MAT223 AYRIK MATEMATİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAT223 AYRIK MATEMATİK"

Transkript

1 MAT3 AYRIK MATEMATİK 4 Ders Doç Dr Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 00 0 Güz Dönemi 3 yüzyılda İtalyan matematikçi Leonardo Fibonacci aşağıdaki soruyu ortaya atmıştır: Leonardo Fibonacci Soru Bir çiftçi tavşan yetiştiriciliği ile uğraşmaktadır Her bir tavşan iki aylık olduğunda bir yavru vermektedir Bu yavrular da aynı şekilde iki aylık olduğunda yine yavru vermektedir Tavşanların hiç ölmediğini düşünür ve erkek tavşanları da göz ardı edersek n ayın sonunda bu çiftçinin kaç tavşanı olacaktır? /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi n nin küçük değerleri için bu soruya cevap vermek kolaydır n Tavşanlar Sayı Aslında tavşanların sayısının herhangi bir ay için nasıl arttığını belirlemek hiç de zor değildir Açıktır ki, bir sonraki ayda doğacak (eklenecek) tavşan sayısı o aydaki en az iki aylık olan tavşanların sayısı kadardır Bir başka ifadeyle, bir sonraki aydaki tavşan sayısını elde etmek için, önceki aydaki tavşanların sayısının eldeki tavşanların sayısına eklenmesi gerekir Böylece her bir aydaki tavşan sayısı, + =, + = 3, 3+ =, +3 = 8, 8+ = 3, elde edilir 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 4/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

2 Yukarıdaki bağıntıyı formüle etmek için n aydaki tavşan sayısını F n ile gösterelim Bu durumda n =,, 3, için Bu sayılara denir F n+ = F n + F n yazabiliriz F =, F =, F 3 =, F 4 = 3, F = olduğunu zaten gördük Yukarıdaki formül ile daha fazlasını da hesaplayabiliriz,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 60, 987, 97, 84, 48, 676, 0946, 77, 867, 46368, 70, 393, 9648, 378, 49, 83040, 34669, 78309, 3478, 70887, 9746, 49303, 4787, , , 0334, 6804, , , , , , 97073, , , 86690, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Eğer alınırsa, F 0 = 0, F = F n+ = F n + F n eşitliği ile birlikte Fibonacci sayıları tek türlü olarak elde edilir Bu nedenle Fibonacci sayılarının tanımı bu şekilde verilebilir Yukarıdaki eşitlik doğrudan F n sayısını vermek yerine, ilk iki Fibonacci sayısı ile başlayıp, önceki iki Fibonacci sayısı yardımıyla her bir Fibonacci sayısını vermektedir Bu şekildeki tanımlamalara yinelemeli (recurrence) tanımlama denir , , , , , , , , , /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 6/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Soru n basamaktan oluşan bir merdiveni her seferinde bir ya da iki basamak çıkmak koşuluyla kaç farklı şekilde çıkabilirsiniz? Yine n nin bazı küçük değerleri için inceleyelim: n Çıkış şekli Çıkış sayısı adım adım + adım, adım 3 adım + adım + adım, adım + adım, 3 adım+adım 4 +++, ++, ++, ++, , +++, +++, 8 +++, +++, ++, ++, ++ 7/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi n basamaklı merdivenin J n farklı şekilde çıkılabildiğini kabul edelim J n+ sayısını J k ( k n) sayılarını kullanarak belirlemeye çalışalım Eğer n + basamaklı merdiveni ilk başta bir adım atarak çıkmaya başlarsak, geriye n basamak kalır ve bu n basamağı J n farklı şekilde çıkabileceğimizi biliyoruz Eğer merdiveni ilk başta iki adım atarak çıkmaya başlarsak, geriye n basamak kalır ve bu n basamağı da J n farklı şekilde çıkabileceğimizi biliyoruz Böylece olası iki durumu da incelemiş olduk O halde J n+ = J n + J n elde edilir Elde edilen bu formül ile Fibonacci sayılarını elde etmek için kullanılan formül aynı Buradan F n = J n diyebilir miyiz? Hayır! = F 3 J 3 = 3 Ancak, J n = F n+ yazabiliriz 8/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

3 Varsayım/Sanı (Conjecture) Soru İlk n Fibonacci sayısının toplamı nedir? 0,,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 60, 987, 0 = = = = = = = = 33 Tahmini olan? 9/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Kanıt F 0 + F + F + + F n = F n+ Kanıtı tümevarım yöntemini kullanarak yapalım: n = 0,,, 3 için eşitliğin doğru olduğunu yukarıdan biliyoruz n için eşitliğin doğru olduğunu kabul edelim Yani, F 0 + F + F + + F n = F n+ olsun Bu durumda eşitliğin n için de doğru olduğunu gösterelim F n+ F 0 + F + F + + F n + F n = (F n+ )+F n = F n+ + F }{{ n = } F n+ O halde tümevarım yöntemi gereği her n doğal sayısı için eşitlik doğru olur 0/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Alıştırma (Alıştırma 49) 8 8 = 64 3 = 6 64 = 6? Bunun Fibonacci sayıları ile ne ilgisi var? Öncelikle biraz hile yaptığımı itiraf edeyim İlk kareden ikinci şekil elde edilemez Şekilde geçen sayılar,8 ve 3 Fibonacci sayılarıdır F =, F 6 = 8ve F 7 = = 3 (F 6 ) = F F 7 Peki F, F 6, F 7 yerine F 6, F 7, F 8 için yazarsak? Alıştırma (Alıştırma 43-d) olduğunu gösteriniz (F 7 ) }{{} 69 = F 6 F 8 }{{} 68 (F n+ ) = F n F n+ +( ) n /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

4 Kanıt Kanıtı yine tümevarım yöntemini kullanarak yapalım: n = 0için(F ) = = F 0 F +( ) 0 = n için eşitliğin doğru olduğunu kabul edelim Yani, (F n+ ) = F n F n+ +( ) n olsun n + için de eşitliğin doğru olduğunu gösterelim Yukarıdaki eşitliğinin her iki tarafına F n+ F n+ eklersek, (F n+ ) + F n+ F n+ = F n F n+ +( ) n + F n+ F n+ n F n+ (F n+ + F n+ ) = F }{{} n+ (F n + F n+ ) +( ) }{{} F n+3 F n+ F n+ F n+3 = (F n+ ) +( ) n (F n+ ) = F n+ F n+3 +( ) n+ Aşağıdaki özdeşliklerin de doğru olduğu yineleme formülü ve/veya tümevarım yöntemi kullanılarak gösterilebilir F + F 3 + F + + F n = F n F 0 F + F F 3 + F n + F n = F n F 0 + F + + F n = F n F n+ Fn + Fn = F n ( ) ( ) n n F 0 + F + 0 ( ) n F + + ( ) n F n = F n n O halde tümevarım yöntemi gereği her n doğal sayısı için eşitlik doğrudur 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 4/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi İçin Bir Formül Teorem Fibonacci sayıları eşitliğini sağlar F n = [( + ) n ( İçin Bir Formül ) n ] Alıştırma 43 Kanıtı tümevarım yöntemi ile yapalım: İçin Bir Formül n = 0ven = için formülün doğru olduğu açıktır n (n ) için formülün doğru olduğunu kabul edelim (tümevarım hipotezi) n için de formülün doğru olduğunu gösterelim F n = F [ n + F n ( = ) n ( ) ] n + [ ( ) n ( ) ] n + + = [ ( ) n ( ) ) n ( ) n ] [( = + ( ) n ( ) ] + + O halde tümevarım yöntemi gereği formül her n doğal sayısı için doğrudur /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 6/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

5 İçin Bir Formül İçin Bir Formül Önce bu formülün nasıl ortaya çıktığına değinelim: Fibonacci sayılarının oldukça hızlı arttığını biliyoruz Acaba bu sayılar hangi hızla artıyor? Ardışık Fibonacci sayılarının oranlarına bakalım: =, =, 3 =, 3 = , 8 = , 3 8 = 6000, 3 = 63846, 34 = , 34 = , 89 = 68888, = , = 6806, 377 = 6807, 33 İlk birkaç değeri göz ardı edersek ardışık Fibonacci sayılarının oranının 68 e çok yakın olduğunu görüyoruz Bu bize Fibonacci sayılarının geometrik bir dizi olduğunu düşündürebilir Acaba Fibonacci sayıları ile aynı yineleme formülüne sahip bir geometrik dizi var mı bakalım G n dizisi G n = cq n şeklinde (c, q 0) G n+ = G n + G n yineleme formülünü sağlayan bir geometrik dizi olsun Bu durumda G n yerine değerini yazarsak, olur Gerekli sadeleştirmeyi yaparsak, elde ederiz Bu denklemi çözersek, olur q = + cq n+ = cq n + cq n q = q ve q = /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 8/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi İçin Bir Formül İçin Bir Formül O halde elimizde Fibonacci sayıları ile aynı yineleme formülüne sahip iki geometrik dizi var: ( + ) n ( G n = c ve G n ) n = c Maalesef her iki dizi de bize Fibonacci sayılarını vermez Gerçekten de, n = 0içinF 0 = 0 olmasına karşın G 0 = G 0 = c olur Ancak, G n+ G n+ =(G n + G n ) ( G n + G n ) ( = Gn G n) ( + Gn G n ) olduğundan G n G n dizisi yineleme formülünü sağlar Ayrıca, G 0 G 0 = 0 = F 0 olur Üstelik, G G = c olur Ohaldec = seçilirse G G = = F elde edilir Böylece, aynı başlangıç değerlerine ve aynı yineleme formülüne sahip F n ve G n G n gibi iki dizi elde edilir Öyleyse, F n = G n G n olur G n ve G n yerine değerleri yazılırsa başlangıçta verilen formül elde edilir Verilen formülle başka çıkarımlar da yapabiliriz: q = > olduğundan n arttığında G n üstel olarak artar < q < 0 olduğundan n artarken G n üstel olarak azalır ( O halde yeterince büyük n sayıları için F n ) n + alabiliriz 9/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 0/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

6 İçin Bir Formül ϕ = + sayısı Altın Oran olarak adlandırılan meşhur sayıdır Hiç beklenmedik yerlerde bu sayı ile karşılaşmak mümkündür Örneğin, düzgün bir beşgenin köşegeninin kenarına oranı bu sayıyı verir Ya da ϕ = ϕ = , Alıştırma Pascal üçgeninin herhangi bir satırının soldan ilk elemanını işaretleyin Daha sonra bu elemandan bir birim doğuya ve bir birim kuzey-doğuya gidip ulaştığınız elemanı işaretleyin Pascal üçgeninin dışına çıkana kadar bu işleme devam edip işaretlediğiniz elemanları toplayın Farklı satırlar için bu işlemi tekrarladığınızda ne tür sayılar elde edersiniz Bu işlemi formüle edip kanıtlayınız /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Sanı ( ) n + 0 ( n ) = 8 = F = 3 = F 7 ( n ) + + ( n k k ) = F n+, k =[ n/ ] Tümevarım yöntemi ve Pascal üçgeninin temel özelliği yardımıyla kolayca gösterilebilir n = 0ven = için doğru olduğu açık n için doğru olsun n + için de doğru olduğunu gösterelim Genelliği bozmaksızın n nin tek olduğunu kabul edersek (n çift ise sadece son terimde bir farklılık olacaktır benzer şekilde kanıt yapılabilir), ( n ( 0) + n ) ( + n ) ( + + n k ) [ k (n ) ( = n ) ] [ (n 3 ) ( + + n 3 ) ] [ (n k ) ( + + k + n k ) ] [ k (n ) ( = 0 + n ) ( + n 3 ) ( + + n k ) ] [ (n ) ( k n 3 ) + ( ) ( n n k ) ] k = F n + F n = F n+ olduğundan n + içinde doğru dolayısıyla her n N için eşitlik doğrudur 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 4/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

7 Alıştırma n boyutlarındaki bir satranç tahtasını domino taşları ile kaç farklı şekilde örtebilirsiniz? n boyutlarındaki bir satranç tahtasını domino taşları ile F n+ farklı şekilde örtebiliriz Kanıtı tümevarım ile yapalım: Aşağıda görüldüğü gibi n = için satranç tahtasını, n = için ve n = 3 için 3 farklı şekilde örtebiliriz Domino taşı, dikdörtgen şeklinde, satranç tahtasının iki karesi boyutundadır ve domino taşları satranç tahtası üzerine bir beyaz ve bir siyah kareye denk gelecek şekilde yerleştirilebilir Ayrıca domino taşları özdeş kabul edilecektir ) (n = 4 için sayının olacağını görünüz) /4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 6/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Alıştırma F n, n Fibonacci sayısını göstermek üzere, n için mümkün olan tüm farklı örtülüşlerin sayısını G n = F n+ ile gösterelim n + için inceleyelim: Eğer ilk adımda domino taşını dikey pozisyonda koyarsak, geriye n sütun kalır ve bunları G n farklı şekilde örtebiliriz Eğer ilk adımda domino taşını yatay koyarsak bu durumda geriye n sütun kalır ve bunları G n farklı şekilde örtebiliriz Ohalden + içing n+ = G n + G n olur O zaman n boyutlarındaki bir satranç tahtasını domino taşları ile G n = F n+ farklı şekilde örtebiliriz 7/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi özdeşliğini kanıtlayınız F n+m = F n F m + F n F m+ Kanıtı m üzerinden tümevarım ile yapalım m = içinf n+ = F n F }{{} +F n F }{{} m = için = F n + F n F n+ = F n F }{{} +F n F }{{} 3 = F n + F n = F n + F }{{ n +F } n F n+ = F n+ + F n olduğundan doğrudur 8/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

8 m = k + için ifade doğru olsun m = k + için doğru olduğunu gösterelim F n+k = F n F k + F n F k+ ve F n+k+ = F n F k+ + F n F k+ eşitliklerini taraf tarafa toplarsak, F n+k+ = F n F k+ + F n F k+3 eşitlik m = k + içindedoğruolur O halde tümevarım yöntemi gereği özdeşliğin doğruluğu elde edilir Alıştırma Her pozitif tam sayının birbirinden farklı Fibonacci sayılarının toplamı olarak yazılabileceğini kanıtlayınız n =,, 3 için doğru olduğu açık n den küçük her tam sayı farklı Fibonacci sayılarının toplamı şeklinde yazılabilsin n sayısının da farklı Fibonacci sayılarının toplamı şeklinde yazılabildiğini gösterelim: n nin kendisi Fibonacci sayısı ise kanıtlanacak bir şey yok n Fibonacci sayısı olmasın Bu durumda F i < n < F i+ olacak şekilde i sayısı vardır Buradan 0 < n F i < F i+ F i = F i olur 9/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 30/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Tümevarım hipotezinden, n = n F i pozitif tam sayısı da farklı Fibonacci sayılarının toplamı olarak yazılabilir Ayrıca, n < F i olduğundan bu toplamdaki Fibonacci sayılarının her biri F i Fibonacci sayısından daha küçük olacaktır Eğer, şeklinde ise n = n F i = F i + F i + + F ik, n = F i + F i + + F ik + F i, olacağından kanıt biter i j < i, j =,,,k i j < i, j =,,,k Alıştırma (Alıştırma 436) S = {,,,n} kümesinin kaç alt kümesi ardışık iki tam sayı içermez? Bazı n değerleri için ardışık iki eleman bulundurmayan alt kümelerin sayısını bulalım: n = 0iseS = olduğundan ardışık iki eleman içermeyen tane alt küme vardır ( ) n = ise ardışık iki eleman bulundurmayan alt kümeler tanedir ( ve {}) n = ise ardışık iki eleman bulundurmayan alt kümeler 3 tanedir (, {} ve {}) n = 3 ise ardışık iki eleman bulundurmayan alt küme sayısı olur (, {}, {}, {3}, {, 3}) n = 4 ise ardışık iki eleman bulundurmayan alt küme sayısı 8 olur (, {}, {}, {3}, {4}, {, 3}, {, 4}, {, 4}) 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

9 Elde edilen sayılar Fibonacci sayılarıdır S = {,,,n} kümesinin ardışık iki eleman içermeyen alt kümelerinin sayısını A n olsun Kolay anlaşılabilir olması için önce n = 4iken S = {,, 3, 4} kümesinin ardışık iki eleman bulundurmayan alt kümelerinin sayısını yani A 4 ü hesaplayalım Bu alt kümeleri aşağıdaki gibi iki gruba ayırabiliriz: 4 ü bulunduran ve ardışık eleman içermeyen alt kümeler 4 ü bulundurmayan ve ardışık elema içermeyen alt kümeler {4}, {, 4}, {, 4} }{{} } {{ } A, {}, {}, {3}, {, 3} 4 kümelere ait olduğundan 3 ait olmamalı Bu durumda {, } kümesinin ardışık iki sayı içermeyen her bir alt kümesine 4 ü ekliyoruz Bunların sayısı ise varsayımımızdan A olur A 3 Bu kümeler {,, 3} kümesinin ardış iki eleman içermeyen alt kümeleri olu Bunların sayısı da varsayımımız gereğ A 3 olur Böylece A 4 = A + A 3 olur Yukarıda 4 yerine n alıp, diğer sayıları da n ven ile değiştirirsek, A n = A n + A n olur A 0 = vea = olduğundan A n = F n+ olur 33/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 34/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Önce bazı n değerleri için elde edilen binary stringleri yazalım: Alıştırma n digit uzunluğunda ve ile başlayan, ler ler ile, 0 lar 0 lar ile yan yana gelme koşuluyla ( 0 ve lerin yalnız kalmasını istemiyoruz!) kaç farklı binary string yazılabilir? Örneğin, n = 8 için bazı istenen ve istenmeyen durumlar aşağıda verilmiştir X en baştaki yalnız kalmış 0000 X yalnız bir 0 var X yalnız bir var X ile başlamıyor n Binary String A n 0 3 4, 00, 00, , 00, 000, 00, , 00, 000, 00, 0000, 00, 000, Yukarıdaki tablodan elde edilen sayıların Fibonacci sayıları olduğu görüyoruz 3/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 36/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

10 n karakter uzunluğunda ve verilen koşulları sağlayan binary string sayısının F n+ olduğunu kanıtlayalım n karakter uzunluğunda ve verilen koşulları sağlayan farklı binary stringlarin sayısına A n diyelim Bu şekildeki binary stringlerin soldan üçüncü digiti için iki durum söz konusudur: xxx }{{ x} n tane } 00xx {{ x} n tane Birinci durumu ele alırsak, soldan ilk digiti attığımızda n digitli ve verilen koşulları sağlayan bir binary string elde ederiz ki bunların sayısı A n olur İkinci durumda yani 3 digit 0 ise bu durumda koşullar gereği 4 digitte 0 olmak zorundadır Şimdi, ilk iki digit atılarak elde edilen n digit uzunluğunda, 00 ile başlayan ve istenen koşulları sağlayan binary stringleri düşünecek olursak bunların sayısı n digit uzunluğunda ile başlayan ve istenen koşulları sağlayan binary stringlerin sayısı ile aynı ve A n olur Yani, 0 lar ile leri değiştirmek bir şey değiştirmez O halde bu iki durumu birleştirirsek, A n = A n + A n olur Yukarıdaki tablodan A = vea 3 = olduğundan A n = F n+ elde edilir 37/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 38/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi Alıştırma Sosyal yardım için sırada bekleyen 0 vatandaşa kömür ve gıda yardımı yapılacaktır Sırada bekleyen ardışık iki kişiye kömür vermemek ve sıradakilere yardımlardan sadece birini vermek koşuluyla bu dağıtım kaç farklı şekilde yapılabilir? Önce problemi basitleştirip sırada bekleyen,,3,4 ve kişi varken yardımların kaç farklı şekilde dağıtılabileceğini inceleyelim Gösterimlerde kısalık açısından kömür yardımını K, gıda yardımını G ile gösterelim n Dağıtımlar A n K, G KG, GK, GG 3 3 KGK, KGG, GGK, GKG, GGG 4 KGKG, KGGK, KGGG, GKGK, GKGG, GGKG, GGGK, GGGG 8 KGKGK, KGKGG, KGGKG, KGGGK, KGGGG, GKGKG, GKGGK, GKGGG, GGKGK, GGKGG, GGGKG, GGGGK, GGGGG 3 Elde edilen sayılar Fibonacci sayılarıdır 39/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi 40/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

11 Şimdi sırada n kişi varken dağıtımların sayısını A n ile gösterelim Buna göre sırada n kişi varken ilk kişiye kömür verildiyse ikinci kişiye gıda verilmek zorunda olduğundan bu şekildeki dağıtımların sayısı A n olur Eğer ilk kişiye gıda verilirse ikinci kişiye herhangi bir yardım verilebileceği için bu şekildeki dağıtımların sayısı A n olur O zaman toplam dağıtım sayısı A n = A n + A n elde edilir Yukarıdaki tablodan A = vea = 3 olduğundan A n = F n+ diyebiliriz Böylece istenen cevap A 0 = F = 44 elde edilir 4/4 AYRIK MATEMATİK 00 0 Güz Dönemi Anadolu Üniversitesi

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Doç. Dr. Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2011 2012 Güz Dönemi Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER MAT3 AYRIK MATEMATİK DERSİ.ARA SINAVI 18.1.009 ÇÖZÜMLER 1. G çizgesinin silindiğinde kalan çizge tek parça olacak şekildeki kenarlarını birer birer silelim (G yoldan farklı olduğundan en az bir böyle bir

Detaylı

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır? Ayrık Hesaplama Yapıları A GRUBU 0.06.01 Numarası :. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

Sevdiğim Birkaç Soru

Sevdiğim Birkaç Soru Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir

Detaylı

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI B B B B B B B

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI B B B B B B B AKDENİZ ÜNİVERSİTESİ 23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI ADI SOYADI :... OKUL... ŞEHİR :...SINIF :... İMZA :... SINAV TARİHİ VESAATİ:29 Nisan 2018 - Pazar 10.00-12.30 u sınav 25 sorudan oluşmaktadır

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.

Detaylı

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur? Ayrık Hesaplama Yapıları A GRUBU.0.05 Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız.

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

19. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 19. ULUSL NTLY MTEMTİK OLİMPİYTI SORULRI DI SOYDI :...CEP TEL :... OKUL...ŞEHİR :... SINIF :...ÖĞRETMEN :... eposta :... İMZ :... SINV TRİHİ VESTİ:4Mayıs 2014 - Pazar 10.00-12.30 Bu

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan

Detaylı

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48 Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun

Detaylı

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 23. ULUSL NTLY MTEMTİK OLİMPİYTI SORULRI DI SOYDI :... OKUL... ŞEHİR :...SINIF :... İMZ :... SINV TRİHİ VESTİ:29 Nisan 2018 - Pazar 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 1 Mayıs 01 Matematik Sorularının Çözümleri 1. 9! 8! 7! 9! + 8! + 7! 7!.(9.8 8 1) 7!.(9.8+ 8+ 1) 6 81 9 7. 4, π, π π,14

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Olimpiyat Eğitimi CANSU DENEME SINAVI

Olimpiyat Eğitimi CANSU DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi CANSU DENEME SINAVI 15.11.2013-29.11.2013 2 1. Bir x sayısı x = 1 1 + x eşitliğini sağlamaktadır. x 1 x hangisidir? in en basit hali aşağıdakilerden

Detaylı

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160 A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =? Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Ağaçlar 8. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ağacın Tanımı Ağaçlar Ağacın Tanımı Tanım Döngüsü olmayan tekparça

Detaylı

Özdeşlikler, Denklemler ve Eşitsizlikler

Özdeşlikler, Denklemler ve Eşitsizlikler Özdeşlikler, Denklemler ve Eşitsizlikler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; temel özdeşlikleri ve binom açılımını, birinci ve ikinci dereceden denklem çözümlerini

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

MATEMATİK ÜSLÜ SAYILAR. Tam Sayıların Tam Sayı Kuvveti. Üslü sayı, bir sayının kendisi ile tekrarlı çarpımıdır.

MATEMATİK ÜSLÜ SAYILAR. Tam Sayıların Tam Sayı Kuvveti. Üslü sayı, bir sayının kendisi ile tekrarlı çarpımıdır. Kazanım Tam sayıların tam sayı kuvvetlerini belirler. MATEMATİK KAZANIM FÖYÜ- Tam Sayıların Tam Sayı Kuvveti.Adım..Adım...Adım Yanda verilen örüntünüyü 6.Adıma kadar ilerletiniz. HATIRLA Üslü sayı, bir

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ - ZONGULDAK 7 NİSAN 2012

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ - ZONGULDAK 7 NİSAN 2012 OYAK TÜBİTAK BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI OYAK MATEMATİK YARIŞMASI FİNAL SINAVI ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA - SİVAS - TEKİRDAĞ

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1. SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin çözümlenmiş biçimidir? A) ab B) a0b C) a0b0 D) ab0 E) ab00 1000a 10b 1000.a 100.0 10.b 1.0 a0b0 Doğru Cevap:

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır? 99 ÖYS. Üç basamaklı abc sayısının birler basamağı tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 97 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?.,

Detaylı

Temel Matematik Testi - 3

Temel Matematik Testi - 3 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 003. u testte 0 soru vardır. 2. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

MAT239 AYRIK MATEMATİK

MAT239 AYRIK MATEMATİK MAT239 AYRIK MATEMATİK 1. Bölüm Emrah Akyar Eskişehir Teknik Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2018 2019 Öğretim Yılı Ayşe nin Doğum Günü Partisi Ayşe nin Doğum Günü Partisi Ayşe altı

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular

Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Maths@bi 8 3.BÖLÜM Kareköklü Sayılar Konu Anlatımı Açık Uçlu Sorular Çoktan Seçmeli Sorular Doğru Yanlış Soruları Boşluk Doldurmalı Sorular Çıkmış Sorular Kerime ASKER-Abdullah ASKER Matematik Öğretmeni

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

AB AB. A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel

AB AB. A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel AB [AB] [AB AB AB CD m( ABC) A ve B noktalarından geçen doǧru A ve B noktalarını birleştiren doǧru parçası A noktasından çıkıp B noktasından geçen ışın [AB] nin uzunluǧu AB, CD ye paralel ABC açısının

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2012 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 14 Nisan 2012 Cumartesi,

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

14 Nisan 2012 Cumartesi,

14 Nisan 2012 Cumartesi, TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI - 2012 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü B 14 Nisan 2012 Cumartesi,

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

8. SINIF MATEMATİK ÜSLÜ İFADELER

8. SINIF MATEMATİK ÜSLÜ İFADELER . SINIF MATEMATİK ÜSLÜ İFADELER... Tam sayıların, tam sayı kuvvetlerini hesaplar, üslü ifade şeklinde yazar....... a.a.a.a...a a n HATIRLATMA KÖŞESİ- n HATIRLATMA KÖŞESİ- Her sayının sıfırıncı kuvveti

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI

KPSS soruda SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI KPSS 019 10 soruda 86 SORU GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ TAMAMI ÇÖZÜMLÜ SORU BANKASI Komisyon KPSS LİSANS MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-41-77-0 Kitapta yer alan bölümlerin

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı A 1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? a) 15 33 b) 20 33 c) 100 33 d) 20 3 e) 100 3 2. Bir okulun kantininde, 1., 2., 3., 4.

Detaylı

MATEMATİK ve DOĞA. Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü

MATEMATİK ve DOĞA. Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü MATEMATİK ve DOĞA Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü ÖZET Leonardo Fibonacci 13. yy yaşamış İtalyan bir matematikçidir. Fibonacci

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

UYGUN MATEMATİK 5 SORU BANKASI. HAZIRLAYANLAR Fatih KOCAMAN Meryem ER. : Sad k Uygun E itim Yay nlar. : Yaz n Matbaas / stanbul

UYGUN MATEMATİK 5 SORU BANKASI. HAZIRLAYANLAR Fatih KOCAMAN Meryem ER. : Sad k Uygun E itim Yay nlar. : Yaz n Matbaas / stanbul UYGUN MATEMATİK SORU BANKASI HAZIRLAYANLAR Fatih KOCAMAN Meryem ER AR-GE Editör : Ş. Yunus MUSLULAR : Dr. Özgür AYDIN Prg. Gel. Uzm. : Özden TAŞAR Pedagog Dan şman Dizgi Bask : Hilâl GENÇAY : Psikiyatr

Detaylı

1 Primitif Kökler. [Fermat ] p asal, p a a p 1 1 (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) = 1, a φ(m) 1 (mod m) φ(1) := 1

1 Primitif Kökler. [Fermat ] p asal, p a a p 1 1 (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) = 1, a φ(m) 1 (mod m) φ(1) := 1 Primitif Kökler [Fermat ] p asal, p a a p (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) =, a φ(m) (mod m) φ : Z + Z + φ() := φ(m) := {x Z x < m, ebob(x, m) = } φ fonksiyonunun özellikleri: ) m >, φ(m)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

V 2 = J 2,1 J 2,2 = aşamada ise atılanlar = 27. ve kalanlar. kümeleridir. aralıklar 2 n 1 tanedir ve. V n = J n,1 J n,2 n 1 = tanedir ve

V 2 = J 2,1 J 2,2 = aşamada ise atılanlar = 27. ve kalanlar. kümeleridir. aralıklar 2 n 1 tanedir ve. V n = J n,1 J n,2 n 1 = tanedir ve CANTOR KÜMELERİ H. Turgay Kaptanoğlu Yazımızın başlığında adı geçen Alman matematikçisi Georg Cantor (845 8), modern matematiğin temeli olan kümeler teorisinin kurucusu olarak kabul edilir. Cantor,. yüzyılın

Detaylı