Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel"

Transkript

1 Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel

2 TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik

3 Süreç Değişkenlik Kaynakları Hammadde Operatör Makine Ekipman vb. Ölçüm Sistemi Değişkenlik Kaynakları Ölçüm aleti Operatör Ölçüm metodu vb.

4 Toplam Değişkenlik Ölçüm yapılan parçadan kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik 2 toplam 2 parça 2 ölçümsistemi Montgomery,1985

5 Ölçüm Sistemi Analizinin Kullanım Alanları Ölçümlere dayanan çalışmaların başlangıç noktasında Yeni ölçüm aletinin kabulünde İki ölçüm aletinin karşılaştırılmasında Kullanılan ölçüm aletinin değerlendirilmesinde vb.

6 Ölçüm Sistemindeki Değişkenlik Doğruluk(accuracy) Hassasiyet(precision)

7 Hassasiyet, ölçüm cihazı ve ölçümü yapan operatörlerden kaynaklanan değişkenlikler ile ilgilidir Tekrar edilebilirlik(repeatability) Tekrar üretilebilirlik(reproducibility) 2 ölçülendeğ er 2 gerçekdeğer 2 tekraredilebilirlik 2 tekrarüretilebilirli k Kolarik, 1995

8 Tekrar edilebilirlik (repeatability): Ölçüm cihazından kaynaklanan değişkenlik tekrar edilebilirlik olarak tanımlanmaktadır. Tekrar edilebilirlik, ölçüm cihazının aynı ölçüyü aynı operatör ile pek çok kere ölçtüğünde meydana gelen değişkenliktir.

9 Tekrar üretilebilirlik (reproducibility): Operatörlerden kaynaklanan değişkenlik ise, tekrar üretilebilirlik olarak tanımlanmaktadır. Tekrar üretilebilirlik, aynı ölçüm cihazı ile aynı ölçünün farklı operatörler tarafından ölçüldüğünde meydana gelen değişkenliktir. Tekrar üretilebilirlik, operatörlerin farklılıklarından kaynaklanan etkiyi içerdiği gibi, operatör x parça etkileşiminden kaynaklanan etkileri de kapsamaktadır.

10 Ölçüm sisteminin güvenirliliğinin test edilebilmesi için aynı ölçüm cihazı kullanılarak birden fazla operatörün, birden fazla parçayı, birden fazla kere ölçmesi gerekmektedir. Bu verileri toplamak için gerekli adımlar aşağıda verilmiştir:

11 Ölçüm sisteminin güvenirliliğinin testi için gerekli verilerin toplanması: 1) Parçaların numaralandırılması, 2) İlk operatörün önceden numaralanmış tüm parçalardaki belirlenmiş ölçüyü rassal bir sırada birer kez ölçmesi, 3) Sırasıyla ikinci, üçüncü,...operatörlerin önceden numaralanmış tüm parçalardaki belirlenmiş ölçüyü rassal bir sırada birer kez ölçmesi, 4) Tüm operatörlerin ilk ölçümlerini tamamlamalarından sonra, tekrar ölçüm sayısı kadar 2 ve 3. Adımların tekrarlanması. 5) Paket program ile verilerin analiz edilmesi ve yorumlanması

12 Süreç değişkenliğinin belli bir yüzdesine, tekrar edilebilirlik ve tekrar üretilebilirlik bileşenlerinden oluşan ölçüm sistemi katkıda bulunur, mi % R & R ölçümsiste 100 toplam (Breyfogle, 1999) Yukarıdaki formül, ölçüm sisteminden kaynaklanan değişkenliğin, toplam değişkenlik içindeki oranını göstermektedir. % R&R 0.10 olması istenir. Ancak uygulamalarda 0.30 a kadar da kabul edilebilir.

13 Tekrar edilebilirlik ve tekrar üretilebilirlik değişkenlerinden oluşan ölçüm sistemi ile ilgili toleransın yüzdesi: % Tolerans 5.15 ölçümsiste mi tolerans (Breyfogle, 1999) Burada tolerans Üst Spesifikasyon Limitinden, Alt Spesifikasyon Limitini çıkararak tespit edilir. Toleransın yüzde kaçının ölçüm hatası tarafından kullanıldığını açıklar Sigma = 5.15 x faktörün standart sapması değeri, cihaz anakütle dağılımının değişkenliğini temsil edebilmek için deneysel olarak geliştirilmiştir.

14 % Katkı (Contribution) = Varyansa bağlı olarak her faktörün yüzde katkısı Tekraredebilirlik = 100 x tekraredebilirlik varyansı/ toplam değişimin varyansı. % Çalışma Varyansı (% Study Variance) = 5.15 x faktör standart sapmasının, 5.15 x toplam değişimin standart sapmasına oranı. % Süreç Değişkenliği = 5.15 x faktör standart sapmasının süreç değişimine oranı. Tekraredebilirlik = 100 x 5.15 tekraredebilirlik standart sapması / süreç değişimi. Farklı Kategorilerin Sayısı = parça standart sapmasının toplam cihaz R&R standart sapmasının 1.41 katına oranı.

15 ÖRNEK: Yer karosu pasta yoğunluk Son karonun renk ölçümleri-a değeri

16 Pasta yoğunluk Gage R&R Gage R&R Study - ANOVA Method Gage R&R for yogunluk Two-Way ANOVA Table With Interaction Source DF SS MS F P parça ,9 130,847 0,00000 operatör ,0 3,835 0,08185 operatör*parça ,5 0,722 0,68424 Repeatability ,3 Total Two-Way ANOVA Table Without Interaction Source DF SS MS F P parça ,9 103,345 0,00000 operatör ,0 3,029 0,09238 Repeatability ,3 Total

17 Gage R&R %Contribution StdDev Study Var %Study Var Source VarComp (of VarComp) (SD) (5,15*SD) (%SV) Total Gage R&R 151,3 4,13 12, ,341 20,32 Repeatability 137,3 3,75 11, ,353 19,36 Reproducibility 13,9 0,38 3, ,224 6,17 operatör 13,9 0,38 3, ,224 6,17 Part-To-Part 3513,9 95,87 59, ,282 97,91 Total Variation 3665,2 100,00 60, , ,00 Number of Distinct Categories = 7

18 Gage R&R (ANOVA) for yogunluk Gage name: Date of study: Reported by: Tolerance: Misc: Components of Variation By parça Percent %Contribution %Study Var Sample Range 0 Gage R&R Repeat Reprod Part-to-Part R Chart by operatör 70 mesut nedim UCL=38,06 R=11,65 LCL= parça By operatör Sample Mean Xbar Chart by operatör mesut nedim UCL=1695 Mean=1673 LCL=1651 Average operatör parça mesut nedim operatör*parça Interaction operatör mesut nedim

19 Birinci grafikte (Components of Variation) da Gage R&R = %20.32 olarak bulunmuştur. <%30 olduğu için yoğunluk ölçüm sistemi kabul edilebilir yeterliliktedir. Altıncı grafik (operatör*parça interaction) operatör ile parçaların etkileşimini göstermektedir. 2. parçada birinci ve ikinci operatör ölçüm ortalamaları arasında fark vardır. Ancak bu fark, ölçüm sisteminin analizinin yeterli bulunmasını etkilememiştir. İkinci grafik (R chart by operatör), operatörün iki ölçümü arasındaki farkı göstermektedir. Birinci operatörün 4. parça ölçümünde iki tekrarı arasındaki fark kabul edilebilir limitlerin üzerinde çıkmıştır. Ancak genel olarak yoğunluk için ölçüm sistemi yeterli görülmektedir. Üçüncü grafik (Xbar Chart by operatör), operatörlerin aynı parçayı iki kez ölçümlerinin ortalamalarını göstermektedir. İki operatör için de sırasıyla gösterilmiştir. Dördüncü grafik (By parça), herbir parça için alınan 4 ölçümüm dağılımlarını göstermektedir. 2. ve 4. parçaların öiçümleri diğer parçalara göre daha dağınıktır. Beşinci grafik (By operatör), operatörlerin toplamda yaptıkları 20 ölçümün ortalamalarını ve dağılımlarını vermektedir.

20

21 Yer Karosu, Renk-a Ölçümleri Analiz Sonuçları Renk a deðeri Gage name: Date of study: Reported by: Tolerance: Misc: MÝNOLTA Banu Doðan Sample Mean Xbar Chart by Operator ERDOGAN SIBEL 3.0SL= X= SL= Average Part ID 1 Operator*Part Interaction Operator ERDOGAN SIBEL Sample Range R Chart by Operator ERDOGAN SIBEL 3.0SL= R= SL= Oper IDERDOGAN By Operator SIBEL Percent Components of Variation Gage R&R Repeat Reprod Part-to-Part %Total Var %Study Var Part ID 1 2 By Part 3 4 5

22 Teşekkürler

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL Başkent Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 06530, Bağlıca, Ankara

Detaylı

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI

ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI 05 ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI Uğur KAVİ Sermin ELEVLİ ÖZET Kalite Güvence Sistemi içerisinde kalitenin iyileştirilmesi, verimliliğin arttırılması ve maliyetlerin

Detaylı

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ Evren DİREN Serkan ATAK Çiğdem CİHANGİR Murat Caner TESTİK ÖZET Kusurları ve israfı önleyerek müşteri memnuniyetini ve karlılığı arttırmayı

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA ÖLÇÜM VARYASYNUNU BL RLMK Ç N B R ÇALI MA Bahar SNNAR LU Marmara Üniversitesi Özlem YURTSVR Marmara Üniversitesi ÖZT lerin istenilen kalite özelliklerine uygunlu unu kontrol etmek için üretim hatlar ndan

Detaylı

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği Erciyes Dağı. Rakım??? 3916 m?????? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği DOÇ. DR. CEVAT YAZICI ERCİYES ÜNİVERSİTESİ TIP FAKÜLTESİ BİYOKİMYA A. D. SUNUM PLANI Laboratuvar branşlarının işlevi ve değişimler

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK Çok Değişkenli İstatistikler Faktör Analizi Faktör Analizinin Amacı: Birbirleriyle ilişkili p tane değişkeni bir araya getirerek az sayıda ilişkisiz ve kavramsal olarak

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ

BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ 1 BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ Şafak KIRIŞ, A.Sermet ANAGÜN, Nihat YÜZÜGÜLLÜ Eskişehir Osmangazi Üniversitesi, Endüstri Mühendisliği Bölümü, Eskişehir skiris@ogu.edu.tr,

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL BASİT PROBLEM ÇÖZME TEKNİKLERİ Doç. Dr. Nihal ERGİNEL Problemin ve nedenlerinin araştırılması, problemin doğru tanımlanması en önemli adımdır. Eğer problem doğru tanımlanmaz ise, doğru çözümlere ulaşılamaz.

Detaylı

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 6 SIGMA FELSEFESİ 6 Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü Sigma seviyesi, süreçlerin yeterliliği ifade eden bir ölçüttür. Süreçlerin sigma seviyelerinin artması demek,

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

ALTI SİGMA KÜÇÜK SÖZLÜĞÜ

ALTI SİGMA KÜÇÜK SÖZLÜĞÜ Alet Doğrusallığı (Gage Linearity) ALTI SİGMA KÜÇÜK SÖZLÜĞÜ Beklenen işlem aralığında değerlendirildiğinde, aletin kesinliğindeki değişkenliğin ölçüsü. Alet Kararlılığı(Gage Stability) Bir alet aynı master

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY Monthly Magnetic Bulletin May 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from İznik

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

ELE 201L DEVRE ANALİZİ LABORATUVARI

ELE 201L DEVRE ANALİZİ LABORATUVARI ELE 201L DEVRE ANALİZİ LABORATUVARI Deney 1 Temel Elektronik Ölçümler İMZA KAĞIDI (Bu sayfa laboratuvarın sonunda asistanlara teslim edilmelidir) Ön-Çalışma Lab Saatin Başında Teslim Edildi BU HAFTA İÇİN

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Kobra 3 ile Ohm Yasası

Kobra 3 ile Ohm Yasası Kobra 3 ile Ohm Yasası LEP İlgili konular Ohm yasası, Özdirenz, Kontakt Direnç, İletkenlik, Güç ve İş Prensip Voltaj ile akım arasındaki ilişki farklı rezistörler için ölçülür. Direnç akımla ilglili olan

Detaylı

Araziye Çıkmadan Önce Mutlaka Bizi Arayınız!

Araziye Çıkmadan Önce Mutlaka Bizi Arayınız! Monthly Magnetic Bulletin March 2014 z BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeofizik/default.htm Magnetic Results

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır.

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır. ALTI SİGMA NEDİR? Altı Sigma Nedir? 1980 lerin ortasında Motorola tarafından, Japon kalite fikirleri ve kontrol sistemlerinin süreçlerde uygulanması için geliştirilmiştir. Mevcut problemleri çözmek, altı

Detaylı

Epi Info Kullanımı AMACI: Epi Info Programı ile veri tabanı hazırlayabilme ve veri girişi yapabilme becerisi kazanmak ÖĞRENİM HEDEFLERİ Epi Info bileşenlerini tanımlayabilmek Epi Info Make View programında

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

TOC Analiz Cihazı Seçme Kriterleri

TOC Analiz Cihazı Seçme Kriterleri TOC Analiz Cihazı Seçme Kriterleri Aquous conductivity prensibi; Okside olabilen karbonlar molekül ağırlığı küçük karbonlardır ve belli bir dalga boyunda UV ışığı ile okside olabilirler. İletkenlik prensibine

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

Otomotiv Sertifika Programı

Otomotiv Sertifika Programı Otomotiv Sertifika Programı Otomotiv ana sanayi ve yan sanayinde kabul gören, geleneksel iş modelleri artık günümüzde uluslararası standartlar olarak zorunluluklar haline gelmiştir. Bu eğitimde birçok

Detaylı

PROJE AŞAMALARI. Kaynak Envanterinin Oluşturulması. Emisyon Yükü Hesaplamaları

PROJE AŞAMALARI. Kaynak Envanterinin Oluşturulması. Emisyon Yükü Hesaplamaları PROJENİN AMACI Bölgesel Temiz Hava Merkezlerinden olan Ankara merkez olmak üzere; Bartın, Bolu, Çankırı, Düzce, Eskişehir, Karabük, Kastamonu, Kırıkkale, Kırşehir, Kütahya, Yozgat ve Zonguldak illerinde

Detaylı

Genel Katılıma Açık Eğitimlerimiz Başlıyor!

Genel Katılıma Açık Eğitimlerimiz Başlıyor! Genel Katılıma Açık Eğitimlerimiz Başlıyor! Mavi Akademi, bünyesinde barındırdığı yetki belgeleri ve alanında uzman akademisyenler, sektör tecrübesine sahip baş denetçiler ve uzmanlardan oluşan kadrosuyla

Detaylı

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ PR15/KYB

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ PR15/KYB TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI PR15/KYB Sayfa No: 1/17 1. AMAÇ VE KAPSAM Bu prosedürün amacı, Daire Başkanlığı, TS EN ISO/IEC

Detaylı

İÜ İŞLETME FAKÜLTESİ

İÜ İŞLETME FAKÜLTESİ İÜ İŞLETME FAKÜLTESİ PROJE YÖNETİMİNDE MALİYET PLANLAMA ve PERFORMANS EV- BCWP Kazanılmış Değer Analizi Prof. Dr. Erdal BALABAN 1 Proje Yaşam Eğrisi Sarfedilen emek Zaman Proje Geliştirme Başlatma ve Planlama

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı SAĞKALIM (SÜRVİ) ANALİZİ Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı Amaç Tedaviden sonra hastaların beklenen yaşam sürelerinin tahmin edilmesi, genel

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi

RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi RETScreen International ve ALWIN Yazılımları Kullanılarak Rüzgar Enerji Santrali Proje Analizi Egemen SULUKAN, Tanay Sıdkı UYAR Marmara Üniversitesi Makine Mühendisliği Bölümü Enerji Ana Bilim Dalı Göztepe,

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression OLS Klasik Varsayımlar Çoklu Regresyon Multiple Regression. Lineer regresyon modeli. E(e i )=, ortalama hata sıfırdır. E(X i e i )=, bağımsız değişkenlerle hatalar arasında korelasyon mevcut değildir 4.

Detaylı

2.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 30-31Ekim 2014 METOT VALĠDASYONU VE ÖNEMĠ (5N+1K)

2.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 30-31Ekim 2014 METOT VALĠDASYONU VE ÖNEMĠ (5N+1K) 2.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 30-31Ekim 2014 METOT VALĠDASYONU VE ÖNEMĠ (5N+1K) İbrahim AKDAĞ E-Posta: ibrahim@uzmanakreditasyon.com Web: http: // www.uzmanakreditasyon.com

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü. Rüzgar Enerjisi Tahmin Sistemi RETS. 5 Mart 2010

T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü. Rüzgar Enerjisi Tahmin Sistemi RETS. 5 Mart 2010 T.C. Çevre ve Orman Bakanlığı Devlet Meteoroloji İşleri Genel Müdürlüğü Rüzgar Enerjisi Tahmin Sistemi RETS 5 Mart 2010 Cihan DÜNDAR Çevre Yüksek Mühendisi Araştırma rma ve Bilgi İşlem Dairesi Başkanl

Detaylı

Chauvin Arnoux F407 ve F607 Profesyonel Pens Ampermetreler

Chauvin Arnoux F407 ve F607 Profesyonel Pens Ampermetreler Detaylı bilgi www.sgemuhendislik.com www.chauvin-arnoux.com.tr Chauvin Arnoux F407 ve F607 Profesyonel Pens Ampermetreler SGE Mühendislik tarafından temsil edilen Chauvin Arnoux F serisi Pens Ampermetreler,

Detaylı

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Yöntem Seçiminde Göz Önünde Bulundurulacak Özellikler 1 *Yönteme ilişkin

Detaylı

ALTI SİGMA EĞİTİM PROGRAMLARI. Kara Kuşak Eğitimi

ALTI SİGMA EĞİTİM PROGRAMLARI. Kara Kuşak Eğitimi ALTI SİGMA EĞİTİM PROGRAMLARI Kara Kuşak Eğitimi ALTI SİGMA Kara Kuşak Eğitimi Kara Kuşak Eğitimi Kara Kuşaklar Altı Sigma Sistemi içerisindeki metdlji uygulayıcıları, prblem çözme uzmanları ve mükemmel

Detaylı

Biyosidal Ürünlerin Mikrobiyolojik Analizlerinde Karşılaşılan Genel Sorunlar

Biyosidal Ürünlerin Mikrobiyolojik Analizlerinde Karşılaşılan Genel Sorunlar Biyosidal Ürünlerin Mikrobiyolojik Analizlerinde Karşılaşılan Genel Sorunlar Güven Özdemir Ege Üniversitesi Fen Fakültesi, Biyoloji Bölümü, Bornova, İzmir guven.ozdemir@ege.edu.tr Biyosidal ürünlerin laboratuvar

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İSTATİSTİKSEL PROSES KONTROLÜ TEKNİKLERİ İLE KÖMÜR KALİTESİNDEKİ DEĞİŞKENLİĞİN BELİRLENMESİ

İSTATİSTİKSEL PROSES KONTROLÜ TEKNİKLERİ İLE KÖMÜR KALİTESİNDEKİ DEĞİŞKENLİĞİN BELİRLENMESİ MADENCİLİK, Cilt 45, Sayı 3, Sayfa 19-6, Eylül 006 Vol.45, No.3, pp 19-6, September 006 İSTATİSTİKSEL PROSES KONTROLÜ TEKNİKLERİ İLE KÖMÜR KALİTESİNDEKİ DEĞİŞKENLİĞİN BELİRLENMESİ Determination of Variation

Detaylı

Tahribatlı Tahribatsız Deney Yöntemleri

Tahribatlı Tahribatsız Deney Yöntemleri Tahribatlı Tahribatsız Deney Yöntemleri Tahribatlı Tahribatsız Deney Yöntemleri TAHRİBATLI YÖNTEM 1.Yapıya zarar verebilir. 2.Tekrar edilmez. 3.Tek başına sonuç verir. 4.Maliyetlidir. 5.Standard sapması

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KALİTE KONTROL Dersin Orjinal Adı: KALİTE KONTROL Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 8 Dersin

Detaylı

1.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 16-18 Mayıs 2013 KALĠBRASYON (5N+1K) İbrahim AKDAĞ

1.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 16-18 Mayıs 2013 KALĠBRASYON (5N+1K) İbrahim AKDAĞ 1.ULUSAL LABORATUVAR AKREDĠTASYONU VE GÜVENLĠĞĠ SEMPOZYUMU VE SERGĠSĠ 16-18 Mayıs 2013 KALĠBRASYON (5N+1K) İbrahim AKDAĞ E-Posta: ibrahim@uzmanakreditasyon.com Web: http: // www.uzmanakreditasyon.com Konusunda

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu 2013-2014 Eğitim Öğretim yılından itibaren Fakültemizin kayıtlı tüm öğrencilerinin (hem eski hem de yeni müfredata tabi olan öğrencilerin) başarı notları

Detaylı

Halenur Soysal 1*, Semra Boran 2. 17.04.2014 Geliş/Received, 06.06.2014 Kabul/Accepted

Halenur Soysal 1*, Semra Boran 2. 17.04.2014 Geliş/Received, 06.06.2014 Kabul/Accepted SAÜ Fen Bil Der 19. Cilt, 1. Sayı, s. 15-26, 2015 Bulanık diyagramları kullanılarak bulanık süreç Halenur Soysal 1*, Semra Boran 2 ÖZ 17.04.2014 Geliş/Received, 06.06.2014 Kabul/Accepted Süreç, müşteri

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI Uludağ Üniversitesi Eğitim Fakültesi Dergisi Cilt: XVII, Sayı: 1, 2003 ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL

Detaylı

SÜRDÜRÜLEBİLİR REKABET GÜCÜNÜN SAĞLANMASINDA ALTI SİGMA NIN YÖNTEMİNİN KULLANILMASI VE FORD OTOMOTİV SANAYİ A.Ş. DE BİR UYGULAMA ÖRNEĞİ

SÜRDÜRÜLEBİLİR REKABET GÜCÜNÜN SAĞLANMASINDA ALTI SİGMA NIN YÖNTEMİNİN KULLANILMASI VE FORD OTOMOTİV SANAYİ A.Ş. DE BİR UYGULAMA ÖRNEĞİ SÜRDÜRÜLEBİLİR REKABET GÜCÜNÜN SAĞLANMASINDA ALTI SİGMA NIN YÖNTEMİNİN KULLANILMASI VE FORD OTOMOTİV SANAYİ A.Ş. DE BİR UYGULAMA ÖRNEĞİ Doç. Dr. Orhan ELMACI Mustafa USLU Kadir TUTKAVUL Dumlupınar Üniversitesi

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

Prof. Dr. KARACABEY Yrd. Doç. Dr. GÖKGÖZ. Yatırım süreci beş temel aşamadan oluşmaktadır:

Prof. Dr. KARACABEY Yrd. Doç. Dr. GÖKGÖZ. Yatırım süreci beş temel aşamadan oluşmaktadır: Risk ve Getiri Konsepti Prof. Dr. Argun KARACABEY Yrd. Doç. Dr. Fazıl GÖKGÖZ 1 Yatırım süreci beş temel aşamadan oluşmaktadır: 1.Yatırım Politikasının belirlenmesi,.menkul kıymet analizinin yapılması,

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

www.saitkaygusuz.com skaygusuz@uludag.edu.tr STOKLAR TMS-2

www.saitkaygusuz.com skaygusuz@uludag.edu.tr STOKLAR TMS-2 1 STOKLAR TMS-2 Üretim İşletmelerinde Stoklar 2 Stoklar aynı zamanda işletme tarafından üretilen mamulleriya da üretimde olan yarı mamulleri ve üretim sürecinde kullanılmak üzere bekleyen ilk madde ve

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Fikir: Hazır- deneysel ayar/ 100g sıcak suyu soğumaya bırakın. Fikir: Hazır- deneysel ayar/ değişik su kütlelerinin soğumasının karşılaştırılması.

Fikir: Hazır- deneysel ayar/ 100g sıcak suyu soğumaya bırakın. Fikir: Hazır- deneysel ayar/ değişik su kütlelerinin soğumasının karşılaştırılması. Ders materyali Bu ardışım üç ayrı alt sıraya/ deneysel ayarlara ayrılmıştır. I Sogutma ile yakınlaşma: Fikir: Hazır- deneysel ayar/ 100g sıcak suyu soğumaya bırakın. II Soğuma ile ilgili daha fazla bilgi

Detaylı

1. Nominal faiz oranı %25, enflasyon oranı %5 olduğuna göre reel faiz oranı % kaçtır?

1. Nominal faiz oranı %25, enflasyon oranı %5 olduğuna göre reel faiz oranı % kaçtır? Temel Finans Matematiği ve Değerleme Yöntemleri 1. Nominal faiz oranı %25, enflasyon oranı %5 olduğuna göre reel faiz oranı % kaçtır? a. %18 b. %19 c. %20 d. %21 e. %22 5. Nominal faiz oranı %24 ve iki

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

FRAME Bilgisayar Mühendislik

FRAME Bilgisayar Mühendislik Bilgisayar Mühendislik Dokümantasyon Bilgileri Gizlilik : HİZMETE ÖZEL Belirteç : - Başlık : Kullanıcı El Kitabı Sürüm : 1.0 Oluşturulma : 08 Ocak 2008 Salı Güncelleme : 11 Ocak 2008 Cuma Telif Hakkı :

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı