Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan"

Transkript

1 Karmaşıklık Giriş 1

2 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi? Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan 2

3 Karmaşıklık: Algoritma performansı ölçme yöntemi Bir algoritmanın performansı iç ve dış faktörlere bağlıdır. İç Algoritma verimliliği: Çalıştırmak için gereken zaman Çalıştırmak için gereken yer (bellek alanı) Dış Girdi verisinin büyüklüğü Bilgisayarın hızı Derleyicinin kalitesi Karmaşıklık iç faktörlerle ve daha çok da zamanla ilgilidir. 3

4 Çalışma Zamanı Analizi Algoritma 1 T 1 (N)=1000N Algoritma 2 T 2 (N)=N 2 N giriş verisi Çalışma zamanı T 1 (n) Algoritma 1 N giriş verisi Çalışma zamanıt 2 (n) Algoritma 2 4

5 Çalışma Zamanı Analizi Çalışma zamanı T(N) Algoritma 2 Algoritma Giriş verisi N 5

6 Çalışma Zamanları Özeti N T1 T sec 10-4 sec sec 10-2 sec sec 1 sec sec 100 sec sec sec N değerinin 1000 den küçük olduğu durumlarda iki algoritma arasındaki çalışma zamanı ihmal edilebilir büyüklüktedir. 6

7 Büyüme Hızı ve Büyük-O(big-O)notasyonu Büyüme hız bir algoritmanın performansını yansıtan en iyi göstergedir. Büyük-O notasyonu büyüme hızını gösterir. Bir algoritmanın performansını en iyi tanımlayan matematiksel bir formüldür ve algoritmanın iç detaylarına bakılarak elde edilir. Büyük-O girdi verisinin büyüklüğünü gösteren bir N parametresine dayanan bir fonksiyondur. Örneğin n değerine bağlı olarak performansı (sabit a, b, c değerleri için) an 2 + bn + c olan bir algoritmanın performansı O(N 2 ) dir N değeri arttıkça N 2 terimi baskın olacağı için büyük-o notasyonunda sadece baskın olan terim kullanılır 7

8 O Notasyonu- Asimtotik Üst Limit Bir algoritmanın çalışma süresi T(N)=O(f(n)) O bir fonksiyon değil, sadece gösterimdir. T(N) c f(n) ve N n 0 koşullarını sağlayan c ve n 0 değerleri varsa T(N) c f(n) ifadesi doğrudur. f(n), T(N) in asimtotik üst limiti olarak adlandırılır. T(N)=O(f(n)) 8

9 O notasyonu O notasyonunda yazarken en basit şekilde yazarız. Örneğin 3n 2 +2n+5 = O(n 2 ) Aşağıdaki gösterimlerde doğrudur fakat kullanılmaz. 3n 2 +2n+5 = O(3n 2 +2n+5) 3n 2 +2n+5 = O(n 2 +n) 3n 2 +2n+5 = O(3n 2 ) 9

10 Sık Kullanılan Büyüme hızları Zaman karmaşıklığı Örnek O(1) sabit Bağlı listeye ilk eleman olarak ekleme yapma O(log N) log Sıralı bir dizide bir eleman arama O(N) lineer Sıralı olmayan bir dizide bir eleman arama O(N log N) n-log-n N elemanı böl-parçala-yut yöntemiyle sıralama O(N 2 ) ikinci dereceden O(N 3 ) üçüncü dereceden Bir grafikte iki düğüm arasındaki en kısa yolu bulma Ardarda gerçekleştirilen lineer denklemler O(2 N ) üssel Hanoi nin Kuleleri problemi 10

11 Büyüme Hızları O(N 2 ) Zaman O(Nlog N) Kısa bir süre için N 2 NlogN den daha iyi N 11

12 Bir programın asıl çalışma zamanını hesaplama (örnek) Bir işlem için harcanan zaman 10ms olsun(bir veri üzerinde yapılan tek bir işlem) 1000 veriyi işlemek için programın ne kadar çalışması gerekir? Programın çalışma zamanı aşağıdaki gibi verilmişse bu değer nasıl hesaplanır? log 10 N N N log 10 N N 2 N 3 (1 veri için zaman) x (N veri için verilen büyük-o( ) zaman karmaşıklığı) 12

13 büyük-o nasıl hesaplanır? Bir program kodunun zaman karmaşıklığını hesaplamak için 5 kural 1 Döngüler 2 İç içe Döngüler 3 Ardışık deyimler 4 If-then-else deyimleri 5 Logaritmik karmaşıklık 13

14 Kural 1: Döngüler Bir döngünün çalışma zamanı en çok döngü içindeki deyimlerin çalışma zamanının iterasyon sayısıyla çarpılması kadardır. n defa çalışır for (i=1; i<=n; i++) { m = m + 2; } Sabit zaman Toplam zaman = sabit c * n = cn = O(N) 14

15 Kural 2:İç içe Döngüler İçteki analiz yapılır. Toplam zaman bütün döngülerin çalışma sayılarının çarpımına eşittir Dış döngü n defa çalışır for (i=1; i<=n; i++) { for (j=1; j<=n; j++) { k = k+1; } } Sabit zaman iç döngü n defa çalışır Toplam zaman = c * n * n * = cn 2 = O(N 2 ) 15

16 Kural 3: Ardışık deyimler Her deyimin zamanı birbirine eklenir. Sabit zaman Sabit zaman Dış döngü n defa çalışır x = x +1; for (i=1; i<=n; i++) { m = m + 2; } for (i=1; i<=n; i++) { for (j=1; j<=n; j++) { k = k+1; } } Sabit zaman n defa çalışır iç döngü n defa çalışır toplam zaman = c 0 + c 1 n + c 2 n 2 = O(N 2 ) 16

17 Kural 4: If-then-else deyimleri En kötü çalışma zamanı:test zamanına then veya else kısmındaki çalışma zamanının hangisi büyükse o kısım eklenir. test: sabit Diğer if : sabit+sabit (else yok) if (depth( )!= otherstack.depth( ) ) { return false; } else { for (int n = 0; n < depth( ); n++) { if (!list[n].equals(otherstack.list[n])) return false; } } then: sabit else: (sabit +sabit) * n Toplam zaman = c 0 + c 1 + (c 2 + c 3 ) * n = O(N) 17

18 Kural 5: Logaritmik karmaşıklık Problemin büyüklüğünü belli oranda(genelde ½) azaltmak için sabit bir zaman harcanıyorsa bu algoritma O(log N) dir. Örnek algoritma (binary search): N sayfalı bir sözlükten bir sözcük arama Sözlüğün orta kısmına bakılır Sözcük ortaya göre sağda mı solda mı kaldığı bulunur? Bu işlem sağ veya solda sözcük bulunana kadar tekrarlanır 18

19 O notasyonu- Örnek 1 3n 2 +2n+5 = O(n 2 ) ifadesinin doğru olup olmadığını ispatlayınız. 10 n 2 = 3n 2 + 2n 2 + 5n 2 3n 2 + 2n + 5 for n 1 c = 10, n 0 = 1 Çözüm kümesini sağlayan kaç tane n0 ve c cifti olduğu önemli değildir. Tek bir çift olması notasyonun doğruluğu için yeterlidir. 19

20 O notasyonu- Örnek 2 T(N)=O(7n 2 +5n+4) olarak ifade edilebiliyorsa, T(N) fonksiyonu aşağıdakilerden herhangi biri olabilir. T(N)=n 2 T(N)=1000n 2 +2n+300 T(N)= O(7n 2 +5n+4) =O(n 2 ) 20

21 O notasyonu- Örnek 3 Fonksiyonların harcadıkları zamanları O notasyonuna göre yazınız. f1(n) = 10 n + 25 n 2 f2(n) = 20 n log n + 5 n f3(n) = 12 n log n n 2 f4(n) = n 1/2 + 3 n log n O(n 2 ) O(n log n) O(n 2 ) O(n log n) 21

22 Analiz Strateji:Alt ve üst limitlerin bulunması Üst limit Algoritmanın gerçek fonksiyonu Alt limit 22

23 Analiz Çalışma zamanının kesin olarak belirlenmesi zordur Giriş verilerine bağlı olan en iyi durum (best case) Ortalama durum (Average case), hesaplanması zordur En kötü durum analizi, hesaplanması diğerlerine göre kolaydır 23

24 En iyi, ortalama, en kötü durum karmaşıklığı Bazı durumlarda en iyi, ortalama, en kötü durum karmaşıklığı gözönüne almak gerekir En kötü, O(N) veya o(n): veya > asıl fonksiyon * Genel, Θ(N): asıl fonksiyon * En iyi, Ω(N): asıl fonksiyon * Örnek: Liste sıralarken eğer liste zaten sıralıya yakınsa yapılacak iş azdır. En kötü durum muhtemel bütün girdiler için bir sınır çizer ve genelde ortalamadan daha kolay bulunur 24

25 Ω Notasyonu- Asimtotik Alt Limit O notasyonun tam tersidir. Her durumda T(N) c f(n) ve N n0 koşullarını sağlayan pozitif, sabit c ve n0 değerleri bulunabiliyorsa T(N)=Ω(f(n)) ifadesi doğrudur. f(n) f(n), T(N) in asimtotik alt limiti olarak adlandırılır. c g(n) n 0 25

26 Ω notasyonu- Örnek 1 7n 2 +3n+5 = O(n 4 ) 7n 2 +3n+5 = O(n 3 ) 7n 2 +3n+5 = O(n 2 ) 7n 2 +3n+5 = Ω(n 2 ) 7n 2 +3n+5 = Ω(n) 7n 2 +3n+5 = Ω(1) 26

27 Algoritma 1 int Sum (int N) { int i, PartialSum; PartialSum=0; for(i=1 ;i<=n ; i++) PartialSum+=i*i*i; return PartialSum; } 1 1+(N+1)+N N+N+2N 1 Çalışma zamanı 6N+4=O(N) 27

28 Algoritma 2 for(i=0; i<n; i++) for(j=1; j<=n; i++) k++; Çalışma zamanı O(N 2 ) for(i=0; i<n; i++) A[i]=0; for(i=0; i<n; i++) for(j=1; j<=n; i++) A[i]+=A[j]+i+j; Çalışma zamanı O(N 2 ) 28

29 Algoritma 3 If( condition ) S1 Else S2 Çalışma zamanı max_calışma_zamanı(s1,s2) 29

30 Algoritma 4 int binary search(a,key,n) low=0, high=n-1 while(low high) mid=(low+high)/2 if(a[mid]<key) low=mid+1 if(a[mid]>key) high=mid-1; if(a[mid]=key) return mid Return not found Her bir iterasyondan sonra, arama yapılacak eleman sayısı logaritmik olarak azalmaktadır. Çalışma süresi O(logN) dir. 30

31 Algoritma 5 int binarysearch(a,key,low,high) if (low>high) Return not found else mid=(low+high)/2 if(a[mid]<key) Return binarysearch(a,key,mid+1,high) if(a[mid]>key) Return binary search(a,key,low,mid-1) if (A[mid]=key) Return mid T(N)=T(N/2)+O(1) 31

32 Algoritma 6 MaxSubsequenceSum(const int A[], int n) ThisSum=MaxSum=0; for(j=0;j<n;j++) ThisSum+=A[j]; if (ThisSum<MaxSum) MaxSum=ThisSum; else if(thissum<0) ThisSum=0; Return MaxSum; Çalışma zamanı O(N) 32

33 Performans her şey demek değildir! Bazen aşağıdaki iki durum birbiriyle çelişebilir: Anlama, yazma ve hata ayıklama kolaylığı Zaman ve yerin verimli kullanılmasıefficient use of time and space Bu nedenle maksimum performans her zaman tercih edilmeyebilir Ancak yine de en uygun algoritmayı kullanmak mümkün olmasa da farklı yöntemleri karşılaştırmak yararlıdır. 33

ALGORİTMA İ VE PROGRAMLAMA

ALGORİTMA İ VE PROGRAMLAMA ALGORİTMA İ VE PROGRAMLAMA II Öğr.Gör.Erdal GÜVENOĞLU Hafta 2 Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ 2 Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 2 Bu bölümde, Algoritma Analizi, Çalışma Zamanı Analizi

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Yürütme Zamanı (Running Time) Algoritmanın belirli bir işleme veya eyleme kaç kez gereksinim duyulduğunu gösteren bağıntıdır ve

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Temel Kavramlar Algoritma: Bir problemin çözümünü belirli bir zamanda çözmek için sonlu sayıdaki adım-adım birbirini takip eden

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki, Algoritma Karmaşıklığı ve Büyük O Gösterimi (Big O Notation) Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla

Detaylı

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026 O NOTASYONU Abdullah Gazi Emre DAĞLI 0804.01026 Program Çalışma Hızı ve Bellek Gereksinimi Programın çalışma hızı karmaşıklıkla ifade edilir; bu kavram zaman birimiyle ifade edilmeyip doğrudan işlem adedi

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları Giriş 1) Algoritma geliştirme üzerine temel kavramlar 2) Veri modelleri 3) Veri yapıları 4) Algoritma veya yazılım şekilsel gösterimi

Detaylı

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar

Bölüm Özeti. Algoritmalar. Fonksiyonların Büyümesi. Algoritmaların Karmaşıklığı. Örnek Algoritmalar Algoritmik Paradigmalar Bölüm 3 Bölüm Özeti Algoritmalar Örnek Algoritmalar Algoritmik Paradigmalar Fonksiyonların Büyümesi Büyük-O ve diğer gösterimler Algoritmaların Karmaşıklığı Bölüm 3.1 Bölüm Özet Algoritmaların Özellikleri

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

YMT316 Algoritma Analizi

YMT316 Algoritma Analizi 1 YMT316 Algoritma Analizi 2 1.Hafta Algoritmaların Analizi Algoritma Analizine Giriş Asimptotik Analiz Diziler İkili Arama 3 Ders Kitapları ve Yardımcı Kaynaklar Introduction To Algorithms, Third Edition:

Detaylı

YMT219 VERİ YAPILARI ÖDEV-1

YMT219 VERİ YAPILARI ÖDEV-1 YMT219 VERİ YAPILARI ÖDEV-1 1. İkiliBul yordamı aşağıda verilmiştir. İkiliBul yordamı A dizisi içerisinde 2 tane eşit sayı bulursa true bulamazsa false döndürmektedir. public boolean ikilibul(int[] A){

Detaylı

2.Hafta Algoritmaların Analizi. Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler

2.Hafta Algoritmaların Analizi. Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler 2.Hafta Algoritmaların Analizi Araya Yerleştirme Sırlaması (Insert Sort) Birleştirme Sıralaması (Merge Sort ) Yinelemeler 1 2 Sıralama (sorting) problemi Girdi: dizi a 1, a 2,, a n sayıları. Çıktı: a'

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 8 Problem Tanımı Arama Ağaçları İkili Arama

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Selection Sort Insertion Sort

Selection Sort Insertion Sort Ozet Selection Sort Selection Sort Insertion Sort Linear Search.. Growth Rates. Implementation. Once dizinin en buyuk element ini bul ve bunu en son pozisyondaki element le degistir, daha sonra en buyuk

Detaylı

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Sıralı erişimli dosya organizasyonu yöntemleri Sunum planı Sıralı erişimli dosya organizasyonu yöntemleri Basit sıralı

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 1 Algoritmaların Çözümlemesi Araya yerleştirme sıralaması Asimptotik çözümleme Birleştirme sıralaması Yinelemeler Prof. Charles E. Leiserson Dersle ilgili bilgiler

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) Özyineleme tanımlamaları Özyineleme çağırma Tail özyineleme Nontail özyineleme Dolaylı (Indirect) özyineleme İçiçe (Nested) özyineleme Yrd.Doç.Dr. M. Ali Akcayol Kendi kendisini doğrudan veya dolaylı olarak

Detaylı

YMT219 Veri Yapıları. Yrd.Doç.Dr. Erkan TANYILDIZI

YMT219 Veri Yapıları. Yrd.Doç.Dr. Erkan TANYILDIZI YMT219 Veri Yapıları Yrd.Doç.Dr. Erkan TANYILDIZI 1 2 Ders Kitapları ve Yardımcı Kaynaklar Veri Yapıları ve Algoritmalar Dr. Rifat ÇÖLKESEN, Papatya yayıncılık Data Structures and Problem Solving Using

Detaylı

Bölüm 8. Ayrık Küme. Olcay Taner Yıldız. O. T. Yıldız, C && Java ile Veri Yapılarına Giriş, Boğaziçi Üniversitesi Yayınevi, / 16

Bölüm 8. Ayrık Küme. Olcay Taner Yıldız. O. T. Yıldız, C && Java ile Veri Yapılarına Giriş, Boğaziçi Üniversitesi Yayınevi, / 16 Bölüm 8. Ayrık Küme Olcay Taner Yıldız 2014 O. T. Yıldız, C && Java ile Veri Yapılarına Giriş, Boğaziçi Üniversitesi Yayınevi, 2013 1 / 16 O. T. Yıldız, C && Java ile Veri Yapılarına Giriş, Boğaziçi Üniversitesi

Detaylı

Algoritmalara Giriş 6.046J/18.401J DERS 2

Algoritmalara Giriş 6.046J/18.401J DERS 2 Algoritmalara Giriş 6.046J/18.401J DERS 2 Asimptotik Simgelem O-, Ω-, ve Θ-simgelemi Yinelemeler Yerine koyma metodu Yineleme döngüleri Özyineleme ağacı Ana Metot (Master metod) Prof. Erik Demaine September

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-5 Bilgili Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Arama Grafları Eğer arama uzayı ağaç yapısından değil de graf

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

Algoritma ve Programlama II Recursive Fonksiyonlar Dosyalama

Algoritma ve Programlama II Recursive Fonksiyonlar Dosyalama Algoritma ve Programlama II Recursive Fonksiyonlar Dosyalama Rekürsif Algoritmalar Bir problemin çözümü için döngü kurulması gerekiyorsa bu ihtiyacı karşılamak için birisi çevirimli diğeri rekürsif olarak

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 6 Sıralama(Sort) Algoritmaları 1. Bubble Sort

Detaylı

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması September 14, 2005 Copyright 2001-5 Erik D. Demaine and Charles

Detaylı

8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? işleminin sonucu kaçtır?

8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? işleminin sonucu kaçtır? 1. 6 (8 6 4 ) işleminin sonucu kaçtır? Cevap: 5 8. AB ve BA iki basamaklı sayılarının 17 ile bölümünden kalanların toplamı 17 dir. Buna göre A B kaçtır? Cevap : 1. 0, 0,75 işleminin sonucu kaçtır? 0,1

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ VERİ YAPILARI LİSTELER Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ Bağlı Listeler Aynı kümeye ait veri parçalarının birbirlerine bellek üzerinde, sanal olarak bağlanmasıyla

Detaylı

Akış Kontrol Mekanizmaları

Akış Kontrol Mekanizmaları Akış Kontrol Mekanizmaları 1 Akış Kontrol Mekanizmaları if else switch for döngüsü for döngüsünün çalışma prensibi for döngüsüyle ilgili örnekler for döngüsüyle ilgili kurallar while döngüsü while döngüsünün

Detaylı

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN BLM111 Programlama Dilleri I Hafta 10 Diziler Yrd. Doç. Dr. Caner ÖZCAN Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri girilmesi ve girilen verilerin işlenerek belirli bir sistematiğe

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 S6 S7 Toplam HACETTEPE ÜNİVERSİTESİ 2012-2013 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 25.04.2013 Sınav Süresi:

Detaylı

ÖZYİNELEME RECURSION. Yrd. Doç. Dr. Aybars UĞUR

ÖZYİNELEME RECURSION. Yrd. Doç. Dr. Aybars UĞUR ÖZYİNELEME RECURSION Yrd. Doç. Dr. Aybars UĞUR Giriş Kendini doğrudan veya dolaylı olarak çağıran fonksiyonlara özyineli (recursive) fonksiyonlar adı verilir. Özyineleme (recursion), iterasyonun (döngüler,

Detaylı

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama

Binary Search. (Yarılama) Bölüm Dizide Bir Öğe Arama Bölüm 39 Binary Search (Yarılama) 39.1 Dizide Bir Öğe Arama İkil aramayı (yarılama yöntemi) sıralı veri kümelerinde sık sık kullanırız. Örneğin, sözlükte bir sözcüğü ararken, sözlüğün bütün sayfalarını

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi Dizilere Başlangıç Değeri Verme Dizilerde Arama

Detaylı

Fonksiyonlar (Altprogram)

Fonksiyonlar (Altprogram) Fonksiyonlar (Altprogram) C Programlama Dili fonksiyon olarak adlandırılan alt programların birleştirilmesi kavramına dayanır. Bir C programı bir ya da daha çok fonksiyonun bir araya gelmesi ile oluşur.

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir. 1 Akış diyagramları

Detaylı

ÖZYİNELEME RECURSION. Doç. Dr. Aybars UĞUR

ÖZYİNELEME RECURSION. Doç. Dr. Aybars UĞUR ÖZYİNELEME RECURSION Doç. Dr. Aybars UĞUR GİRİŞ Kendini doğrudan veya dolaylı olarak çağıran fonksiyonlara özyineli (recursive) fonksiyonlar adı verilir. Özyineleme (recursion), iterasyonun (döngüler,

Detaylı

Gereksiz Kodlar. burada if deyiminin else bölümüne gerek var mı? İfade doğruysa zaten fonksiyon geri dönüyor. Bu aşağıdakiyle tamamen eşdeğerdir:

Gereksiz Kodlar. burada if deyiminin else bölümüne gerek var mı? İfade doğruysa zaten fonksiyon geri dönüyor. Bu aşağıdakiyle tamamen eşdeğerdir: Gereksiz Kodlar Kaan Aslan 9 Temuz 1997 Kapalı spor salonu, durak yeri, taşıt aracı, en optimum, geri iade etmek, davranış biçimi Bu ifadelerde bir gariplik var, değil mi? Açık spor salonu göreniniz var

Detaylı

BLM-111 PROGRAMLAMA DİLLERİ I. Ders-10 Diziler. Yrd. Doç. Dr. Ümit ATİLA

BLM-111 PROGRAMLAMA DİLLERİ I. Ders-10 Diziler. Yrd. Doç. Dr. Ümit ATİLA BLM-111 PROGRAMLAMA DİLLERİ I Ders-10 Diziler Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri

Detaylı

Özyineleme (recursion)

Özyineleme (recursion) 2 Özyineleme (recursion) Kendi kendini çağıran fonksiyonlara özyineli (recursive) fonksiyon denilir. Özyineli fonksiyonlar, ileri bilgisayar uygulamalarında çok kullanılır. Bilgisayar biliminin zor sayılan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 2 hafta Ödev No : 7 ****(ilk 3 soru çıktı üzerinde el

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-4 Bilgisiz Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Aşağıda verilen arama stratejilerini anlamak

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli Veri Modelleri Ağaç Veri Modeli Ağaç Veri Modeli Verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen bir veri modelidir. Ağaç veri modeli daha fazla bellek

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Döngüler for Döngüsü while Döngüsü do-while Döngüsü break Deyimi Kullanımı continue Deyimi

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I Yrd. Doç. Dr. Deniz KILINÇ deniz.kilinc@cbu.edu.tr YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Döngüler for Döngüsü while Döngüsü

Detaylı

HSancak Nesne Tabanlı Programlama I Ders Notları

HSancak Nesne Tabanlı Programlama I Ders Notları DİZİLER Bellekte ard arda yer alan aynı türden nesneler kümesine dizi (array) denilir. Bir dizi içerisindeki bütün elemanlara aynı isimle ulaşılır. Yani dizideki bütün elemanların isimleri ortaktır. Elemanlar

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I Yrd. Doç. Dr. Deniz KILINÇ deniz.kilinc@cbu.edu.tr YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Koşul Karşılaştırma Operatörleri Mantıksal

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir. LİMİT VE SÜREKLİLİK A- LİMİTLER Bir top 10 metre yükseklikten bırakılmaktadır. Top yere vurduktan sonra ilk yüksekliğin 2/5 i kadar sıçramakta ve bunu her yükseliş için devam ettirmektedir. Topun sıçrayacağı

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri 7.DERS AKADEMİ K RAPORLARDA DENKLEM VE ALGORİ TMA KULLANIMLARI Gündem Matematik Yazımı Teoremler Notasyon Yazım Kuralları Algoritmalar Sunum Detay seviyesi

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Sınav Dağılım & IMKB Endeks

Sınav Dağılım & IMKB Endeks Sınav Dağılım & IMKB Endeks Ege Üniversitesi Bilgisayar Mühendisliği Veri Yapıları Proje-1 Hüseyin YAŞAR 05-06-7657 Didem KAYALI 05-06-7669 Umut BENZER 05-06-7670 Özlem GÜRSES 05-07-8496 Sürüm: 0.2 Bölüm

Detaylı

C++ Dersi: Nesne Tabanlı Programlama 2. Baskı

C++ Dersi: Nesne Tabanlı Programlama 2. Baskı C++ Dersi: Nesne Tabanlı Programlama 2. Baskı ³ Bölüm 19: Standart Şablon Kütüphanesi (vector) İçerik 19.1 Standart Şablon Kütüphanesi (STL) 19.2 vector SınıK 19.3 vectortanımı 19.4 vector Elemanlarına

Detaylı

ArrayList ve List yapıları. Bilgisayar Programlama 2 Erciyes Üniversitesi Bahriye Akay

ArrayList ve List yapıları. Bilgisayar Programlama 2 Erciyes Üniversitesi Bahriye Akay ArrayList ve List yapıları Bilgisayar Programlama 2 Erciyes Üniversitesi Bahriye Akay 1 Statik Dizi Tanımı Statik Dizi tanımlamaları yapmıştık. Hatırlayalım. System namespace i belirtimi ile Dizi tanımı

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı