altında ilerde ele alınacaktır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "altında ilerde ele alınacaktır."

Transkript

1 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini tahmin etmekte kullanabileceğimiz tahmin ediciler türetmemizi sağlayan genel tahmin yöntemleri nelerdir? Momentler Yöntemi (Method of Moments) Maksimum Olabilirlik Yöntemi (Method of Maximum Likelihood) En Küçük Kareler (Least Squares) Bu derste sadece Momentler Yöntemi ve Maksimum Olabilirlik Yöntemlerini inceleyeceğiz. En Küçük Kareler yöntemi Regresyon başlığı altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 2 MOMENTLER YÖNTEMİ (METHOD of MOMENTS) Momentler yöntemi en eski tahmin yöntemlerinden biridir. Anakütleye ilişkin dağılımsal varsayımlar altında, populasyon momentlerinin örneklem momentlerine eşitlenerek ortaya çıkan bilinmeyen denklem sisteminin populasyon parametreleri için çözümüne dayanır. Elimizde k tane bilinmeyen populasyon parametresi olsun. Bunları θ 1,θ 1,...,θ k ile gösterelim. Bu parametrelerin Momentler Yöntemi tahmin edicileri aşağıdaki sistemin çözümüyle bulunur: E(X) = 1 X i n E(X 2 ) = 1 n. =. X 2 i E(X k ) = 1 n Burada populasyon momentlerinin bilinmeyen parametrelerin bir fonksiyonu X k i

2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 3 olduğunu unutmayın. Bu populasyon momentlerini örneklem momentlerine eşitleyerek k bilinmeyenli k denklem elde ettik. Bunun çözümü bize Momentler Yöntemi Tahmin Edicilerini verir. ÖRNEK: X 1,X 2,...,X n Binom(1,p) dağılımından çekilmiş rassal bir örneklem olsun. p nin momentler yöntemi tahmin edicisini bulun. Burada bilinmeyen populasyon parametresi bir tanedir. Öyleyse momentler yöntemi tahmin edicisi eşitliğinden hareketle olur. E(X) = p = X ˆp mom = X YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 4 MOMENTLER YÖNTEMİ k Populasyon Momentleri Örneklem Momentleri 1 µ 1 = E(X) ˆµ 1 = 1 n n X i 2 µ 2 = E(X 2 ) ˆµ 2 = 1 n n X2 i 3 µ 3 = E(X 3 ) ˆµ 3 = 1 n n X3 i 4 µ 4 = E(X 4 ) ˆµ 4 = 1 n n X4 i k µ k = E(X k ) ˆµ k = 1 n n Xk i

3 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 5 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: N(µ,σ 2 ) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle µ ve σ 2 parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek Buradan da E(X) = µ = X E(X 2 ) = µ 2 + σ 2 = 1 n X 2 i bulunur. ˆµ mom = X ˆσ mom 2 = 1 n (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 6 MOMENTLER YÖNTEMİ (dvm) ÖRNEK: Uniform(α,β) anakütlesinden çekilmiş n boyutlu rassal bir örneklemden hareketle α ve β parametrelerinin MOM tahmin edicilerini bulun. Burada bilinmeyen iki parametre olduğundan ilk iki populasyon momentini örneklem momentlerine eşitlersek E(X) = E(X 2 ) = İkinci eşitlikten hareketle (α β) 2 12 α + β = X 2 (α β) = 1 n ( α + β 2 ) 2 = 1 n (X i X) 2 = ˆσ 2 Buradan aşağıdaki bilinmeyen denklem sistemi elde edilir: X 2 i α + β = 2X (α β) 2 = 12ˆσ 2 = β α = 2 3ˆσ

4 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 7 Bu denklem sistemini çözersek momentler yöntemi tahmin edicileri ˆα mom = X 3ˆσ ˆβ mom = X + 3ˆσ olarak bulunur. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 8 MAKSİMUM OLABİLİRLİK TAHMİN YÖNTEMİ (MAXIMUM LIKELIHOOD ESTIMATION) İstatistik ve ekonometride en sık kullanılan nokta tahmin yöntemlerinden biridir. Anakütleyi betimleyen olasılık yoğunluk fonksiyonunu (ya da olasılık kütle fonksiyonunu, eğer r.d. kesikli ise) f(x;θ) ile gösterelim. Bu anakütleden çekilmiş n gözlemli r.ö. X 1,X 2,...,X n, bunun belli bir gerçekleşmesi ise x 1,x 2,...,x n olsun. Maksimum Olabilirlik tahmin yöntemi (kısaca MLE) belli bir örneklem değerlerinin gerçekleşme olabilirliğini en yüksek yapan anakütle parametrelerini bulmaya çalışır. Elimizde bir rassal örneklem olduğundan ve bunların çekildiği anakütlenin bilindiği (oyf biliniyor) varsayıldığından, bağımsızlık özelliğinden hareketle ortak olasılık yoğunluk fonksiyonu f(x 1,x 2,...,x n ;θ) = f 1 (x 1 ;θ) f 2 (x 2 ;θ),..., f n (x n ;θ) = f(x i ;θ), i = 1,2,...,n

5 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 9 olarak yazılabilir. Burada X 1 = x 1,X 2 = x 2,...,X n = x n olduğuna, örneklem yinelense başka gözlem değerleri elde edileceğine dikkat edin. Olabilirlik fonksiyonu ortak olasılık fonksiyonuna verilen başka bir isimdir. Tek fark şudur ki ortak olasılık fonksiyonunda θ nın bilindiği X lerin bilinmediği, olabilirlik fonksiyonunda ise X lerin bilindiği, bir başka deyişle belli bir gerçekleşmesinin gözlemlenmiş olduğu, θ nın ise bilinmediği örtük olarak varsayılır. Rassal örneklemin belli bir gerçekleşmesini x = {x 1,x 2,...,x n } ile gösterelim. Olabilirlik fonksiyonu x verilmişken θ yı bilinmeyen olarak ifade eden bir fonksiyondur: L(θ x 1,x 2,...,x n ) = L(θ x) = f(x i ;θ), i = 1,2,...,n YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 10 Maksimum Olabilirlik tahmin edicileri olabilirlik fonksiyonunu en yükseğe çıkaran tahmin ediciler olarak tanımlanır. Anakütlenin dağılımının ne olduğu biliniyorsa bu aşağıdaki matematiksel probleme dönüşür: MLE t.e. ˆθ mle dersek: max L(θ x) = θ f(x i ;θ) ˆθ mle = arg max L(θ x) = θ f(x i ;θ) Bu maksimizasyon probleminin çözümünde kolaylık sağlaması için, ortak olasılık fonksiyonunun e tabanına göre logaritması (ln, doğal log) kullanılabilir: ( n ) max ln L(θ x) = ln f(x i ;θ) = ln(f(x i ;θ)) θ

6 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 11 θ nın MLE t.e.: ˆθ mle = arg max lnl(θ x) θ ya da ˆθ mle = arg max θ ln(f(x i ;θ)) Bu maksimizasyon probleminin çözümü için gerekli ve yeterli koşullar: θ lnl(θ x) = 0, lnl(θ x) < 0 θ2 θ k bilinmeyen parametreden oluşuyorsa logolabilirlik fonksiyonunun bu parametrelere göre birinci türevleri sıfır (gerekli koşul), ikinci türev matrisi (Hessian) negatif belirli olmalı (yeterli koşul). YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 12 Başarı olasılığının p (0 < p < 1) olduğu Bernoulli dağılımından 10 r.d. çekilmiş olsun: X 1,X 2,...,X 10. Bunların gözlemlenen değerlerine x 1,x 2,...,x 10 diyelim. Toplam başarı sayısını y = x 1 + x x 10 ile gösterelim. Olabilirlik fonksiyonu bilinmeyen populasyon parametresi p nin bir fonksiyonudur: L(p x 1,x 2,...,x 10 ) = p y (1 p) n y Bu 10 denemenin 6 sının başarı ile sonuçlandığını varsayalım, yani y = x 1 + x x 10 = 6. Bu durumda olabilirlik fonksiyonu, başka bir deyişle, 10 bağımsız Binom denemesinde 6 başarı gözlemleme olasılığı L(p x 1,x 2,...,x 10 ) = p 6 (1 p) 4 olur. 0.1, 0.2,..., 0.9 aralığında olabilirlik fonksiyonu değerleri şöyledir:

7 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 13 p L(p x) = p 6 (1 p) Olabilirlik fonksiyonunun y/10 = 0.6 değerinde en yüksek olduğuna dikkat edin. Bir sonraki şekilde p için daha sık grid değerleri kullanılarak L(.) fonksiyonunun grafiği gösterilmiştir. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 14 x L(p): Olabilirlik Fonksiyonu p

8 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 15 ÖRNEK: n bağımsız Bernoulli(p) denemesinde örneklem gerçekleşme değerlerine x = (x 1,x 2,...,x n ) diyelim. Bu örneklem değerlerinden hareketle bilinmeyen parametre p nin MLE t.e. bulun. Olasılık fonksiyonu: Olabilirlik fonksiyonu f(x i ;p) = p x i (1 p) 1 x i, x i = 1,0, i = 1,2,...,n L(p x) = f(x i ;p) = p x i (1 p) 1 x i n denemede toplam başarı sayısına y dersek (y = x 1 + x x n ) olabilirlik fonksiyonu L(p x) = p x i (1 p) 1 x i = p y (1 p) n y, y = x 1 + x x n Olabilirlik fonksiyonunun doğal logaritmasını alırsak: ln L(p x) = y ln(p) + (n y) ln(1 p) YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 16 Buradan p ye göre 1.türev: 2.türev p ln L(p x) = y p n y 1 p = 0, = p = y n p 2 lnl(p x) = y p 2 Öyleyse p nin MLE tahmin edicisi n y < 0, her p değeri için (1 p) 2 ˆp mle = y n = X

9 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 17 ÖRNEK: x = (x 1,x 2,...,x n ), Poisson dağılımına uyan bir anakütleden çekilmiş n gözlemli rassal örneklem değerlerini göstersin. Bu örneklem değerlerinden hareketle bilinmeyen parametre λ nın MLE t.e. bulun. X Poisson(λ) olduğuna göre olasılık fonksiyonu: f(x i ;λ) = e λ λ x i x i!, x i = 1,2,3,..., i = 1,2,...,n Log-olabilirlik fonksiyonu: [ n ] [ ] e λ λ x i n lnl(λ x) = ln = ln e nλ λ x i x i! x i! [ n ] = nλ + ln(λ) x i ln x i! [ n ] = nλ + nln(λ) x ln x i! YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 18 ÖRNEK (dvm): Poisson(λ) dağılımdan çekilen n gözlemli rassal örneklem değerleri için log-olabilirlik fonksiyonu: [ n ] ln L(λ x) = nλ + nln(λ) x ln x i! λ ya göre 1. türev: 2. türev: Öyleyse λ nın MLE t.e.: λ lnl(λ x) = n + n x = 0, λ lnl(λ x) = n x λ2 λ 2 < 0, ˆλ mle = X = λ = x her λ değeri için

10 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 19 L(λ) Poisson(λ) icin Log olabilirlik fonksiyonu λ YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 20 ÖRNEK: x = (x 1,x 2,...,x n ), ortalaması µ, varyansı σ 2 olan Normal dağılan bir anakütleden çekilmiş rassal örneklem değerleri olsun. Populasyon parametreleri µ ve σ 2 nin MLE tahmin edicilerini bulun. X N(µ,σ 2 ) olduğundan olasılık yoğunluk fonksiyonu: ( f(x i ;µ,σ 2 1 ) = exp 1 ) 2πσ 2 2σ 2 (x i µ) 2, < x i <, i = 1,2,...,n Olabilirlik fonksiyonu: L(µ,σ 2 x) = = f(x i ;µ,σ 2 ) = ( 1 2πσ 2 ( 1 exp 1 ) 2πσ 2 2σ 2 (x i µ) 2 ( 1 ) 2σ 2 (x i µ) 2 ) n n exp = (2πσ 2 ) n/2 exp ( 1 2σ 2 ) (x i µ) 2

11 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 21 ÖRNEK: Log-olabilirlik fonksiyonu: 1. türevler: lnl(µ,σ 2 x) = n 2 ln(2π) n 2 ln(σ2 ) 1 2σ 2 µ lnl(µ,σ2 x) = 1 σ 2 (x i µ) = 0 σ 2 lnl(µ,σ2 x) = n 2σ σ 4 Bu sistemin eşanlı çözümünden elde edilir. ˆµ mle = X, ˆσ 2 mle = 1 n (x i µ) 2 (x i µ) 2 = 0 (X i X) 2 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 22 ÖRNEK: 2. türevler: µ 2 lnl(µ,σ2 x) = n σ 2 µ σ 2 lnl(µ,σ2 x) = 1 σ 4 (σ 2 ) 2 lnl(µ,σ2 x) = σ 2 µ lnl(µ,σ2 x) = 1 σ 4 (x i µ) n 2σ 4 1 σ 6 (x i µ) 2 (x i µ) Hessian matrisini MLE çözümlerinde değerlersek H ˆµmle,ˆσ mle 2 = µ lnl(µ,σ 2 x) 2 2 µ σ lnl(µ,σ 2 x) 2 = σ 2 µ lnl(µ,σ2 x) 2 (σ 2 ) lnl(µ,σ 2 x) 2 n ˆσ 2 mle 0 0 n 2ˆσ 4 mle Bu matris negatif belirli olduğundan 2. derece koşulları da sağlanmış olur.

12 YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 23 MAKSİMUM OLABİlİRLİK TAHMİN YÖNTEMİNİN ÖZELLİKLERİ: Değişmezlik (Invariance): ˆθ mle, θ nın MLE tahmin edicisi olsun. θ nın γ = g(θ) gibi bir fonksiyonu tanımlanmış olsun. Değişmezlik özelliğine göre γ nın MLE t.e.si ˆγ mle = g(ˆθ mle ) olur. Tutarlılık: MLE tahmin edicisi ˆθ mle tutarlıdır. Asimptotik Normallik: θ nın MLE tahmin edicisi ˆθ mle asimptotik normaldir: ( ) n, n(ˆθmle θ) N 0,σ 2ˆθ burada σ 2 θ = 1 I(θ), I(θ) = E θ [ ] 2 lnl(θ x) θ MLE tahmin edicisi doğru parametre değeri θ çevresinde yaklaşık olarak normal dağılır. Yukarıdaki varyans ifadesindeki I(θ) terimi Fisher information olarak bilinir. Bu değer ne kadar büyükse (ne kadar çok bilgi varsa) varyans o kadar küçük olur.

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi İSTATİSTİKSEL ANALİZ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (*) Yüksek Lisans( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM)

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) 6. Ders Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) Y = X β + ε Lineer Modeli pek çok özel hallere sahiptir. Bunlar, ε nun dağılımına (bağımlı değişkenin dağılımına), Cov( ε ) kovaryans

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

YAPISAL EġĠTLĠK MODELLEMESĠNDE ÇOK DEĞĠġKENLĠ NORMALLĠK VARSAYIMI ALTINDA BĠR UYGULAMA

YAPISAL EġĠTLĠK MODELLEMESĠNDE ÇOK DEĞĠġKENLĠ NORMALLĠK VARSAYIMI ALTINDA BĠR UYGULAMA ISSN:306-3 e-journal of New World Sciences Academy 0, Volume: 6, Number: 4, Article Number: 3A004 H. Eray Çelik Sinan Saraçlı PHYSICAL SCIENCES Veysel Yılmaz 3 Received: March 0 Yuzuncu Yıl University

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir.

Örnek Uzay: Bir deneyin tüm olabilir sonuçlarının kümesine Örnek Uzay denir. Genellikle harfi ile gösterilir. BÖLÜM 3. OLASILIK ve OLASILIK DAĞILIMLARI Rasgele Sonuçlu Deney: Sonuçlarının kümesi belli olan, ancak hangi sonucun ortaya çıkacağı önceden söylenemeyen bir işleme Rasgele Sonuçlu Deney veya kısaca Deney

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

BİRİNCİ BÖLÜM SAYILAR

BİRİNCİ BÖLÜM SAYILAR İÇİNDEKİLER BİRİNCİ BÖLÜM SAYILAR 1.1 Tamsayılarda İşlemler... 2 1.1.1 Tek, Çift ve Ardışık Tamsayılar... 5 1.2 Rasyonel Sayılar... 6 1.2.1 Kesirlerin Birbirine Çevrilmesi... 7 1.2.2 Kesirlerin Genişletilmesi

Detaylı

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı:

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı: Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama Giriş ve Projenin Amacı: Bu projenin amacı; matrisler ile diskriminant analizi yaparak, bir düzlem üzerine el ile yazılan bir sayının

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

MAKSİMUM ENTROPİ YÖNTEMİ İLE TÜRKİYE DEKİ COĞRAFİ BÖLGELERİN YILLIK HAVA SICAKLIK DEĞERLERİNİN İNCELENMESİ YÜKSEK LİSANS TEZİ Hatice ÇİÇEK DANIŞMAN

MAKSİMUM ENTROPİ YÖNTEMİ İLE TÜRKİYE DEKİ COĞRAFİ BÖLGELERİN YILLIK HAVA SICAKLIK DEĞERLERİNİN İNCELENMESİ YÜKSEK LİSANS TEZİ Hatice ÇİÇEK DANIŞMAN MAKSİMUM ENTROPİ YÖNTEMİ İLE TÜRKİYE DEKİ COĞRAFİ BÖLGELERİN YILLIK HAVA SICAKLIK DEĞERLERİNİN İNCELENMESİ YÜKSEK LİSANS TEZİ Hatice ÇİÇEK DANIŞMAN Yrd. Doç. Dr. Sinan SARAÇLI İSTATİSTİK Eylül, 2013 AFYON

Detaylı

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 3(1): 73-78, 2013

Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 3(1): 73-78, 2013 Araştırma Makalesi / Research Article Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 3(1): 73-78, 2013 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır University Journal

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için,

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, (i) Āx=0,5 (ii) 2 Āx=0,40 (iii) δ=0,04 (iv) E[L]= -0,2 olduğuna, sürekli, T zamanı

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ĐSTATĐSTĐK. Okan ERYĐĞĐT

ĐSTATĐSTĐK. Okan ERYĐĞĐT ĐSTATĐSTĐK Okan ERYĐĞĐT Araştırmacı, istatistik yöntemlere daha işin başında başvurmalıdır, sonunda değil..! A. Bradford Hill, 1930 ĐSTATĐSTĐĞĐN AMAÇLARI Bilimsel araştırmalarda, araştırmacıya kullanılabilir

Detaylı

W değerini minimum yapmak ve 7 " değişkenli fonksiyonu kurmak için +!, + ", + #,.., + 7 katsayılarının elde edilmesi gerekmektedir.

W değerini minimum yapmak ve 7  değişkenli fonksiyonu kurmak için +!, + , + #,.., + 7 katsayılarının elde edilmesi gerekmektedir. 432 POLİNOMİYAL EN-KÜÇÜK KARELER FONKSİYONU Doğrusal bir fonksiyon kullanılarak verilerin uygun hale getirilmesi yanında, 7 nci dereceden polinom şeklinde fonksiyonlar kullanılarak veriler için uygun fonksiyonlar

Detaylı