, [ ] [ ] + + d [ ] [ ] + + d + + Eğr Udurm (Curve Fttg)

9 Doç.Dr. Cüet BAYILMIŞ Sısl Alz 9 Örek: Aşğıdk tblo d verle sısl değerler kullrk e küçük kreler metodu le f() + foksouu elde edz? Tblo: ve e t sısl değerler Çözüm: Üretlmes stee polomu dereces Buluck ktsılr ve olduğud e küçük kreler ötemdek eştlklerde kullılck mtrsler stır sısı olck. Tblo: ve değerlere göre gerekl hesplm souçlrı Toplm Eğr Udurm (Curve Fttg)

10 Doç.Dr. Cüet BAYILMIŞ Sısl Alz Örek (Devm): Eğr Udurm (Curve Fttg) A ek(a) A A f ) ( + +

11 Eğr Udurm (Curve Fttg) Örek: Aşğıd verle tblodk sısl değerler kullrk e küçük kreler metodu le f() + foksouu elde edz Doç.Dr. Cüet BAYILMIŞ Sısl Alz

12 Doç.Dr. Cüet BAYILMIŞ Sısl Alz E Küçük Kreler Yötem Eğer elde edlmes gereke foksou krşılığı brc derecede değl de kc derecede olsdı bu durumd fokso; f() + + Burd mç, e küçük kreler ötem le, ve ktsılrıı bulmktır. Ktsılrı ded (örekte 3) e küçük kreler ötemde kullılck mtrsler stır sısıı belrler Eğr Udurm (Curve Fttg)

13 MATLAB İle Eğr Udurm polft (,, ) üretlecek ol polom formu dereces tımlr ble Y değerlerde oluş sütu vektörü ble X değerlerde oluş sütu vektörü Örek: Öcek sorudk şlem MATLAB t polft komutu le çözüüz? >> X [- 4]; >> Y [-3 3 9]; >> ppolft(x,y,) p.. Doç.Dr. Cüet BAYILMIŞ Sısl Alz 3

14 Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Regreso Ktsısı Eğr udurm d kullılck ol polom form shp foksou doğruluğu r le tıml regreso ktsısı le belrler. Regreso ktsısıı < r rlığıd değer lmsı ster. r udurul fokso değldr. r udurul fokso dr. Regreso ktsısıı hesbı ç lk olrk ölçüm soucu elde edle sısl değerler rtmetk ortlmsı buluur. Sor ölçüm değerler ve udurul fokso t ht hesbı ç şu şlemler pılır. δ [ ] f r δ f f ( ) δ ve δ [ ] Doç.Dr. Cüet BAYILMIŞ Sısl Alz 4

15 ÖDEV Ödevler ders Arştırm Görevlse, tkbe ede hft teslm edlecektr. Not: Vktde teslm edlmee ödevler lımcktır. Tblo d verle sısl değerler kullrk e küçük kreler metodu şğıd steeler buluuz. Tblo: ve e t sısl değerler f() + foksouu elde edz. Regreso ktsısıı hesplıız. f() + + foksouu elde edz. Regreso ktsısıı hesplıız. Not: Ödev hem el le hem de mtlb le çözüüz. Mtlb çözümüde polft komutuu kullımıı ısır grfk çzm de gerçekleştrz. (Kkçdk İls Be ktbıd rrlblrsz) Doç.Dr. Cüet BAYILMIŞ Sısl Alz

16 KAYNAKLAR İls ÇANKAYA, Devrm AKGÜN, Sezg KAÇAR Mühedslk Ugulmlrı İç MATLAB, Seçk Yıcılık Steve C. Chpr, Rmod P. Cle (Çev. H. Heperk ve U. Kesg), Yzılım ve Progrmlm Ugulmlrıl Mühedsler İç Sısl Yötemler, Ltertür Yıcılık. Serht YILMAZ, Blgsr İle Sısl Çözümleme, Kocel Üv. Yılrı, No:68, Kocel,. Yüksel YURTAY, Sısl Alz Ders Notlrı, Skr Üverstes Doç.Dr. Cüet BAYILMIŞ Sısl Alz 6

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüeyt BAYILMIŞ Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz SAYISAL ANALİZ İNTERPOLASYON Ar Değer Bulm Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz İÇİNDEKİLER Ar Değer Hesbı İterpolsyo Doğrusl Ar Değer

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /

Detaylı

Prof.Dr. Nurettin UMURKAN 1 / 89. Nümerik Analiz 2010/11. Güz Teknoloji, Algoritma ve Bilgisayar Tarihi

Prof.Dr. Nurettin UMURKAN 1 / 89. Nümerik Analiz 2010/11. Güz Teknoloji, Algoritma ve Bilgisayar Tarihi Nümerk Alz / Tekoloj, Algortm ve Blgsr Trh Tekoloj s gereksmler le şekllemektedr. Đs doğduğu d tbre şmıı sürdürmes ç br şeler öğreme çbsı çdedr. Bölece slr e düşüceler ve e fkrler gelştrr. Bu d e blgler

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

7 SAYISAL İNTEGRASYON YÖNTEMLERİ

7 SAYISAL İNTEGRASYON YÖNTEMLERİ Prof. Dr. Özc Klederli SAYISAL YÖNTEMLER 7 SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl itegrsyo vey itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece

Detaylı

HARİTA MÜHENDİSLERİ için SAYISAL ÇÖZÜMLEME

HARİTA MÜHENDİSLERİ için SAYISAL ÇÖZÜMLEME HRİ MÜHENDİSLERİ ç SYISL ÇÖZÜMLEME Doç Dr emel BYRK GÜMÜŞHNE HRİ MÜHENDİSLERİ İÇİN SYISL ÇÖZÜMLEME Bu ktı er kkı sklıdır Yrı ılı olmksıı ktı tmmı ve erg r ölümü çr şeklde çoğltılıp ılm Yr dres: Doç Dr

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İÇ-İÇE TASARIMLARDA DAYANIKLI ANALİZ VE UYGULAMALARI. İklim GEDİK

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İÇ-İÇE TASARIMLARDA DAYANIKLI ANALİZ VE UYGULAMALARI. İklim GEDİK NKR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSNS TEZİ İÇ-İÇE TSRIMLRD DYNIKLI NLİZ VE UYGULMLRI İklm GEDİK İSTTİSTİK NBİLİM DLI NKR 00 er hkkı sklıdır ÖZET Yüksek Lss Tez İÇ-İÇE TSRIMLRD DYNIKLI NLİZ

Detaylı

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON

BÖLÜM 2 EĞRİ UYDURMA VE İNTERPOLASYON BÖÜ EĞRİ UYDURA VE İTERPOASYO - Grş İterpolo polomlrı Bölümüş rlr 4 Eşt rlılı ot dğılımlrı ç bt rlr 5 Küb ple eğrler Kım üb ple eğrler 7 Br üze üzerde terpolo 8 E-üçü reler lşımı Bölüm - Eğr udurm ve terpolo

Detaylı

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş MAT 202 SAYISAL YÖNTEMLER Bhr 2005-2006 Hft Bu Hft Özet Ders Hkkıd Geel Bilgiler Mtris işlemlerie giriş 2 Öğretim Üyesi: Öğr. Gör. Od No: 442, Tel: 293 3 00 / -- E-mil: ltuger@itu.edu.tr Ders Stleri: Slı

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

YEREL JEOİD YÜZEYİNİN BELİRLENMESİNDE KULLANILAN ENTERPOLASYON YÖNTEMLERİ

YEREL JEOİD YÜZEYİNİN BELİRLENMESİNDE KULLANILAN ENTERPOLASYON YÖNTEMLERİ YERE JEOİD YÜZEYİNİN BEİRENESİNDE KUANIAN ENERPOASYON YÖNEERİ Kml EKE, ull YAÇINKAYA Krdez ekk Üverstes, Jeodez ve Fotogrmetr üh. Bölümü, 68, rbzo ÖZE Yersel Koum Belrleme Sstem (GPS) le eodezk kotrol

Detaylı

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t)

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t) III.4. YÜKSEK MEREBE AYLOR MEODLARI Saısal tekkler amacı mmum çaba le olablğce uarlı aklaşımlar ele etmektr. Bu eele çeştl aklaşım ötemler vermllğ karşılaştıracak br krtere gereksm varır. İlk ele alıacak

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Müdslk Mmrlık Fkülts İşt Müdslğ Bölümü E-Post: ogu.mt.topcu@gml.com W: ttp://mmf.ogu.du.tr/topcu Blgsr Dstkl Nümrk Alz Drs otlrı 0 Amt TOPÇU I f ( x I x x ( x [ ( x f (

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİTESİ Mühedslk Mmrlık Fkültes İşt Mühedslğ Bölümü EPost: oguhmettopcu@gmlcom Web: http://mmfoguedutr/topcu Blgsyr Destekl Nümerk lz Ders otlrı hmet TOPÇU Ktsyılr mtrs Özdeğer Özvektör

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL BÖLÜM SAYISAL TÜREV VE İNTEGRAL. Blgsyrl türe.. Bölümüş rk tblolrıyl türe.. Eşt rlıklı er oktlrı ç türe.. Eşt rlıklı er oktlrı ç er oktlrıd türe.. Yüksek mertebede türeler. Syısl tegrl.. Trpez krlı.. Romberg

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

BÖLÜM 3 3. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKTÖR VE MATRİS CEBRİ

BÖLÜM 3 3. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKTÖR VE MATRİS CEBRİ BÖLÜM. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKÖR VE MRİS CEBRİ Bölüm de, doğrusl regresyo tek değşkel bst model olrk ele lırk çıklmıştı. Bölüm de se çok değşkel (k değşkel) model ç grş ypılcktır. Çok değşkel

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER BÖLÜM. REGRESYON İÇİN MRİS VE VEKÖR CEBRİ Bölüm de, doğrusl regreso tek değişkeli sit model olrk ele lırk çıklmıştı. Bölüm 4 de ise çok değişkeli (k değişkeli) model içi giriş pılcktır. Çok değişkeli modelde

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a İşret Aış Drmlrı: İşret Aış Drmlrı (İAD), blo drmlrın bstleştrlmş hl olr örüleblr. Ft, İAD fzsel örünüş ve mtemtsel urllr bğlılı ısındn zım urllrı dh serbest oln blo drmlrındn frlıdır. Blo drmlrı, rmşı

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu Dış Etk Olrk Sıcklık Değşmes ve/vey eset Çökmeler Göz Öüe Alımsı Durumu Dış etk olrk göz öüe lı sıcklık eğşm ve meset çökmeler hpersttk sstemlere şekl eğştrme le brlkte kest zoru mey getrr. Sıcklık eğşm:

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

ELİPSOİDAL YÜKSEKLİKLERİN ORTOMETRİK YÜKSEKLİĞE DÖNÜŞÜMÜNDE ENTERPOLASYON YÖNTEMLERİNİN KULLANILABİLİRLİĞİ

ELİPSOİDAL YÜKSEKLİKLERİN ORTOMETRİK YÜKSEKLİĞE DÖNÜŞÜMÜNDE ENTERPOLASYON YÖNTEMLERİNİN KULLANILABİLİRLİĞİ SÜ ü-m Fk Derg, c9, s, 4 J FcEgArc Selcuk Uv, v9,, 4 EİPSOİDA YÜSEİERİN ORTOETRİ YÜSEİĞE DÖNÜŞÜÜNDE ENTERPOASYON YÖNTEERİNİN UANIABİİRİĞİ Cevt İNA ve Ceml Özer YİĞİT SÜü-mFkültes, Jeod ve Fot ü Bölümü,

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

BÖLÜM 6 LİNEER PROGRAMLAMA

BÖLÜM 6 LİNEER PROGRAMLAMA BÖÜ 6 İNEER PROGRAAA 6. GİRİŞ Hedef foksyou ve kısıtlyıılrı, tsrı değşkeler leer fortıd verle optzsyo proleler eer Progrl prole olrk dldırılır. Her e kdr çoğu ühedslk optzsyo proleler leer oly dekleler

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

Evolvent Dişli Üretimi Esnasında Meydana Gelen Kesme Kuvvetlerinin Teorik ve Deneysel Olarak Belirlenmesi

Evolvent Dişli Üretimi Esnasında Meydana Gelen Kesme Kuvvetlerinin Teorik ve Deneysel Olarak Belirlenmesi UluslrrsıKtılımlı 7. MkTeorsSempozyumu, İzmr, 4-7 Hzr 5 Evolvet Dşl Üretm Essıd Meyd Gele Kesme Kuvvetler Teork ve Deeysel Olrk Belrlemes İ. EŞİLUT * H. GÜSO Uşk Üverstes Uşk Üverstes Uşk Uşk Özet Bu bldrde

Detaylı

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT LİMİT VE SÜREKLİLİK ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Limit. Kzım : Bir bğımsız değişkei verile bir sı klşmsıı öreklerle çıklr.. Kzım : Bir foksiou bir oktdki iti, sold iti ve sğd iti kvrmlrıı öreklerle

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200 ., b, c, d Z olmk üzere / + /b + /c + /d = ½ ve ( + b + c + d) =.b + c.d + ( + b ).(c +d) + dekliklerii sğly kç (, b, c, d) dörtlüsü vrdır? A) 48 B) 4 C) D) 6 E) 5. Alı 40 birim kre ol bir ABC üçgeii AB,

Detaylı

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME BASİT RASSAL ÖRNEKLEME Örekleme ve Thmi Teorii Solu Kitle BüyüklüğüN ol olu bir kitlede büyüklüğüde lıck bir öreği eçilme şı, büyüklüğüdeki bir bşk öreği eçilmei şı ile yı ie bu tür öreklemeye bit rtl

Detaylı

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır.

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır. BİRDEN AZA KAPİTAE İİŞKİN AİZ İŞEMERİ: =,,,, >0 olmk üzere syıdk kpller, süreler ç fz orlrı üzerde fze verldğde oplu olrk bs fz urlrı: = formülü le hesplblr. ork fz orı olmk üzere, syıdk kpl ork fz orı

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014 DENKLEM SİSTEMİ ÇÖZÜMÜ, DİREKT. METOTLAR GAUSS indirgeme metodu. m=n Üst üçgen matris

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014 DENKLEM SİSTEMİ ÇÖZÜMÜ, DİREKT. METOTLAR GAUSS indirgeme metodu. m=n Üst üçgen matris ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedslk Mmrlık Fkültes İşt Mühedslğ Bölümü E-Post: ogu hmettopcu@gmlcom Web: http://mmfoguedutr/topcu Blgsyr Destekl Nümerk Alz Ders otlrı Ahmet TOPÇU m Üst üçge mtrs

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi Süleym Demrel Üverstes, Fe Blmler Esttüsü Dergs, 6- ), 6-76 Fure Dzl Geetk Algortmlr İle Toprk Özdrec Mevsmsel Değşmde Trsformtör Merkez Toprklm Sstem Optmum Tsrım Strtejs Brış GÜRSU *, Melh Cevdet İNCE

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

Kareler Toplamları ve Beklenen Kareler Ortalamaları Varyans Analizi Tabloları

Kareler Toplamları ve Beklenen Kareler Ortalamaları Varyans Analizi Tabloları Kreler Toplmlrı ve Belee Kreler Ortlmlrı Vrys lz Tlolrı Bu derste degel tsrımlı modellerde etler ve etleşmler ç resel toplmlrı yzılmsıd, serestl dereceler elrlemesde ve elee reler ortlmlrı ulumsıd yrdımcı

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar 6 th Itertiol Advced Techologies Symposium (IATS 11), 16-18 My 2011, Elzığ, Turkey Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Ortmıd Gerçekleştirilmesi İ. Soy, T. Tucer, Y. Ttr Firt Üiversitesi

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL SİSTEM DİNAMİĞİ VE KONTROL ) KONTROL SİSTEMLERİNE GİRİŞ: Kotrol: Br sste çıkışlrıı stee değerlere yöeltek y d öcede belrleş br dvrışı zleeler sğlk ç sste grşler üzerde ypıl şlelere kotrol der. Ototk Kotrol:

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

6 BEL IRL I VE BEL IRS IZ INTEGRAL

6 BEL IRL I VE BEL IRS IZ INTEGRAL Üite 6 BELİRLİ VE BELİRSİZ İNTEGRAL Kışkırtıcı Soru:Sosuz te sıı toplmı solu bir sı eşit olur mu hocm? Soruu Sor: Selçuk Durum: Kvrmlr : Bölütü, Alt toplm, Üst toplm, Belirli itegrl, Belirsiz itegrl, Ortlm

Detaylı

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

Cebir Notları. Diziler Mustafa YAĞCI,

Cebir Notları. Diziler Mustafa YAĞCI, www.mustfygci.com, 006 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Diziler Mtemtiği e zevkli ve sürükleyici koulrıd birie geldik. Pek zorlcğımı thmi etmiyorum, çükü yei esil diziler e oldukç merklı. Kurtlr

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

SAYISAL YÖNTEMLER DERS NOTLARI

SAYISAL YÖNTEMLER DERS NOTLARI SAYISAL YÖNTEMLER DERS NOTLARI Yrd Doç Dr Hüse Bıroğu İSTANBUL 6 İÇİNDEKİLER SAYFA -GİRİŞ SAYISAL HESAPLAMALARDA HATA ANALİZİ HATA TANIMI SAYISAL YÖNTEMLERİN SINIFLANDIRILMASI 5 DENKLEMLERİN KÖKLERİNİN

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN ANALİZ III DERS NOTLARI Prof. Dr. Nuretti ERGUN İ Ç İ N D E K İ L E R Syf No BÖLÜM Foksiyo Dizi ve Serileri... BÖLÜM Fourier Serileri... BÖLÜM 3 Özge Olmy Tümlevler...48 BÖLÜM 4 Dik Poliom Serileri...7

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı