1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor."

Transkript

1 99 ÖYS. Bir sınıftki örencilerin 5 nin fzlsı kız örencidir. Sınıft erkek öğrenci olduğun göre, kız öğrencilerin syısı kçtır? A) B) 8 C) D) E) Çözüm : Sınıftki öğrencilere 5x dersek x+ kızlr ve geri klnlr yni x- erkek olur. x-= X= X=8 bulunur. x+ kızlr idi demekki x+=.8+=+=8 olur. Emine ile nnesinin yşlrının toplmı 9 dur. yıl önce nnesinin yşı Emine nin yşının ktı olduğun göre, Emine şimdi kç yşınddır? A) B) 7 C) 8 D) 9 E) Çözüm : Emine nne.. X 9-x yıl önce x- 7-x olur ktın eşitmi.(x-)=7-x x-8=7-x x+x=7+8 5x=5 X=9 bulunur.. Serp bir kitbı her gün bir önceki günden 5 syf fzl okuyrk günde bitiriyor. Serp. günün sonund kitbın ünü okuduğun göre, kitp kç syfdır? A) B) 9 C) D) E) 5 Çözüm :. gün x.gün x+5 kitp syf ise x+5=.gün x+.gün x+5 5.gün x+ Ve.gün x+5 hepsi x+75= oluyor. x+75= = 5 bulunur x+5=. 85 m lik bir rzi 9 ile doğru orntılı, ve 5 ile ters orntılı olrk üç prçy yrılmıştır. Bun göre, en büyük prç kç m dir? A) 5 B) C) 5 D) E) Çözüm : k k 9k+ şitliğinden + = 85 e 5 9k+ 5k+ k = 85 97k = 85 k = 5 en büyük prç 9k = 9.5 = 5olur

2 5. Etiket fiytı mliyet üzerinden %5 krl hesplnn bir mlın indirimli fiytı etiket fiytındn 75 TL zdır. Bu ml indirimli fiytl stıldığınd mliyet üzerinden % zrr edildiğine göre, mlın mliyeti kç TL dir? A) B) 5 C) D) 5 E) Çözüm 5: Mliyet x ise etiket fiytı 5x olur. % zrr oluyors yeni fiyt 8x demektir. Ardki frk 5x-8x=75 5x=75 X= Mliyet x=. Stteki hızı V oln bir hreketti A ve B rsındki yolu 8 stte lmıştır. Bu hreketli yolun yrısınd stte V hızıyl, diğer yrısınd d V hızıyl giderse, yolun tmmını kç stte lır? 8. x = olduğun göre, (x-5) +(x-5) +(x-5)+ ifdesinin değeri kçtır? A) 7 Çözüm 8: 7 B) 7 C) D) 7 (x-5) +(x-5) +(x-5)+ =(x-5+) =(x-) 8 =( -) =(- ) =- 7 8 E) 7 9., b, c birer pozitif syı ve + b < + c c olduğun göre, şğıdkilerden hngisi kesinlikle doğrudur? A) c<b B) b<c C) <b D) b< E) <c Çözüm 9: A) 7 B) 8 C) 9 D) E) ÇÖZÜM : A AB rsı 8V olur. Yrısı V olur. V = 8 st diğer yrısı V V V = Toplm 8+= stte lır st B + b b < + c c c + c < + c b < b< c c. x = ( ) ( ) y = z = ( ) olduğun göre, şğıdki sırlmlrdn hngisi doğrudur? İşleminin sonucu kçtır? A) B) C) 5 D) E) 8 Çözüm 7:... = = A) z<x<y B) z<y<x C) y<x<z D) x<y<z E) x<z<y Çözüm : x = ( ) = 8 8 y = = < < x< z < y z = ( ) =. = = = 8.

3 .,b pozitif tmsyılr ve.b = + olduğun göre, b nin en küçük değeri lmsını sğlyn şğıdki rlıklrdn hngisindedir? A) [,5] B) [,] C) [7,9] D) [,] E) [,] Çözüm :. b = + ı her ileiki bölersek trf b = + buluruz. b' ninı enküçük tmsy olmsıiçin ' nın ' ün enbüyük böleni oln' ü vermeliyiz. = ıolml bu d [,5] rlığınddır,x +,. =,7x +,5 olduğun göre, x kçtır? A) B) C) D),8 E),7 Çözüm :,x +, = içler dışlr çrpımı yprsk,7x +,5,x+, =,x+,5,,5 =,x,x,5 =,5x,5 5 x = = = bulunr,5 5. (9) +(97) toplmının 5 ile bölümünden kln kçtır? A) B) C) D) E) Çözüm : ( ) (9) +(97) + + mod 5 5. ile 5 rsınd bulunn ve 5 ile klnsız bölünebilen syılrın toplmı kçtır? A) 9875 B) C) 5 D) 5 E) 75 Çözüm 5: bizden istenen dir 5 prntezine lırsk 5( ) bu toplmı birçok yoldn bulbiliriz. den 7 kdr oln syılrın toplmındn den ye kdr oln syılrın toplmındn çıkrtırı z = 5 55 = 5. = 5.75 = 75 bulunur.. f(x)=.f(x-) f(5) = olduğun göre, f() değeri kçtır?. A = {,,,, 5} kümesinin lt kümelerinin kç tnesinde 5 elemnı bulunur? A) B) C) D) E) A) B) C) D) E) 8 Çözüm : A = {,,,, 5} 5 brındırmyn lt kümeleri = dır bu tn e lt kümelerin hepsine 5 eklersek A kümesinin içinde 5 bulunn lt kümelerinin sy ısını bulmuş oluruz. yni cevbımız = dır. Çözüm : f( x) =. f( x ) ve f(5) = x yerine 5 yzl ım f (5) =. f () ğunu olur unutm f (5) = oldu =. f () ise f () = olur ilk verilenıd y rg x yerine bu sefer koylım f() =. f() =. f() şte isonuç f () =

4 7. f(x)=x+b f - () = - f () =5 olduğun göre,.b çrpımı kçtır? A) -7 B) C) -5 D) E) Çözüm 7: f () = ise = f () olur f () = 5 ise = f (5) olur o zmn + b= yok etme ( üst denklemi ileçrp) 5+ b= = b = 7 olur.. b =.7 = 7 bulunur.. 8. log = log = b olduğun göre, log7 nin ve b türünden değeri şğıdkilerden hngisidir? A) b- B) -b C) -b D) +b E) +b Çözüm 8: log 7 = log (8.9) = log (. ) = log + log = log + log = + b bulunur x + x+ -79= olduğun göre, x kçtır? A) B) C) D) E) 5 Çözüm 9: x x = 79 x x = x 8. = x. = x x = + x = + = b. x - mx+m-= denkleminin kökleri x ve x dir. + > x x olduğun göre, m nin lbileceği değerler kümesi şğıdkilerden hngisidir? A) (-, + ) B) (-,) C) R-{} D) (,) E) (,) Çözüm : + > pyd eşitlersek x x x+ x > denklemden x+ x = m xx. x. x = m bulunur. yerlerine yzrsk m m > burdn > m m m m+ m > > m m tblosunu yptığımızd < m < olur.. P(x)=x + x +x +x polinomunun x + ile klnsız bölünebilmesi için, kç olmlıdır. A) B) Çözüm : C) D) E) - x + = dn x = olur. polinomd x bulbildi ğimiz her yere yzıp ' eşitliyeceği z. p( x) = ( x ) ıyoruz + x. x + x + x yz ( ) + ( ). x + ( ) + x = x + x = x x = den = bulunur.

5 . ABC bir üçgen, D [BC]. ABC bir üçgen Yukrıdki verilere göre, AC =x kç cm dir? A) 5 B) C)7 D) 8 E) 9 Çözüm : Yukrıdki şekilde Aln ( CDE) =Aln( EBF) olduğun göre, AC kç cm dir? A) B) 5 C) D) 7 E) 8 Çözüm :. ABC bir üçgen m (ABˆC) = 5 m (BĈA) = AC = cm AB =x cm Yukrıdki verilere göre, AB =x kç cm dir? A) B) C) D) E) Çözüm :

6 5. 7. Yukrıdki verilere göre, DC = CB = x kç cm dir? A) B) 5 C) 5 5 D) E) Çözüm 5: Şekildeki iki çember E noktsınd içen teğet ve içteki çemberin merkezi O dur. [AE ışını çemberlere E de teğet, dıştki çemberin A, B, C noktlrındn geçen keseni içteki çembere L de teğettir. OE = cm, AO = cm, LC = cm olduğun göre, BL kç cm dir? A) B) C) D) 9 E) 8 Çözüm 7:. Yukrıdki şekilde, d doğrusu O merkezli çemberi A ve B de kesmektedir. HB = CH olduğun göre, OH =x kç cm dir? A) B) 5 C) D) 7 E) 8 Çözüm :

7 8. sina + sina. cosa + cos A ifdesi şğıdkilerden hngisine eşittir? A) sina B) tna C) tna D) cota E) cosa A) B) C) D) E) Çözüm : A+ A A A sin.cos sin A+ sin A = sin A. cos A cos A+ cos A A A A A = = tna + cos A. cos A cos.cos Çözüm 8:. <α<9 ve sin5 cos7 + cos5 sin7 cos8 cos olduğun göre, α kç derecedir? = sinx A) B) 5 C) 8 D) E) Çözüm : 9. sin5 cos7 + cos5 sin 7 = sin x cos8 cos ( + ) sin 5.cos 7 cos5.sin 7.sin.cos..sin.cos = sin x sin. sin = sinx olduğundn x = bulunur. A) + B) + C) D) E) Çözüm 9:. x + ifdesinin çılımındki sbit terim kçtır? x A) 5 B) C) 8 D) E) Çözüm :. r. r min x ( x ) teri de r r = r r = bulunur.5... x. x = = 5 sbit terimdir....

8 . Z-5-i= koşulunu sğlyn z krmşık syısının rgümenti θ olduğun göre, tnθ kçtır? A) B) 5 C) D) Çözüm : E) Z 5 i = Z = + i ise tnθ = olrk bulunur. Şekildeki ABC eşkenr üçgeninde kçtır? CB. CD çrpımı A) B) C) 8 D) E) Çözüm : x. A = y mtrisi için A - A=A olduğun göre, x.y çrpımı kçtır? A) -5 B) - C) - D) - E) - Çözüm : A. A = A ise A mtrisi birim mtristir. x x A =. = y y x + y x = xy y y+ x = y+ = x = y = xy. =. = mtrisinin, ters mtrisinin olmmsı için kç olmlıdır? A) 5 B) C) D) E) 5 5. A = (, ) ve B = (, ) vektörleri rsındki çı kç derecedir? A) 9 B) 75 C) D) 5 E) Çözüm 5: Çözüm 7: Birmtrisinter sinin olmms ı için det er minının nt olmsı demektir = 9 = ( ) = = = = =

9 8. n =,,,... olmk üzere ilk n teriminin toplmı S n =n + oln bir dizinin 7. terimi kçtır? A) B) C) D) E) Çözüm 8: n Sn Sn n n = n + n 7 (( ) ) = = + + n + n = n =.7 = = 9. lim x ln + değeri kçtır? x x A) B) C) D) E) Çözüm 9: ln( + ) lim x.ln( + ) = lim x = belirsizlik L' hopitl x x x x x + lim x = lim = = x x + + x x. f(x)=e tnx olduğun göre, f(x) f lim x x değeri şğıdkilerden hngisidir? A) e B) e C) e - D) e E) e Çözüm : lim x f( x) f = f x ( x) x ( ) ( ) ( ) f x = e = + tn x. e tn tn x tn f = + tn. e = ( + ). e = e. k nin hngi rlıktki değerleri için kx + y = fonk- x + k siyonu dim eksilendir (zlndır)? A) - <k<- B) -<k<- C) -<k< D) <k< E) <k< Çözüm : zln olmsı için türevinin ( + ) ( + ) ( x+ k) k. x k kx y = < kx + k kx k < < k < < ' dn küçük olmsı g erekir.. m,n R olmk üzere, f:r R fonksiyonu f(x) = x mx + nx ile tnımlıdır. f fonksiyonunun x = ve x = noktlrınd yerel ekstremumu olduğun göre, n-m frkı kçtır? A) B) C) 7 Çözüm : D) 9 ( ) ( ) ( ) ( ) ( ) 7 E) 5 f = ekstremum noktlrı türevini ypn noktlrd ır.. f = f x = x mx + n f = m+ n= f = 9 m+ n= m n= 5 yok etme kullnılırs m = n = bulunur m n= n m= =

10 . 5. d dt değeri kçtır? t cos x dx dt Şekildeki grfik şğıdki fonksiyonlrdn hngisine it olbilir? A) 7 B) C) D) E) x + x x x A) y = B) y = (x ) (x ) x x x x C) y = D) y = (x + ) (x + ) x x E) y = (x ) Çözüm : Düşey simptot x= olduğun göre x= olduğund pydsı sıfır oln şıklra;b; ve E şıklrıdır. Y eksenini kesen nokt (;-/) bunu sğlyn şıklr ise A ve B şıklrı. Kldı İki şık. Denklemin kökleri - ve bunu sğlyn ise B şıkkıdır. Çrpnlr yırdığımızd (x+).(x-) olduğu görülüyor.. Çözüm 5: t d cosx dx dt dt = cosx dx = sin x = sin. sin =. =. y =-x prbolünün koordint sisteminin. bölgesindeki (x, y ) prçsı ile x= ve y= doğrulrıyl sınırlı oln bölgenin lnı kç birim kredir? A) 8 B) C) D) E) Çözüm : Yukrıdki şekilde merkezi O, yrıçpı OA = OB = cm oln dörtte bir çember yyı üzerindeki bir N noktsındn yrıçplr inen dikme yklrı K ve L dir. Bun göre, OKNL dikdörtgeninin en büyük lnı kç cm dir? A) B) C) D) E) 8 Çözüm :

11 7. 9. Şekildeki gibi y=e x eğrisi ile x=-, x= ve y= doğrulrı ile sınırlı bölgenin x-ekseni etrfınd döndürülmesiyle oluşn dönel cismin hcmi (e e ) br olduğun göre, nin değeri kçtır? A) B) C) D) 5 E) Çözüm : x x ( ) e dx = e = e e ( e e ) ğun = ( göre e e ) oldu = = 5 bulunur. 8. < AB <8 olmk üzere, A noktsındn birim, B noktsındn 5 birim uzklıkt bulunn noktlrın geometrik yeri şğıdkilerden hngisidir? A) İki nokt B) İki çember yyı C) Bir doğru prçsı D) Bir doğru E) Bir çember Çözüm 5: 5 Şekilde grfiği verilen prbolün tepe noktsı T, 5, y eksenini kestiği nokt d A(,) tür. Bu prbolün denklemi y=x +bx+c olduğun göre, b kçtır? A) 5 B) Çözüm 9: C) 5 D) E) 5 y eksenini kesti ği nokt A (, ) ise c = tür 5 y = x + bx + T (,5) b 5 = ise b = ır5 bir dde. T noktsı denklemi sğlr yni yerine koyl ım = = + 5 = burdn = bulunur. b = 5 idi b = 5. = f(x)=x -7x+ prbolü üzerindeki bir noktnın koordintlrı toplmının lbileceği en küçük değer kçtır? A) B) 8 C) D) 5 E) Çözüm 5:

12 + x = 7 + y x x + = + x y x x koordintlr ının lbilceği toplm en küçük değer tepe noktsının ordintıdır b = = bu tepe nokts ının psisi yerine koyrsk. x+ y z+ = x + y z 5= düzlemleri ındki uzklık rs ( ) 5 7 l = = bulunur x + y = + = + = bulunur 5. x +y -x+y+5= denkleminin grfiği şğıdkilerden hngisi olbilir? 5. Büyük eksen köşeleri A(5, ), A'(- 5, ) oln ve D, 5 noktsındn geçen merkezil (stndrt) elipsin denklemi şğıdkilerden hngisidir? x x y A) + y = B) + = x y x y C) + = D) + = x y E) + = 5 Çözüm 5: x y + = denklemi D ını, sğlmsı noktsgerekir. 5 b 5 ( ) 5 + = 5 b + = b + = 5b Çözüm 5: 5 5b = 9b b = o zmn denklemimiz A= B = C = 5 x y + = olur r = A + B C = + =. = nokt belirtir. 5 bu d E seçene ğinde verilmiştir. 5. Denklemleri x+y-z+= ve x+y-z- = oln iki düzlem rsındki uzklık kç birimdir? 7 A) B) Çözüm 5: C) D) E) -B -D - E -A 5-C -D 7-B 8-E 9-B -E -A -C -D -A 5-E -B 7-A 8-D 9-B -D -B -A -D -C 5-A -C 7-E 8-B 9-D -C -E -A -D -E 5-B -C 7-B 8-E 9-A -D -C -C -B -E 5-D -A 7-D 8-A

13 9-B 5-D 5-C 5-A 5-E

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 996 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? A) B) 8 C) 6 D) E) Çözüm Toplam öğrenci

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri Lisns Yerleştirme Sınvı (Lys ) / 9 Hzirn Mtemtik Sorulrı ve Çözümleri. (x )(x + ) + (x )(x ) eşitliğini sğlyn x gerçel syılrının toplmı kçtır? A) B) C) 5 D) 6 5 E) 6 7 Çözüm (x )(x + ) + (x )(x ) (x ).[(x

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 23 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 23 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınavı (Öys) / Haziran 996 Matematik Soruları Ve Çözümleri. Bir sınıftaki örencilerin 5 nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır?

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6

Öğrenci Seçme Sınavı (Öss) / 16 Haziran Matematik Soruları ve Çözümleri = 9, : = 6 Öğrenci Seçme Sınvı (Öss) / 6 Hzirn 00 Mtemtik Sorulrı ve Çözümleri.,4 0,4,4,4 işleminin sonucu kçtır? A) 0 B) 0, C) 9,9 D) 0, E), Çözüm,4 0,4,4,4 0 99 0 0 40 4 4 40 9,9. 6 : 4. işleminin sonucu kçtır?

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3

Ö.Y.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. 5 k 3 Ö.Y.S. 997 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.,,, k olduğun göre, k kçtır? A) B) C) D) E) Çözüm,,, k k k 7 k. [( ) ( )] [ (9 ) ( )] işleminin sonucu kçtır? A) B) C) D) 9 E) 6 Çözüm [( ) ( )] [ (9 ) ( )] [.(

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 21 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 21 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınvı (Öys) / Hzirn 99 Mtemtik Sorulrı Ve Çözümleri Bir öğrenci, hrçlığının si ile, 000 lirlık otobüs biletinden 0 det lmıştır 7 Bun göre, öğrencinin hrçlığı kç lirdır? A) 0 000 B)

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 9 Mrt 998 Mtemtik Sorulrı ve Çözümleri. Rkmlrı sıfırdn frklı, eş smklı ir syının yüzler ve inler smğındki rkmlr yer değiştirildiğinde elde edilen yeni syı ile eski syı rsındki

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI: ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

10. SINIF. 5. P(x)=2x n 4 +3x 6 n Aþaðýdakilerden hangisi polinom deðildir? 2. Aþaðýdaki polinomlardan hangisi üçüncü derecedendir?

10. SINIF. 5. P(x)=2x n 4 +3x 6 n Aþaðýdakilerden hangisi polinom deðildir? 2. Aþaðýdaki polinomlardan hangisi üçüncü derecedendir? MTMTÝK 0. SINIF POLÝNOMLR Test No:. þðýdkilerden hngisi polinom deðildir? ) P(x)=0 ) P(x)= 2 ) P(x)=2x ) P(x) = 2 x ) P(x) = 2x 2. þðýdki polinomlrdn hngisi üçüncü derecedendir? ) P(x)=x 3 +3x 4 + ) P(x)=x

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 26 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 26 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınavı (Öys) / 6 Haziran 99 Matematik Soruları Ve Çözümleri. Birler basamağı 0 olan, ile bölünebilen, iki basamaklı en büyük pozitif doğal sayının, birler basamağı 0 olan, ile bölünebilen,

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı