Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel"

Transkript

1 Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel

2 TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik

3 Süreç Değişkenlik Kaynakları Hammadde Operatör Makine Ekipman vb. Ölçüm Sistemi Değişkenlik Kaynakları Ölçüm aleti Operatör Ölçüm metodu vb.

4 Toplam Değişkenlik Ölçüm yapılan parçadan kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik 2 toplam 2 parça 2 ölçümsistemi Montgomery,1985

5 Ölçüm Sistemi Analizinin Kullanım Alanları Ölçümlere dayanan çalışmaların başlangıç noktasında Yeni ölçüm aletinin kabulünde İki ölçüm aletinin karşılaştırılmasında Kullanılan ölçüm aletinin değerlendirilmesinde vb.

6 Ölçüm Sistemindeki Değişkenlik Doğruluk(accuracy) Hassasiyet(precision)

7 Hassasiyet, ölçüm cihazı ve ölçümü yapan operatörlerden kaynaklanan değişkenlikler ile ilgilidir Tekrar edilebilirlik(repeatability) Tekrar üretilebilirlik(reproducibility) 2 ölçülendeğ er 2 gerçekdeğer 2 tekraredilebilirlik 2 tekrarüretilebilirli k Kolarik, 1995

8 Tekrar edilebilirlik (repeatability): Ölçüm cihazından kaynaklanan değişkenlik tekrar edilebilirlik olarak tanımlanmaktadır. Tekrar edilebilirlik, ölçüm cihazının aynı ölçüyü aynı operatör ile pek çok kere ölçtüğünde meydana gelen değişkenliktir.

9 Tekrar üretilebilirlik (reproducibility): Operatörlerden kaynaklanan değişkenlik ise, tekrar üretilebilirlik olarak tanımlanmaktadır. Tekrar üretilebilirlik, aynı ölçüm cihazı ile aynı ölçünün farklı operatörler tarafından ölçüldüğünde meydana gelen değişkenliktir. Tekrar üretilebilirlik, operatörlerin farklılıklarından kaynaklanan etkiyi içerdiği gibi, operatör x parça etkileşiminden kaynaklanan etkileri de kapsamaktadır.

10 Ölçüm sisteminin güvenirliliğinin test edilebilmesi için aynı ölçüm cihazı kullanılarak birden fazla operatörün, birden fazla parçayı, birden fazla kere ölçmesi gerekmektedir. Bu verileri toplamak için gerekli adımlar aşağıda verilmiştir:

11 Ölçüm sisteminin güvenirliliğinin testi için gerekli verilerin toplanması: 1) Parçaların numaralandırılması, 2) İlk operatörün önceden numaralanmış tüm parçalardaki belirlenmiş ölçüyü rassal bir sırada birer kez ölçmesi, 3) Sırasıyla ikinci, üçüncü,...operatörlerin önceden numaralanmış tüm parçalardaki belirlenmiş ölçüyü rassal bir sırada birer kez ölçmesi, 4) Tüm operatörlerin ilk ölçümlerini tamamlamalarından sonra, tekrar ölçüm sayısı kadar 2 ve 3. Adımların tekrarlanması. 5) Paket program ile verilerin analiz edilmesi ve yorumlanması

12 Süreç değişkenliğinin belli bir yüzdesine, tekrar edilebilirlik ve tekrar üretilebilirlik bileşenlerinden oluşan ölçüm sistemi katkıda bulunur, mi % R & R ölçümsiste 100 toplam (Breyfogle, 1999) Yukarıdaki formül, ölçüm sisteminden kaynaklanan değişkenliğin, toplam değişkenlik içindeki oranını göstermektedir. % R&R 0.10 olması istenir. Ancak uygulamalarda 0.30 a kadar da kabul edilebilir.

13 Tekrar edilebilirlik ve tekrar üretilebilirlik değişkenlerinden oluşan ölçüm sistemi ile ilgili toleransın yüzdesi: % Tolerans 5.15 ölçümsiste mi tolerans (Breyfogle, 1999) Burada tolerans Üst Spesifikasyon Limitinden, Alt Spesifikasyon Limitini çıkararak tespit edilir. Toleransın yüzde kaçının ölçüm hatası tarafından kullanıldığını açıklar Sigma = 5.15 x faktörün standart sapması değeri, cihaz anakütle dağılımının değişkenliğini temsil edebilmek için deneysel olarak geliştirilmiştir.

14 % Katkı (Contribution) = Varyansa bağlı olarak her faktörün yüzde katkısı Tekraredebilirlik = 100 x tekraredebilirlik varyansı/ toplam değişimin varyansı. % Çalışma Varyansı (% Study Variance) = 5.15 x faktör standart sapmasının, 5.15 x toplam değişimin standart sapmasına oranı. % Süreç Değişkenliği = 5.15 x faktör standart sapmasının süreç değişimine oranı. Tekraredebilirlik = 100 x 5.15 tekraredebilirlik standart sapması / süreç değişimi. Farklı Kategorilerin Sayısı = parça standart sapmasının toplam cihaz R&R standart sapmasının 1.41 katına oranı.

15 ÖRNEK: Yer karosu pasta yoğunluk Son karonun renk ölçümleri-a değeri

16 Pasta yoğunluk Gage R&R Gage R&R Study - ANOVA Method Gage R&R for yogunluk Two-Way ANOVA Table With Interaction Source DF SS MS F P parça ,9 130,847 0,00000 operatör ,0 3,835 0,08185 operatör*parça ,5 0,722 0,68424 Repeatability ,3 Total Two-Way ANOVA Table Without Interaction Source DF SS MS F P parça ,9 103,345 0,00000 operatör ,0 3,029 0,09238 Repeatability ,3 Total

17 Gage R&R %Contribution StdDev Study Var %Study Var Source VarComp (of VarComp) (SD) (5,15*SD) (%SV) Total Gage R&R 151,3 4,13 12, ,341 20,32 Repeatability 137,3 3,75 11, ,353 19,36 Reproducibility 13,9 0,38 3, ,224 6,17 operatör 13,9 0,38 3, ,224 6,17 Part-To-Part 3513,9 95,87 59, ,282 97,91 Total Variation 3665,2 100,00 60, , ,00 Number of Distinct Categories = 7

18 Gage R&R (ANOVA) for yogunluk Gage name: Date of study: Reported by: Tolerance: Misc: Components of Variation By parça Percent %Contribution %Study Var Sample Range 0 Gage R&R Repeat Reprod Part-to-Part R Chart by operatör 70 mesut nedim UCL=38,06 R=11,65 LCL= parça By operatör Sample Mean Xbar Chart by operatör mesut nedim UCL=1695 Mean=1673 LCL=1651 Average operatör parça mesut nedim operatör*parça Interaction operatör mesut nedim

19 Birinci grafikte (Components of Variation) da Gage R&R = %20.32 olarak bulunmuştur. <%30 olduğu için yoğunluk ölçüm sistemi kabul edilebilir yeterliliktedir. Altıncı grafik (operatör*parça interaction) operatör ile parçaların etkileşimini göstermektedir. 2. parçada birinci ve ikinci operatör ölçüm ortalamaları arasında fark vardır. Ancak bu fark, ölçüm sisteminin analizinin yeterli bulunmasını etkilememiştir. İkinci grafik (R chart by operatör), operatörün iki ölçümü arasındaki farkı göstermektedir. Birinci operatörün 4. parça ölçümünde iki tekrarı arasındaki fark kabul edilebilir limitlerin üzerinde çıkmıştır. Ancak genel olarak yoğunluk için ölçüm sistemi yeterli görülmektedir. Üçüncü grafik (Xbar Chart by operatör), operatörlerin aynı parçayı iki kez ölçümlerinin ortalamalarını göstermektedir. İki operatör için de sırasıyla gösterilmiştir. Dördüncü grafik (By parça), herbir parça için alınan 4 ölçümüm dağılımlarını göstermektedir. 2. ve 4. parçaların öiçümleri diğer parçalara göre daha dağınıktır. Beşinci grafik (By operatör), operatörlerin toplamda yaptıkları 20 ölçümün ortalamalarını ve dağılımlarını vermektedir.

20

21 Yer Karosu, Renk-a Ölçümleri Analiz Sonuçları Renk a deðeri Gage name: Date of study: Reported by: Tolerance: Misc: MÝNOLTA Banu Doðan Sample Mean Xbar Chart by Operator ERDOGAN SIBEL 3.0SL= X= SL= Average Part ID 1 Operator*Part Interaction Operator ERDOGAN SIBEL Sample Range R Chart by Operator ERDOGAN SIBEL 3.0SL= R= SL= Oper IDERDOGAN By Operator SIBEL Percent Components of Variation Gage R&R Repeat Reprod Part-to-Part %Total Var %Study Var Part ID 1 2 By Part 3 4 5

22 Teşekkürler

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL

İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI. Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL İSTATİSTİKİ PROSES KONTROL UYGULAMALARI İÇİN BİR SİSTEM TASARIMI Burçin M. DURMAN, Yrd.Doç.Dr. Fatma PAKDİL Başkent Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 06530, Bağlıca, Ankara

Detaylı

Altı Sigma ve Arçelik teki Uygulamalar

Altı Sigma ve Arçelik teki Uygulamalar Altı Sigma ve Arçelik teki Uygulamalar İhsan Güler Altı Sigma Lideri, ARÇELİK A.Ş 09 Mayıs 2008 Altı Sigma... Metodoloji Verilere Dayanan Sistematik Dil Birliği Özü Değişkenliği Azaltmak Stratejilerin

Detaylı

NİCELİKSEL KONTROL GRAFİKLERİ

NİCELİKSEL KONTROL GRAFİKLERİ NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça

Detaylı

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI

ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI 05 ART CRAFT SOFRA CAMI ÜRETİM İŞLETMESİNDE ÖLÇÜM SİSTEM ANALİZİ UYGULAMASI Uğur KAVİ Sermin ELEVLİ ÖZET Kalite Güvence Sistemi içerisinde kalitenin iyileştirilmesi, verimliliğin arttırılması ve maliyetlerin

Detaylı

İKİ ÖLÇÜM EKİPMANININ HASSASİYETLERİNİN KARŞILAŞTIRILMASINDA GRUBBS TİP TAHMİNLEYİCİLERİN KULLANILMASI ÖZET

İKİ ÖLÇÜM EKİPMANININ HASSASİYETLERİNİN KARŞILAŞTIRILMASINDA GRUBBS TİP TAHMİNLEYİCİLERİN KULLANILMASI ÖZET D.E.Ü.İ.İ.B.F.Dergisi Cilt:4, Sayı:I, Yıl:999, ss: İKİ ÖLÇÜM EKİPMANININ HASSASİYETLERİNİN KARŞILAŞTIRILMASINDA GRUBBS TİP TAHMİNLEYİCİLERİN KULLANILMASI Levent ŞENYAY (*) Hakan SEMERCİ (**) (**) ÖZET

Detaylı

NİTELİKSEL KONTROL GRAFİKLERİ

NİTELİKSEL KONTROL GRAFİKLERİ NİTELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Ölçülemeyen ancak hatalı / hatasız, geçer / geçmez, tekstil sektöründe leke sayısı, dokuma kaçağı vb nin analiz edilmesi için oluşturulan kontrol grafikleridir.

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ

MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ MEYVE SUYU ÜRETİMİNDE SÜREÇ KARARLILIĞI VE YETERLİLİK ANALİZİ Evren DİREN Serkan ATAK Çiğdem CİHANGİR Murat Caner TESTİK ÖZET Kusurları ve israfı önleyerek müşteri memnuniyetini ve karlılığı arttırmayı

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği Erciyes Dağı. Rakım??? 3916 m?????? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği DOÇ. DR. CEVAT YAZICI ERCİYES ÜNİVERSİTESİ TIP FAKÜLTESİ BİYOKİMYA A. D. SUNUM PLANI Laboratuvar branşlarının işlevi ve değişimler

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İSTATİSTİKSEL SÜREÇ KONTROLÜNE GİRİŞ Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler

Detaylı

Mikrobiyolojide Ölçüm Belirsizliği

Mikrobiyolojide Ölçüm Belirsizliği Mikrobiyolojide Ölçüm Belirsizliği Doç. Dr. Hilal B. HALKMAN Türkiye Atom Enerjisi Kurumu Türkiye 11. Gıda Kongresi 10-12 Ekim 2012, Antakya/ Hatay Tanımı Çok iyi bilindiği şekli ile hiçbir ölçüm mükemmel

Detaylı

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA ÖLÇÜM VARYASYNUNU BL RLMK Ç N B R ÇALI MA Bahar SNNAR LU Marmara Üniversitesi Özlem YURTSVR Marmara Üniversitesi ÖZT lerin istenilen kalite özelliklerine uygunlu unu kontrol etmek için üretim hatlar ndan

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ

BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ 1 BİR KALİTE KARAKTERİSTİĞİNİN DENEY TASARIMI İLE İYİLEŞTİRİLMESİ Şafak KIRIŞ, A.Sermet ANAGÜN, Nihat YÜZÜGÜLLÜ Eskişehir Osmangazi Üniversitesi, Endüstri Mühendisliği Bölümü, Eskişehir skiris@ogu.edu.tr,

Detaylı

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK

FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK FAKTÖR ANALİZİ VAHİDE NİLAY KIRTAK Çok Değişkenli İstatistikler Faktör Analizi Faktör Analizinin Amacı: Birbirleriyle ilişkili p tane değişkeni bir araya getirerek az sayıda ilişkisiz ve kavramsal olarak

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak.

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. İki İlişkili Örneklem için t-testi Kazanımlar 1 2 3 4 Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. Tekrarlı ölçümler t istatistiğini kullanarak 2 uygulamanın

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

ULUSAL VE ULUSLAR ARASI ÇOKLU VE ĐKĐLĐ KARŞILAŞTIRMA KURALLARI (PROTOKOL VE DEĞERLENDĐRME)

ULUSAL VE ULUSLAR ARASI ÇOKLU VE ĐKĐLĐ KARŞILAŞTIRMA KURALLARI (PROTOKOL VE DEĞERLENDĐRME) ULUSAL VE ULUSLAR ARASI ÇOKLU VE ĐKĐLĐ KARŞILAŞTIRMA KURALLARI (PROTOKOL VE DEĞERLENDĐRME) Dr. Vahit CIFTCI 16.04.00 Akışkan Besleme, Kontrol ve Debi Ölçümleri Metrolojisi Paydaşlar Toplantısı - GEBZE

Detaylı

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL

BASİT PROBLEM ÇÖZME TEKNİKLERİ. Doç. Dr. Nihal ERGİNEL BASİT PROBLEM ÇÖZME TEKNİKLERİ Doç. Dr. Nihal ERGİNEL Problemin ve nedenlerinin araştırılması, problemin doğru tanımlanması en önemli adımdır. Eğer problem doğru tanımlanmaz ise, doğru çözümlere ulaşılamaz.

Detaylı

İSTATİSTİK II MINITAB

İSTATİSTİK II MINITAB İSTATİSTİK II MINITAB 8.5. Veriler k DENEY TASARIMI Treatment Design Factor Combinations A B C Surface Rougness () - - - 9 7 a - - b - - 9 ab - 5 c - - ac - bc - 8 abc 6 Veri Giriş Sayfasının Oluşturulması

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

ALTI SİGMA KÜÇÜK SÖZLÜĞÜ

ALTI SİGMA KÜÇÜK SÖZLÜĞÜ Alet Doğrusallığı (Gage Linearity) ALTI SİGMA KÜÇÜK SÖZLÜĞÜ Beklenen işlem aralığında değerlendirildiğinde, aletin kesinliğindeki değişkenliğin ölçüsü. Alet Kararlılığı(Gage Stability) Bir alet aynı master

Detaylı

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü

6 SIGMA FELSEFESİ. Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 6 SIGMA FELSEFESİ 6 Doç. Dr. Nihal ERGİNEL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü Sigma seviyesi, süreçlerin yeterliliği ifade eden bir ölçüttür. Süreçlerin sigma seviyelerinin artması demek,

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY Monthly Magnetic Bulletin May 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from İznik

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

Teşekkür. BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

Teşekkür. BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY Monthly Magnetic Bulletin October 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from

Detaylı

ş ç ö ç ç ş ş ö ş ş ç ö ö ş ç ç ş ö ö ö ş ş ş ş ş ş ş ö ö ç ç ç ş ş ö ş ö ö ş ö ö ö ş ö ş Ö Ü Ç ö ö Ğ ş ş ö Ö ö ç Ğ ş ş ö Ö ş ş şş ö ş ç ç ö ö ç ş ç ç ç Ö ç ç Ö ç ç ş ş Ö ç ö ş Ö ş ç ç ö ş ö ö ş ö ç ç

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri)

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

ELE 201L DEVRE ANALİZİ LABORATUVARI

ELE 201L DEVRE ANALİZİ LABORATUVARI ELE 201L DEVRE ANALİZİ LABORATUVARI Deney 1 Temel Elektronik Ölçümler İMZA KAĞIDI (Bu sayfa laboratuvarın sonunda asistanlara teslim edilmelidir) Ön-Çalışma Lab Saatin Başında Teslim Edildi BU HAFTA İÇİN

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SOSYAL BİLİMLERDE İSTATİSTİK Ders No : 000100 Teorik : Pratik : 0 Kredi : ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ. Ayhan Çakır 1250D91213

T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ, İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ. Ayhan Çakır 1250D91213 T.C. İSTANBUL TİCARET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI İŞLETME DOKTORA PROGRAMI FAKTÖR ANALİZİ Ayhan Çakır 0D9 Danışman: Prof. Dr. Hüner Şencan İstanbul Aralık 04 İÇİNDEKİLER

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Nilüfer İlçesi ndeki Klasik Hava Kirletici Ölçümlerinin Değerlendirilmesi Raporu

Nilüfer İlçesi ndeki Klasik Hava Kirletici Ölçümlerinin Değerlendirilmesi Raporu Nilüfer İlçesi ndeki Klasik Hava Kirletici Ölçümlerinin Değerlendirilmesi Raporu (Periyot: 06-12 Haziran 2016) Prof. Dr. Yücel TAŞDEMİR 1 Özet Nilüfer Belediyesi nin BEBKA destekli projesi kapsamında Nilüfer

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Daha çok değil, daha akıllı çalışmak

Daha çok değil, daha akıllı çalışmak Daha çok değil, daha akıllı çalışmak YALIN 6 SIGMA NIN ANAHTARI YALIN ALTI SİGMA Müşterileri Memnun Etmek Süreçleri İyileştirmek Kalite Hız EKİP ÇALIŞMASI Varyasyon ve Hatalar Süreç Akışı YALIN 6 SIGMA

Detaylı

Araziye Çıkmadan Önce Mutlaka Bizi Arayınız!

Araziye Çıkmadan Önce Mutlaka Bizi Arayınız! Monthly Magnetic Bulletin March 2014 z BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeofizik/default.htm Magnetic Results

Detaylı

Kobra 3 ile Ohm Yasası

Kobra 3 ile Ohm Yasası Kobra 3 ile Ohm Yasası LEP İlgili konular Ohm yasası, Özdirenz, Kontakt Direnç, İletkenlik, Güç ve İş Prensip Voltaj ile akım arasındaki ilişki farklı rezistörler için ölçülür. Direnç akımla ilglili olan

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Çıkarsama, Tahmin, Hipotez Testi

Çıkarsama, Tahmin, Hipotez Testi İSTATİSTİK II: Çıkarsama, Tahmin, Hipotez Testi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü 23 Eylül 2012 Ekonometri: İstatistiksel Çıkarsama - H. Taştan 1 İstatistik Biliminin Uğraşı

Detaylı

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır.

Altı Sigma Nedir? Uygulayan şirketlere çok belirgin finansal kazançlar sağlamıştır. ALTI SİGMA NEDİR? Altı Sigma Nedir? 1980 lerin ortasında Motorola tarafından, Japon kalite fikirleri ve kontrol sistemlerinin süreçlerde uygulanması için geliştirilmiştir. Mevcut problemleri çözmek, altı

Detaylı

Epi Info Kullanımı AMACI: Epi Info Programı ile veri tabanı hazırlayabilme ve veri girişi yapabilme becerisi kazanmak ÖĞRENİM HEDEFLERİ Epi Info bileşenlerini tanımlayabilmek Epi Info Make View programında

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

OHM KANUNU DĠRENÇLERĠN BAĞLANMASI

OHM KANUNU DĠRENÇLERĠN BAĞLANMASI OHM KANUNU DĠRENÇLERĠN BAĞLANMASI 2.1 Objectives: Ohm Kanunu: Farklı direnç değerleri için, dirence uygulanan gerilime göre direnç üzerinden akan akımın ölçülmesi. Dirençlerin Seri Bağlanması: Seri bağlı

Detaylı