altında ilerde ele alınacaktır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "altında ilerde ele alınacaktır."

Transkript

1 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini tahmin etmekte kullanabileceğimiz tahmin ediciler türetmemizi sağlayan genel tahmin yöntemleri nelerdir? Momentler Yöntemi (Method of Moments) Maksimum Olabilirlik Yöntemi (Method of Maximum Likelihood) En Küçük Kareler (Least Squares) Bu derste sadece Momentler Yöntemi ve Maksimum Olabilirlik Yöntemlerini inceleyeceğiz. En Küçük Kareler yöntemi Regresyon başlığı altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 2 MOMENTLER YÖNTEMİ (METHOD of MOMENTS) Momentler yöntemi en eski tahmin yöntemlerinden biridir. Anakütleye ilişkin dağılımsal varsayımlar altında, populasyon momentlerinin örneklem momentlerine eşitlenerek ortaya çıkan bilinmeyen denklem sisteminin populasyon parametreleri için çözümüne dayanır. Elimizde k tane bilinmeyen populasyon parametresi olsun. Bunları θ 1,θ 1,...,θ k ile gösterelim. Bu parametrelerin Momentler Yöntemi tahmin edicileri aşağıdaki sistemin çözümüyle bulunur: E(X) = 1 X i n E(X 2 ) = 1 n. =. X 2 i E(X k ) = 1 n Burada populasyon momentlerinin bilinmeyen parametrelerin bir fonksiyonu X k i

2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 3 olduğunu unutmayın. Bu populasyon momentlerini örneklem momentlerine eşitleyerek k bilinmeyenli k denklem elde ettik. Bunun çözümü bize Momentler Yöntemi Tahmin Edicilerini verir. ÖRNEK: X 1,X 2,...,X n Binom(1,p) dağılımından çekilmiş rassal bir örneklem olsun. p nin momentler yöntemi tahmin edicisini bulun. Burada bilinmeyen populasyon parametresi bir tanedir. Öyleyse momentler yöntemi tahmin edicisi eşitliğinden hareketle olur. E(X) = p = X ˆp mom = X YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 4 MOMENTLER YÖNTEMİ k Populasyon Momentleri Örneklem Momentleri 1 µ 1 = E(X) ˆµ 1 = 1 n n X i 2 µ 2 = E(X 2 ) ˆµ 2 = 1 n n X2 i 3 µ 3 = E(X 3 ) ˆµ 3 = 1 n n X3 i 4 µ 4 = E(X 4 ) ˆµ 4 = 1 n n X4 i k µ k = E(X k ) ˆµ k = 1 n n Xk i

3 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 5 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: N(µ,σ 2 ) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle µ ve σ 2 parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek Buradan da E(X) = µ = X E(X 2 ) = µ 2 + σ 2 = 1 n X 2 i bulunur. ˆµ mom = X ˆσ mom 2 = 1 n (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 6 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: Uniform(α,β) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle α ve β parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek E(X) = E(X 2 ) = İkinci eşitlikten hareketle (α β) 2 12 α + β = X 2 (α β) = 1 n ( α + β 2 ) 2 = 1 n (X i X) 2 = ˆσ 2 Buradan aşağıdaki bilinmeyen denklem sistemi elde edilir: X 2 i α + β = 2X (α β) 2 = 12ˆσ 2 = β α = 2 3ˆσ

4 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 7 Bu denklem sistemini çözersek momentler yöntemi tahmin edicileri ˆα mom = X 3ˆσ ˆβ mom = X + 3ˆσ olarak bulunur. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 8 MAKSİMUM OLABİLİRLİK TAHMİN YÖNTEMİ (MAXIMUM LIKELIHOOD ESTIMATION) İstatistik ve ekonometride en sık kullanılan nokta tahmin yöntemlerinden biridir. Anakütleyi betimleyen olasılık yoğunluk fonksiyonunu (ya da olasılık kütle fonksiyonunu, eğer r.d. kesikli ise) f(x;θ) ile gösterelim. Bu anakütleden çekilmiş n gözlemli r.ö. X 1,X 2,...,X n, bunun belli bir gerçekleşmesi ise x 1,x 2,...,x n olsun. Maksimum Olabilirlik tahmin yöntemi (kısaca MLE) belli bir örneklem değerlerinin gerçekleşme olabilirliğini en yüksek yapan anakütle parametrelerini bulmaya çalışır. Elimizde bir rassal örneklem olduğundan ve bunların çekildiği anakütlenin bilindiği (oyf biliniyor) varsayıldığından, bağımsızlık özelliğinden hareketle ortak olasılık yoğunluk fonksiyonu f(x 1,x 2,...,x n ;θ) = f 1 (x 1 ;θ) f 2 (x 2 ;θ),..., f n (x n ;θ) = f(x i ;θ), i = 1,2,...,n

5 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 9 olarak yazılabilir. Burada X 1 = x 1,X 2 = x 2,...,X n = x n olduğuna, örneklem yinelense başka gözlem değerleri elde edileceğine dikkat edin. Olabilirlik fonksiyonu ortak olasılık fonksiyonuna verilen başka bir isimdir. Tek fark şudur ki ortak olasılık fonksiyonunda θ nın bilindiği X lerin bilinmediği, olabilirlik fonksiyonunda ise X lerin bilindiği, bir başka deyişle belli bir gerçekleşmesinin gözlemlenmiş olduğu, θ nın ise bilinmediği örtük olarak varsayılır. Rassal örneklemin belli bir gerçekleşmesini x = {x 1,x 2,...,x n } ile gösterelim. Olabilirlik fonksiyonu x verilmişken θ yı bilinmeyen olarak ifade eden bir fonksiyondur: L(θ x 1,x 2,...,x n ) = L(θ x) = f(x i ;θ), i = 1,2,...,n YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 10 Maksimum Olabilirlik tahmin edicileri olabilirlik fonksiyonunu en yükseğe çıkaran tahmin ediciler olarak tanımlanır. Anakütlenin dağılımının ne olduğu biliniyorsa bu aşağıdaki matematiksel probleme dönüşür: MLE t.e. ˆθ mle dersek: max L(θ x) = θ f(x i ;θ) ˆθ mle = arg max L(θ x) = θ f(x i ;θ) Bu maksimizasyon probleminin çözümünde kolaylık sağlaması için, ortak olasılık fonksiyonunun e tabanına göre logaritması (ln, doğal log) kullanılabilir: ( n ) max ln L(θ x) = ln f(x i ;θ) = ln(f(x i ;θ)) θ

6 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 11 θ nın MLE t.e.: ˆθ mle = arg max lnl(θ x) θ ya da ˆθ mle = arg max θ ln(f(x i ;θ)) Bu maksimizasyon probleminin çözümü için gerekli ve yeterli koşullar: θ lnl(θ x) = 0, lnl(θ x) < 0 θ2 θ k bilinmeyen parametreden oluşuyorsa logolabilirlik fonksiyonunun bu parametrelere göre birinci türevleri sıfır (gerekli koşul), ikinci türev matrisi (Hessian) negatif belirli olmalı (yeterli koşul). YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 12 Başarı olasılığının p (0 < p < 1) olduğu Bernoulli dağılımından 10 r.d. çekilmiş olsun: X 1,X 2,...,X 10. Bunların gözlemlenen değerlerine x 1,x 2,...,x 10 diyelim. Toplam başarı sayısını y = x 1 + x x 10 ile gösterelim. Olabilirlik fonksiyonu bilinmeyen populasyon parametresi p nin bir fonksiyonudur: L(p x 1,x 2,...,x 10 ) = p y (1 p) n y Bu 10 denemenin 6 sının başarı ile sonuçlandığını varsayalım, yani y = x 1 + x x 10 = 6. Bu durumda olabilirlik fonksiyonu, başka bir deyişle, 10 bağımsız Binom denemesinde 6 başarı gözlemleme olasılığı L(p x 1,x 2,...,x 10 ) = p 6 (1 p) 4 olur. 0.1, 0.2,..., 0.9 aralığında olabilirlik fonksiyonu değerleri şöyledir:

7 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 13 p L(p x) = p 6 (1 p) Olabilirlik fonksiyonunun y/10 = 0.6 değerinde en yüksek olduğuna dikkat edin. Bir sonraki şekilde p için daha sık grid değerleri kullanılarak L(.) fonksiyonunun grafiği gösterilmiştir. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 14 x L(p): Olabilirlik Fonksiyonu p

8 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 15 ÖRNEK: n bağımsız Bernoulli(p) denemesinde örneklem gerçekleşme değerlerine x = (x 1,x 2,...,x n ) diyelim. Bu örneklem değerlerinden hareketle bilinmeyen parametre p nin MLE t.e. bulun. Olasılık fonksiyonu: Olabilirlik fonksiyonu f(x i ;p) = p x i (1 p) 1 x i, x i = 1,0, i = 1,2,...,n L(p x) = f(x i ;p) = p x i (1 p) 1 x i n denemede toplam başarı sayısına y dersek (y = x 1 + x x n ) olabilirlik fonksiyonu L(p x) = p x i (1 p) 1 x i = p y (1 p) n y, y = x 1 + x x n Olabilirlik fonksiyonunun doğal logaritmasını alırsak: ln L(p x) = y ln(p) + (n y) ln(1 p) YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 16 Buradan p ye göre 1.türev: 2.türev p ln L(p x) = y p n y 1 p = 0, = p = y n p 2 lnl(p x) = y p 2 Öyleyse p nin MLE tahmin edicisi n y < 0, her p değeri için (1 p) 2 ˆp mle = y n = X

9 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 17 ÖRNEK: x = (x 1,x 2,...,x n ), Poisson dağılımına uyan bir anakütleden çekilmiş n gözlemli rassal örneklem değerlerini göstersin. Bu örneklem değerlerinden hareketle bilinmeyen parametre λ nın MLE t.e. bulun. X Poisson(λ) olduğuna göre olasılık fonksiyonu: f(x i ;λ) = e λ λ x i x i!, x i = 1,2,3,..., i = 1,2,...,n Log-olabilirlik fonksiyonu: [ n ] [ ] e λ λ x i n lnl(λ x) = ln = ln e nλ λ x i x i! x i! [ n ] = nλ + ln(λ) x i ln x i! [ n ] = nλ + nln(λ) x ln x i! YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 18 ÖRNEK (dvm): Poisson(λ) dağılımdan çekilen n gözlemli rassal örneklem değerleri için log-olabilirlik fonksiyonu: [ n ] ln L(λ x) = nλ + nln(λ) x ln x i! λ ya göre 1. türev: 2. türev: Öyleyse λ nın MLE t.e.: λ lnl(λ x) = n + n x = 0, λ lnl(λ x) = n x λ2 λ 2 < 0, ˆλ mle = X = λ = x her λ değeri için

10 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 19 L(λ) Poisson(λ) icin Log olabilirlik fonksiyonu λ YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 20 ÖRNEK: x = (x 1,x 2,...,x n ), ortalaması µ, varyansı σ 2 olan Normal dağılan bir anakütleden çekilmiş rassal örneklem değerleri olsun. Populasyon parametreleri µ ve σ 2 nin MLE tahmin edicilerini bulun. X N(µ,σ 2 ) olduğundan olasılık yoğunluk fonksiyonu: ( f(x i ;µ,σ 2 1 ) = exp 1 ) 2πσ 2 2σ 2 (x i µ) 2, < x i <, i = 1,2,...,n Olabilirlik fonksiyonu: L(µ,σ 2 x) = = f(x i ;µ,σ 2 ) = ( 1 2πσ 2 ( 1 exp 1 ) 2πσ 2 2σ 2 (x i µ) 2 ( 1 ) 2σ 2 (x i µ) 2 ) n n exp = (2πσ 2 ) n/2 exp ( 1 2σ 2 ) (x i µ) 2

11 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 21 ÖRNEK: Log-olabilirlik fonksiyonu: 1. türevler: lnl(µ,σ 2 x) = n 2 ln(2π) n 2 ln(σ2 ) 1 2σ 2 µ lnl(µ,σ2 x) = 1 σ 2 (x i µ) = 0 σ 2 lnl(µ,σ2 x) = n 2σ σ 4 Bu sistemin eşanlı çözümünden elde edilir. ˆµ mle = X, ˆσ 2 mle = 1 n (x i µ) 2 (x i µ) 2 = 0 (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 22 ÖRNEK: 2. türevler: µ 2 lnl(µ,σ2 x) = n σ 2 µ σ 2 lnl(µ,σ2 x) = 1 σ 4 (σ 2 ) 2 lnl(µ,σ2 x) = σ 2 µ lnl(µ,σ2 x) = 1 σ 4 (x i µ) n 2σ 4 1 σ 6 (x i µ) 2 (x i µ) Hessian matrisini MLE çözümlerinde değerlersek H ˆµmle,ˆσ mle 2 = µ lnl(µ,σ 2 x) 2 2 µ σ lnl(µ,σ 2 x) 2 = σ 2 µ lnl(µ,σ2 x) 2 (σ 2 ) lnl(µ,σ 2 x) 2 n ˆσ 2 mle 0 0 n 2ˆσ 4 mle Bu matris negatif belirli olduğundan 2. derece koşulları da sağlanmış olur.

12 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 23 MAKSİMUM OLABİlİRLİK TAHMİN YÖNTEMİNİN ÖZELLİKLERİ: Değişmezlik (Invariance): ˆθ mle, θ nın MLE tahmin edicisi olsun. θ nın γ = g(θ) gibi bir fonksiyonu tanımlanmış olsun. Değişmezlik özelliğine göre γ nın MLE t.e.si ˆγ mle = g(ˆθ mle ) olur. Tutarlılık: MLE tahmin edicisi ˆθ mle tutarlıdır. Asimptotik Normallik: θ nın MLE tahmin edicisi ˆθ mle asimptotik normaldir: ( ) n, n(ˆθmle θ) N 0,σ 2ˆθ burada σ 2 θ = 1 I(θ), I(θ) = E θ [ ] 2 lnl(θ x) θ MLE tahmin edicisi doğru parametre değeri θ çevresinde yaklaşık olarak normal dağılır. Yukarıdaki varyans ifadesindeki I(θ) terimi Fisher information olarak bilinir. Bu değer ne kadar büyükse (ne kadar çok bilgi varsa) varyans o kadar küçük olur.

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Çıkarsama, Tahmin, Hipotez Testi

Çıkarsama, Tahmin, Hipotez Testi İSTATİSTİK II: Çıkarsama, Tahmin, Hipotez Testi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü 23 Eylül 2012 Ekonometri: İstatistiksel Çıkarsama - H. Taştan 1 İstatistik Biliminin Uğraşı

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

İstatistik I Ders Notları

İstatistik I Ders Notları İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) İki Değişkenli Bağlanım Modeli SEK Tahmincilerinin Türetilmesi Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi İSTATİSTİKSEL ANALİZ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (*) Yüksek Lisans( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün

Detaylı

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Olasılık ve Dağılım Teorisi Kavramlarının Gözden Geçirilmesi

Olasılık ve Dağılım Teorisi Kavramlarının Gözden Geçirilmesi İSTATİSTİK I: Olasılık ve Dağılım Teorisi Kavramlarının Gözden Geçirilmesi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü 22 Eylül 2012 Ekonometri: Olasılık ve Dağılım - H. Taştan 1 İstatistik

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t)

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t) TÜRKİYE NİN NÜFUSU Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı Nüfus sayımının yapılmadığı son on yıldan bu yana nüfus ve buna bağlı demografik verilerde çelişkili rakamların

Detaylı

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I Geçen Ders Sürekli Dağılımlar Uniform dağılımlar Üssel dağılım ve hafızasızlık özelliği (memoryless property) Gamma Dağılımı

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örünü Tanıma 4. Paramerik Sınıflandırma Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Paramerik

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM)

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) 6. Ders Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) Y = X β + ε Lineer Modeli pek çok özel hallere sahiptir. Bunlar, ε nun dağılımına (bağımlı değişkenin dağılımına), Cov( ε ) kovaryans

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı