GIDALARIN DONDURULARAK MUHAFAZASI. Donma

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GIDALARIN DONDURULARAK MUHAFAZASI. Donma"

Transkript

1 GIDALARIN DONDURULARAK MUHAFAZASI Donma Donma, bir maddenin sıvı halden katı hale geçmesidir. Donmanın meydana geldiği sıcaklık ise donma sıcaklığıdır. Gıdaların dondurularak muhafazası, gıdaların bileşimimdeki suyun dondurularak mikrobiyal faaliyet ve enzimatik reaksiyonların bu yolla engellenmesi esasına dayanmaktadır. Donma sonrası suyun bazı özellikleri önemli derecede değişmektedir. Bu değişim bazı durumlarda gıdanın yapışım etkileyebilmektedir. Su ve Buzun Fiziksel Nitelikleri Gıdalarda, hızlı bozulmalarının en önemli nedeni içermiş oldukları su miktarıdır. Gıdaların dondurulmalarında, aslında dondurulan gıda bileşiminde bulunan sudur. Su ve buzun fiziksel Özellikleri oldukça çok farklı olduğu için, donma sonucunda gıdanın fiziksel özellikleri de önemli derecede değişmektedir. Dolayısıyla su ve buzun başlıca fiziksel niteliklerinin bilinmesi donma sonucu gıdanın yapısında meydana gelen değişimlerin anlaşılması bakımından önemlidir. Suyun 4 C'de yoğunluğu 1000 kg/m 3 tür. Suyun sıcaklığı yükseldikçe bu değer azalmakta ve 100 C'de kg/m 3 tür. Suyun 0 C'deki yoğunluğu ise kg/m 3 tür ve su faz değiştirip donunca 0 C'deki yoğunluğu kg m 3 e düşmektedir. Dolayısıyla 0 C deki suyun, 0 C deki buza dönüşmesiyle hacmi yaklaşık % 8.3 oranında artmaktadır. Suyun 0 Cde özgül ısısı , 100 Cde ise kj/kgk dır. Suyun özgül ısısı C arasında hemen hemen hiç değişmemektedir. Oysa su donup katı faza dönüşünce, özgül ısısı da düşmektedir. 0 C'deki buzun özgül ısısı kj/kgk dır. Buzun sıcaklığı düştükçe ise özgül ısısı da düşmektedir. Suyun 0 C'de ısıl iletkenlik katsayısı W/mK iken, faz değiştirip donduğu zaman, buzun 0 C de ısıl iletkenlik katsayısı W/mK e yükselmektedir. Dolayısıyla buzun, ısıyı suya kıyasla yaklaşık 4 kat daha iyi ilettiği görülmektedir. Yine suyun 0 C de ısıl yayınım katsayısı 1.31x10 7 m 2 /s iken, faz değiştirip donması ile 0 C'de buzun ısıl yayınım katsayısı 11.70xl0 7 m 2 /s ye yükselmektedir. Bu, buzun suya göre daha hızla ısınıp soğuyabildiği anlamına gelmektedir. Dolayısıyla gıdaların donma ve çözülme hızlarında farklılığın nedeni buzun ve suyun ısıl yayınım katsayılarının farklı olmasıdır.

2 Suyun donma gizli ısısı 335 kj/kg dir. Dolayısıyla 0 C deki su, 0 C de buz haline dönerken 335 kj/kg ısı serbest kalır. 0 C'deki suyun entalpisi 0 C,deki buza göre 335 kj/kg daha yüksektir. Buz erirken aynı enerjiyi, yani erime gizli ısısını alması gerekmektedir. Suyun Donması: Sudan enerjinin uzaklaştırılmasıyla, sıvı fazdaki moleküllerin serbest hareketleri gittikçe yavaşlar ve moleküller kendiliğinden kümeleşerek kendilerine özgü düzenli bir yapıya dönüşme eğilimine girerler. Kritik büyüklüğe ulaşamamış küçük çekirdeklerin büyüme şansı olmadığından bunlar, moleküllerim SİM faza bırakıp kaybolurlar. Şu halde çekirdeklenmenin başlangıcında bir taraftan çekirdek denen kümeler oluşmakta, diğer taraftan bunların küçük boyutta olanları kaybolurken, kritik boyuta ulaşabilmiş olanlar artık varlıklarım sürdürerek ve hatta daha da büyüyerek konumlanın korumaktadırlar. Dolayısıyla donma, önce çekirdeklerime ve sonra çekirdeklerin büyümesi olmak üzere iki aşamada gerçekleşmektedir. Suyun donması sırasında, sıvı faz değişiminden dolayı serbest kalan enerji (donma gizli ısısı), donmakla olan kitlenin ısınmasına neden olur. Ancak serbest kalan bu enerji soğutucu ortam tarafından uzaklaştırıldığı sürece donan kitlenin sıcaklığı tüm materyal donana kadar donma noktasında, yani 0 C de, sabit kalır. Donma sırasında oluşan kristallerin boyutu donma hızına bağlıdır. Hızlı dondurma ile oluşmuş küçük buz kristalleri ancak düşük sıcaklıklarda stabil kalabilir. Eğer ortam sıcaklığı yükselirse, küçük kristaller kaybolarak, biraz daha büyük olanlar daha da büyürler. Bu olay, sistemin ulaştığı yeni sıcaklıkta tüm kristallerin stabil kalabileceği bir boyuta ulaşana kadar devam eder. Bir kısım kristallerin, küçük kristaller aleyhine bu şekilde büyümesine rekristalizasyon (Ostwald olgunlaşması) denir. Herhangi bir materyalin dondurulması sırasında materyalin sıcaklığında izlenen değişmelerle, uzaklaştırılan ısı miktarı bir grafiğe işlenirse donma grafiği (Şekil 9.2) elde edilir. 20 C deki su 0 C ye kadar soğutulurken 84 kj/kg ısı uzaklaştırmaktadır. Isının uzaklaştırılmasına devam edilince sıcaklığın 0 C nin bir miktar altına düştüğü, fakat donmanın başlamadığı görülür (A noktası). Bu olay aşın soğuma olup, nedeni çekirdeklenmedeki gecikmedir. Aşırı soğuyan su, belli, bir sıcaklığa düşünce, çekirdeklenme başlar ve bunu kristallerin büyümesi izler. Bu sırada serbest kalan donma gizli ısısı, ortamın sıcaklığım derhal suyun gerçek donma derecesi olan 0 C ye yükseltir (B noktası). Tüm kitlenin donması için, donma sonucu serbest kalan, 335 kj/kg ismin uzaklaştırılması gerekir. B-C aralığında uzaklaştırılan ısı, sadece kristalizasyon gizli ısısıdır. Bu ışırım hızla uzaklaştırılması, donma olayım hızlandırır. Buna göre donma boyunca ortam sıcaklığı 0 C de sabit kalır. Nihayet suyun tamamı donar (C noktası) ve ancak bundan sonra uzaklaştırılan ısı, 0 C deki buzun sıcaklığının

3 düşmesine neden olur. Buzun özgül ısısı 2.1 kj/kgk olduğundan C noktasından sonraki eğri, A noktasına kadar olan eğriden daha diktir. Basit bir çözeltinin donma eğrisi suyunkinden farklıdır. Çözelti soğutulunca, özgül ısısı suyunkinden düşük olduğundan, sıcaklık hızla düşer ve aşın soğuyarak A' noktasına erişir. Bu noktada donma başladığından, serbest kalan donma gizli ısısı, çözeltinin sıcaklığını o çözeltiye özgü donma noktasına (B1 noktası) yükseltir. Çözeltinin donma noktası, çözünmüş madde çeşidi ve konsantrasyonuna bağlı olarak 0 C'nin altındaki herhangi bir sıcaklıktır. Bir çözeltinin donmasında donan sadece sudur. Böyle olunca, B1 noktasında donma başlarken, çözeltideki bir kısım su, buz olarak ayrılır ve bu yüzden geri kalan çözeltinin konsantrasyonu daima yükselir. Ve çözeltinin donma noktası da buna bağlı olarak gittikçe düşer. Dolayısıyla B1- C eğrisi, bu olguya paralel olarak meyilli bir nitelik göstermektedir. Fakat sonunda çözeltinin konsantrasyonu, ancak bu sıcaklıktaki doyma noktasına kadar yükselebilir, bunun üstüne çıkamaz. Nitekim şekilde görüldüğü gibi çözelti, C1 noktasında doymakta ve bu yeni çözelti D1 noktasına kadar aşın soğuyarak serbest kalan kristalizasyon gizli ısısı nedeniyle sıcaklık, aynı şekilde E1 noktasına yükselmektedir. Bu nokta aynı zamanda çözeltinin doyma noktası olduğundan, çözelti artık daha fazla konsantre olamaz. Bu noktada donarak ayrılan su ile orantılı olarak, çözünmüş madde de kristalize olup ayrılır ve böylece geride kalan çözeltinin konsantrasyonu daima sabit kalır. E -F eğrisi boyunca buz ve çözünmüş madde karışık bir kitle oluşturarak kristalize olurlar. Çözeltinin konsantrasyonu değişmediği için donma artık sabit bir derecede devam eder ve bu nedenle E-F' eğrisi doğrusal bir eğri olarak belirir. Tüm kitle tam olarak donduktan sonra (F1) uzaklaştırılan ısı, kitlenin soğuyarak (G1) noktasına erişmesini sağlar. Donmuş çözeltinin özgül ısısı, saf buzun özgül ısısından daha küçük olduğundan Fl- G1 eğrisi A1 ye kadar olan eğriden daha dik olarak gelişir. Bir çözeltinin eriştiği sabit donma sıcaklığına (E1) ötektik nokta veya ötektik sıcaklık denir. Şayet çözücü su ise, kriyohidrik terimi de kullanılır. Yani, kriyohidrik nokta, sulu bir çözeltide çözünmüş madde ve suyun maksimum düzeyde kristalizasyonunun gerçekleştiği en yüksek sıcaklıktır. Şayet birden fazla, çözünmüş madde içeren bir çözeltinin donma grafiği incelenirse, tek madde içeren çözeltiye benzer ve fakat biraz daha karmaşık olduğu görülür. Böyle bir çözeltide de donma kuşkusuz 0 C'nin altında başlar. Donma ilerledikçe çözeltinin A ve B maddelerince konsantrasyonu artar ve donma sıcaklığı, artan konsantrasyona bağlı olarak gittikçe düşer. Nihayet çözelti önce, çözünmüş maddelerden birine doyarak, (örneğin; A maddesine doyarak)

4 birinci kriyohidrik noktaya erişir. Bu noktadan itibaren donan su ile orantılı olarak A maddesi de kristalize olup ayrılır. Artık, çözeltinin A maddesi açısından konsantrasyonu hiç değişmez. Ancak, çözelti henüz B maddesine doymamış olduğundan, bu süreçte çözeltideki B maddesinin konsantrasyonu da gittikçe artar ve bu nedenle birinci kriyohidrik derece sabit kalamaz. Nihayet çözelti B maddesine de doyar ve ikinci (son) kriyohidrik sıcaklığa erişilir. Donma bundan sonra bu sabit sıcaklıkla devam eder ve bu sırada donan suya eşdeğer miktarda A ve B maddeleri de birlikte kristalize olup ayrılırken, çözeltinin A ve B maddeleri bakımından konsantrasyonu sabit kalır. Nihayet olay sona erip tüm kitle donmuş olur. Gıdaların Donması Dondurma, genel olarak gıdanın oldukça düşük sıcaklık derecelerinde belirli bir merkez sıcaklığına erişinceye kadar soğutulması işlemidir. Donma ve çözülme prosesi kompleks bir olaydır ve donma işlemi tek bir faz değişim sıcaklığında gerçekleşmemekte, işlem bir sıcaklık aralığında olmaktadır. Gıda maddesi içerisinde bulunan su uygulanan dondurma sıcaklıklarında tamamen donmamakta, ancak termal merkez sıcaklığı -18 C ye düşürülen gıdaların çoğunluğunun içerisinde bulunan toplam suyun büyük bir kısmı donabilmektedir. Termal merkezde ulaşılan sıcaklık, ürünün raf ömrünü etkileyen biyokimyasal ve oksidatif bozulmalar ile fire değerlerinin minimuma indirilmesi açısından önem taşımaktadır. Dondurarak muhafaza işleminde dondurma, işlemin sadece bir ilk aşamasıdır. Dondurulmuş ürünlerin uygun koşullarda depolanması donmuş muhafazanın en önemli şartıdır. Gıdalardaki su, çok sayıda çözünmüş madde içeren bir çözelti niteliğindedir. Bu nedenle gıdalarda donma, belli bir derecede başlar, içerdiği çözünmüş maddelere bağlı olarak birçok kriyohidrik noktadan geçerek nihayet, en düşük kriyohidrik dereceye ulaşılır ve donma bu derecede sona erer. Ancak, gıdalarda çok sayıda ve değişik miktarlarda çözünmüş madde

5 bulunduğundan gıdaların donma grafiklerinde basit bir çözeltideki gibi belirgin kriyohidrik noktalar fark edilemez. Çeşitli kriyohidrik noktalar birbirini adeta maskelediğinden gıdaların donma grafikleri, kavisli bir eğri olarak ortaya çıkar. Gıda maddesinin dondurulması veya çözülmesi sürecinde sıcaklığın değişimi üç bölgede incelenmektedir. Çözme işleminin tersi olmak üzere, donma işleminde oluşan bu üç faz sırası ile aşağıdaki gibidir (Şekil). I. Ön Soğutma (Precooling) Periyodu: Gıda maddesinin başlangıçta sahip olduğu ilk sıcaklık derecesinden, donma noktası anına kadar soğutulduğu ve faz değişiminin oluşmadığı devredir. Bu devrede uzaklaştırılan ısı, gıdanın sıcaklığında düşüş şeklinde kendisini gösterdiğinden, hissedilir ısı olarak adlandırılmaktadır. II. Donma (Freezing) Periyodu: Gıdanın içerdiği serbest suyun buz haline dönüştüğü devredir. Bu devrede uzaklaştırılan ısı gıdada sıcaklık düşüşüne neden olmadığı için latent ısı (gizli ısı) olarak adlandırılmaktadır. III. Tempering (Post Cooling) Periyodu (Donma sonrası soğutma): Gıda içerisindeki suyun çoğunluğu donduktan sonra sıcaklığın düşürülmeye devam edildiği devredir. Bu devre başladığı zaman, gıdadan uzaklaştırılan gizli ismin miktarı, hissedilir ısının yanında ihmal edilebilecek kadar azalmıştır. Hissedilebilir ısının uzaklaştırılması, gıdanın termal merkezinde istenilen sıcaklığa ulaşılmcaya kadar sürekli bir şekilde devam eder. A-S:Gıda buz oluşmaksızın donma noktasının altına kadar soğutulur.

6 S-B: S noktasında kristalizasyon başlar, serbest kalan kristalizasyon gizli ısısı, sıcaklığın gıdanın donma noktasına kadaı artışa neden olur (B). İlk buz kristalinin oluştuğu aşamadır, B-C: Gizli ısı alınır ve buz oluşur. Fakat yaklaşık uçaklık sabit kalır, Bu aralıkta suyun ¾ ü kristalize olur. C-D: Bu aralıkta çözünenler aşırı doymadan dolayı kristalize olur ve açığa çıkan kristalizasyon gizli ısısı çözünen için, sıcaklığı ötektik noktaya çıkarır (D). D noktasından sonra oluşan her gram buz, donma noktasını düşüren donmuş faz konsantrasyonunun önemli derecede artmasından sorumludur. D-E: Su ve çözünenlerin kristalizasyonu devam eder. E-F: Bu aralıkta gıdanın sıcaklığı dondurucu sıcaklığına kadar düşer. Buraya kadar yapılmış bulunan açıklamalardan da anlaşılacağı gibi bir gıda maddesi, belli bir derecede donmaya başlamakta ve donma son kriyohidrik noktada tamamlanıp sona ermektedir. Şu halde donmanın tam olarak gerçekleşmesi için, her gıda maddesinin kendisine özgü son kriyohidrik noktaya kadar soğutulması zorunludur. Son kriyohidrik nokta her gıda için farklı olup, örneğin; etlerde -50 C ile -55 C arasında, yumurta akında -55 C dolaylarındadır. Birçok gıdanın ve özellikle meyve ve sebzelerin ticari amaçla dondurulup depolanmalarında genellikle -20 C dolaylarında sıcaklık uygulandığından, dondurulmuş gıdalarda son derece konsantre olmuş, fakat donmamış, ancak donabilir nitelikte9 sıvı fazının bulunduğu kolaylıkla anlaşılabilmededir. Başka bir deyişle dondurulmuş ticari ürünlerde daima donmamış ve fakat donabilir nitelikte su bulunmaktadır. Diğer taraftan gıda maddelerinde bulunan suyun bir kısmı, özellikle iyonlara ve elektrik yüklü diğer parçacıklara bağlı olarak bulunmaktadır. Bağlı su9 denen bu su, aynı zamanda bir çözücü olma niteliğinde de değildir. Hayvansal dokulardaki suyun yaklaşık % 8-10 u, meyve ve sebzelerdeki suyun yaklaşık % 6 kadarı bağlı sudur. Bitkisel Dokuların Donması Meyve ve sebze gibi bitkisel gıdalar hücrelerden oluşurlar. Bitkisel dokularda hücreler birbiri üzerine adeta paketlenmiş gibi aralıksız bir şekilde yığılmış değildir. Komşu hücreler arasında daima az veya çok boşluklar bulunmaktadır. Her hücre, çözünmüş maddeleri içinde tutan, yan geçirgen bir membran ile çevrilidir. Bir hücrede bulunan toplam suyun önemli bir kısmı stoplazma ve vakuolde yer almakla birlikte, hücrenin her tarafinda., hatta membranda, hücre duvarında ve hücreler arasındaki boşlukta daima su bulunmaktadır. Bitkisel bir doku

7 dondurulurken, suyun kristal izasyonu ilk önce hücreler arası boşluklarda gerçekleşir. Çünkü buralardaki çoğunluğu hava olan gazda bulunan su buharının, soğuması ile yoğunlaşması sonucu oluşan su, sadece çok seyreltik bir çözelti niteliğindedir. Yani, oluşan bu çözeltinin konsantrasyonu, hücre içindeki sıvının konsantrasyonundan çok düşüktür. Bu nedenle donma sırasında ilk buz kristali oluşumu; donma noktası, hücre içindeki sıvıya göre daha yüksek olan bu sıvıda başlar. Ayrıca, hücre duvarı ve hücre zan da hücre içinde buz oluşumuna karşı bir direnç oluşturmakta ve hücre içinde kristalizasyonun başlamasını zorlaştırmakta ve geciktirmektedir. Hücre dışında buz kristallerinin oluşumu ve bunların büyümesi sonucunda, hücre dışında, başlangıçtakinin aksine hücre içi sıvısına kıyasla konsantrasyonu daha yüksek ve donmamış durumda, yoğun bir çözelti oluşur. Böytece hücre içindeki donmamış sıvı ile hücre dışındaki donmamış sıvı arasında gittikçe artan bir ozmotik basınç farklılaşması oluşur. Yani, hücre içi sıvısının su buharı basmcı, hücre dışındaki sıvının su buharı basıncından gittikçe daha yüksek olur. Bu nedenle ozmotik basınç bakımından bir dengeye ulaşmak için hücre içinden hücre dışma su buharı transferi gerçekleşir ve bu olay, hücre dışındaki kristallerin daha da büyümesini sağlar. Bu olaylar sonucunda, hücre öz suyunu kaybederek adeta kurur bir hal alır ve hücre içi sıvısının yoğunluğu gittikçe artar. Buna bağlı olarak hücre içi sıvının donma noktası daha da düşer ve hücre içinde buz kristali oluşma şansı nerdeyse kaybolur. Bitkisel dokuların donması sırasında bu değişimler, dondurma yavaş bir hızda yapılırsa daha yüksek düzeyde gerçekleşir. Dondurma hızlı yapılırsa, buz kristalleri yine öncelikle hücre dışında oluşur ve hücre dışı sıvısının konsantrasyonu hızla yükselir. Ancak hızlı dondurmada hücre içindeki su, hücre dışına aynı hızla transfer olamaz ve böylece bulunduğu yerde aşırı soğumaya uğrar ve hücre içinde de çekirdeklenme başlar. Başka bir ifadeyle hızlı soğutma ile hücre içi suyunun dışarıya çıkarak hücre içi sıvısının yoğunlaşmasına firsat verilmeden hücre içinin donma noktasına hızla erişilmesi ve hücre içinde de donmanın sağlanması gerçekleşebilmektedir. Hücre içindeki sıvıda çekirdeklenme genellikle, zardaki porlardan birinde oluşmuş kristalin büyümesi sonucunda gerçekleşir. Hücre sıvısında çekirdeklenme başladığı zaman, zaten aşın soğumuş durumdadır. Bu nedenle de donma başladığı zaman, ortamın ısısı, aşın soğuma sonucu peşinen uzaklaştrılmış bulunduğundan, donma olayı neredeyse bir anda gerçekleşir. Hayvansal Dokuların Donması

8 Bitkisel hücrelerin bir hücre duvarı - hücre zan kompleksi içermeleri ve hayvansal hücrelerde sadece bir hücre zan bulunmasından dolayı hayvansal dokuların donması bitkisel dokuların donmasından farklıdır. Bitkisel hücrelerin hücre duvarı - hücre zan kompleksi, hücre içinde buz kristalleri oluşumunda önemli bir engel gibi davranırken, hayvansal hücre zarlarının bu engelleme rolü çok sınırlıdır. Bu yüzden hayvansal dokuların donmasında hücre içi buz kristalleri oluşumu, bitkisel hücrelere göre çok daha kolaydır ve hayvansal dokuların dondurulmasında, donma hızının donan dokunun niteliklerine etkisi daha sınırlıdır. Ayrıca, hayvansal dokuların hücre zarının, yan sert bitkisel hücrelere kıyasla esnek bir nitelikte olması da donmadan daha az etkilenmesini sağlamaktadır. Gıdaların Donma Noktası Bir çözeltinin veya bir gıdanın donma noktası denince donma başlangıç noktası, yani ilk buz kristallerinin oluştuğu sıcaklık anlaşılır. Bilindiği gibi çözeltilerde ve gıdalarda donma olayı donma noktasında başlar, gittikçe düşen sıcaklıklarda devam eder ve nihayet ötektik nokta denen özel bir sıcaklıkta son bulur. Gıdaların donma noktalan, deneysel yolla veya geliştirilmiş bazı eşitliklerle saptanabilmektedir. Meyve ve sebzeler için donma noktası: Et için donma noktası: Tf= m, (m«)2 Tf = m, Tf: donma noktası, (K) ms: Üründeki suyun kütle fraksiyonu GIDALARIN DONDURULMASINDA KULLANILAN YÖNTEMLERİ Gıdaların dondurulmasında, birbirlerine göre bazı üstünlüklere sahip olan değişik dondurma yöntemleri kullanılmaktadır. Kullanılacak dondurma yönteminin belirlenmesinde, dondurulacak ürün özellikleri, depolama koşulları, depolama sonrası kullanım şekli gibi faktörler göz önünde bulundurulmaktadır. Gıdaların dondurulmasında kullanılan yöntemler: Mekanik Yöntemler: Soğuk hava deposunda dondurma Hava akımında dondurma Akışkan yatak dondurucular Spiral bant dondurucular Plakalı dondurucular

9 Bantlı dondurucular Kontakt bant dondurucular Daldırarak dondurma Kriyojenik Yöntemler: Daldırarak dondurma Daldırarak ve spreyleyerek dondurma Spreyleyerek dondurma Kriyojenik Hava akımlı dondurma Mekanik - Kriyojenik Dondurucular: Karbondioksit kullanılan dondurucu sistemler Sıvı azot kullanılan dondurucu sistemler 1. Mekanik Metotlar 1.1. Soğuk Hava Deposunda Dondurma En yaygın uygulanan, değişik cihazlardan yararlanılan ve birçok modifikasyonu olan en eski yöntemdir. İzole edilmiş bir soğuk odada bir soğutma sisteminin evaporatörü vasıtası ile dondurma yapılmaktadır. Bu tip dondurucular, kullanılan ekipman açısından basit ve ucuzdur. Hava hareketi durgun veya bir fan yardımıyla sınırlı bir hava hareketi sağlanabilmekledir. Durgun havada dondurma yönteminde soğuk odanın sıcaklığı -15 C ile -30 C arasındadır. Hareketsiz veya çok yavaş hareketli bir hava ile dondurulan materyalin yüzeyi arasında sağlanan ısı transfer katsayısı çok düşük olduğundan, dondurulmak üzere depoya konan gıda maddesinin donması çok uzun sürmektedir. Donma süresi dondurulan materyalin büyüklüğüne, ambalajın niteliğine, dondurulan birimler arasındaki boşluğa ve bunun gibi değişik faktörlere bağlı olarak birkaç saatten bir haftaya kadar değişebilir. Bu metot esas olarak balık dondurmak amacıyla uygulanmış olup halen aynı amaçla yaygın olarak kullanılmaktadır Hava Akımında Dondurma Bu tip dondurucularda soğuk hava, dondurulan gıda maddesi ile evaporatör arasında hızla dolaştırılır. Güçlü fanlar yardımıyla hareket ettirilen hava, soğutma spiralleri üzerinden geçerken soğur ve sonra dondurulan ürün üzerinden 5-10 m/s hızla geçer. Bu yöntemde, yüzey ısı transfer katsayısı arttığından, gıda maddesinin dondurulması oldukça hızlıdır. Hava sıcaklığı

10 -30 C ile -45 C arasında değişmektedir. Hava akımında dondurma yönteminde değişik donduruculardan yararlanılır. Bunlardan en yaygınlarından biri, tünel dondurucularıdır. En basit tip tünel dondurucularda, dondurulacak ürün ya bir bantla taşınır veya üst üste yerleştirilmiş kerevetlerden oluşan araba dizilerinin tünel içindeki hareketiyle taşınır. Buna göre tünel dondurucular genellikle ya bantlı veya kerevet-vagonlu olabilmektedir. Bant veya vagonların tüneldeki hızı, donma süresine göre ayarlanır. Tünel dondurucularda, dondurulacak ürün tünele, raylar üzerinde Kaydırılan arabalarla veya delikli bantlar üzerinde sokulur. Bu tip dondurma sistemlerine ileri doğnı itişli tünel veya taşıyıcılı tünel dondurucular da denilmektedir. Ayrıca ileri düzeyde mekanize edilmiş taşıyıcılı tünel dondurucular da vardır. Bu tip dondurucular biri altta diğeri onun üstünde 2 tünelden oluşmaktadır. Dondurulacak ürün tüneli taşıyıcılar içinde aşmaktadır. Üst tüneli dolaştıktan sonra bir elevatör sistemiyle alt tünele inen taşıyıcılar bu defa geriye doğru hareket ederek, yine tünelin giriş yönündeki boşaltma ucuna ulaşmaktadır. Diğer taraftan dondurulan ürün ile soğuk havanın tünel içindeki hareketleri paralel veya zıt olabilir. Aym sistemler kurutma teknolojisinde de kullanılmaktadır. Zıt akımlı tünellerde dondurulacak ürün, tünelin bir tarafından soğuk hava ise diğer (zıt) ucundan verilir. Buna göre sıcaklığı, en düşük hava, tünel çıkışında donmuş ve sıcaklığı çok düşmüş ürünle karşılaşır ve sonra tünel girişine doğru yoluna devam eder. Böylece bu sistemde donma, aşamalı olarak gerçekleşir ve tüm donma süresince herhangi bir noktada ürünün sıcaklığının yükselmesi söz konusu değildir. Ancak bu tip uygulamada soğuk hava, tünelin karşı ucuna yani, ürün giriş ucuna ulaşana kadar ısınır ve sıcaklığı yükselir. Kısmen ısınmış bu hava, tekrar evaporatöre dönecek ve yeniden soğutulacaktır. Ancak bu durumda evaporatör sıcaklığı ile hava sıcaklığı arasındaki fark çok artmış olacağından, evaporatörlerde karlanma da artacaktır, özellikle uzun tünellerde, bu sorundan dolayı, tünellerde hava hareketi ürün hareketine çapraz olarak düzenlenir. Bu uygulamada, hava hareketi çok kısa mesafede gerçekleştiğinden, fazla ısınmaz ve sıcaklık farkı da fazla artmamış olur Akışkan Yatak Dondurucular Birçok ürünün bir bütün haline gelmeden tek tek (bireysel) parçalar halinde dondurulması istenmektedir. Bu nedenle, bantlı donduruculardan, bandın altından verilen çok yüksek, hızlı havanın, bant üzerindeki parçacıkları adeta havada yüzer halde tutmasına dayanan akışkan yatak dondurucu" denen farklı bir sistem geliştirilmiştir. Akışkan yatak dondurucularda, hava içinde yükselen ve geri düşen adeta kaynamaya benzer bir hareket yapan

11 parçacıkların her biri, tüm yüzeylerinden soğuk hava ile tam olarak temas sağlayarak süratle donarlar. Akışkan yatak dondurucular gerçekte bant dondurucudurlar. Akışkan yatak dondurucularda, diğer hava dolaşımlı dondurma sistemlerinin hiçbirinde ulaşılamayan hızlı bir dondurma gerçekleşebilmektedir. Bu yöntemde sadece hızlı bir donma sağlanmakla kalmayıp, ayrı zamanda her parça ayrı ayrı donduğundan; ürünün bir blok haline dönüşmesi önlenmektedir. Bu şekilde her parçanın ayrı ayrı donmasına bireysel hızlı dondurma (Individually Quick Freezing) denir. Akışkan yatak dondurma sisteminde bir ürünün dondurulabilmesi için, ürünün belli bir hava akımında akışkanlık kazanabilecek kadar küçük daneler veya parçalar halinde olması gerekmektedir. Dolayısıyla, bu yöntem ile dondurma yöntemi çilek, kiraz, vişne gibi bütün haldeki meyvelerle, dilimlenmiş şeftali, armut, elma, yarıya bölünmüş kayısılara ve kuşbaşı şeklinde doğranmış etlere haşan ile uygulanmaktadır. Akışkan yatak dondurucular, dondurulacak parçaların iriliğine göre, 5-10 cm kalınlıkta bir tabaka oluşturacak şekilde beslenirler. Bu yöntemde donma süresi çok kısa olup, parça iriliğine göre 3 ile 15 dakika arasmda değişmektedir. Akışkan yatak dondurucularda 5-10 cm/h lik bir donma hızına erişilebilmektedir. Oysa, soğuk hava akımında dondurma sistemlerinde donma hızı, 1-3 cm/h civarındadır. Akışkan yatak dondurucuların bazı avantajlan: Daha etkili bir ısı transferi ve daha hızlı donma oranına ulaşılmaktadır. Üründe daha düşük bir dehidrasyon meydana gelmektedir. Sık sık defrost ihtiyacı doğmamaktadır. Donma zamanı kısa olduğu için nem kaybı azalmaktadır. Akışkan yatak dondurucuların en önemli olumsuz yönü büyük ve üniform olmayan ürünlere uygulanabilir olmayışıdır.

12 1.4. Spiral Bant Dondurucular Dışa karşı yalıtılmış bir kabin içinde yer alan ve toplam uzunluğu m arasında değişen bir bant, dondurulacak ürünü spiral bir yol izleyerek aşağıdan yukarı doğru taşırken, soğuk hava banda çeşitli yönlerden verilmektedir. Bandın spiral şekilde oluşu, az yer işgal eden, daha küçük bir sistemde, büyük miktarda hammaddenin dondurulmasına olanak vermektedir. Spiral bantlı dondurucular özellikle, plakalı dondurucularda dondurulma olanağı bulunmayan, ambalajlanmış haldeki şekilsiz ürünlerin dondurulmasında kullanılmaktadırlar. Bu dondurucularda dondurulan ambalajlanmamış ürünlerde su kaybına bağlı ağırlık azalması, % 0.6 ya kadar düşürülebilmektedir Plakalı Dondurucular Plakalı dondurmada, içten soğutulan iki plaka arasına yerleştirilen ambalajlı ürünün, plaka ile teması sağlanarak dondurulur. Dondurulan ürün ile soğumayı sağlayan soğutucu arasında plaka bulunduğundan, bu yöntem indirekt kontakt metoduyla dondurma olarak da adlandırılır. Bu yöntemde dondurmada, dondurulacak ürünün şekli plaka ile tam temasa uygun olmalıdır. Düzgün şekilli ve aynı boyutlu, ambalajlı ürünler plaka üzerine yan yana yerleştirilip, diğer plakanın da üstten oturtulmasıyla, iki yönden hızlı bir dondurma sağlanabilmektedir. Plakalar dört köşe, içi boş alüminyum raflardan ibaret olup, içinde soğutucu akışkanın buharlaştığı üniteler bulunur. Böyle bir düzenlemede ısı iletimi, önce plaka ve sonra spiral materyali üzerinden iki engeli aşarak gerçekleşir. Bu nedenle daha gelişmiş bazı sistemlerde plaka içinde spiral bulunmaz, bunlarda plakanın içi adeta spiral şeklinde yapılmıştır. Refrijerant doğrudan bunun içinde dolaşır ve böylece ayrıca yer alan spiral materyalinin ısı transferini engellemesi ortadan kaldırılmış olur. En yaygın plakalı dondurucular, aşağıdaki şekilde (Şekil 9.10) görüldüğü gibi, çoklu plakalı dondurucu tipinde olanlardır. Bunlarda, iyi izole edilmiş bir kabin içinde, raf şeklinde birçok plaka üst üste yer almaktadır. Her plakanın bir ucu esnek plastik bir boru ile refrijerant ana besleme hattına, diğer ucu ise yine esnek plastik bir boru ile refrijerant ana dönüş hattına bağlanmıştır. Böylece plastik esnek boru bağlantıları ile plakaların, kolaylıkla aşağı yukarı oynaması gerçekleşmektedir. Hidrolik bir düzenle en alttaki iki plaka arası açılıp, paketlenmiş gıda maddesi buraya tek sıra olarak dizilir. Sonra yukarı doğru diğer plakaların aralan aynı şekilde doldurulur. En sonunda, raf dizisi hidrolik bir düzenle hafif bir basınçla ( bar) yavaş bir şekilde sıkıştırılır. Plakalı dondurucuların etkinliği, plaka ile gıda arasındaki temas derecesine bağlıdır ve bu sıkıştırmanın bu açıdan büyük önemi vardır. Yine aynı nedenle,

13 ambalajların, içinde boşluk kalmaması için ambalajlar biraz daha fazla doldurulur ve sıkıştırma sonucu ambalaj içine iyice yerleşip ısı transferi hızlanır. Et ve balık gibi ambalaj içinde bütün bir kitle oluşturan ürünler, aralarında boşluk kalan parçacık halindeki meyvelere ve sebzelere kıyasla daha çabuk donmaktadır. Plakaların sıkıştırmadan zarar görmemesi için plakalar araşma iki taraflı standart kalınlıkta mesafe ayarlayıcı engeller yerleştirilir. Bu engelleyicilerin kalınlığı, dondurulacak üründen çok az kısadır. Dolayısıyla sıkıştırma ancak bu kalınlığa kadar gerçekleşir. Plakalar yukarıda açıklanan şekilde yüklendikten sonra kabin kapılan kapatılır ve soğutucu istenen derecede çalıştırılır. Donma süresi, ambalajla plakanın temas derecesi, ambalaj materyalinin cins ve kalınlığı, dondurulan ürünün çeşidi, başlangıç sıcaklığı ve ambalajlı gıdanın kalınlığına göre değişir. Genel olarak 5 cm kalınlıktaki ambalajlı gıdalar yaklaşık 105 dakikada donmaktadır. Yatay plakalı dondurucuların sürekli çalışanları da vardır. Bu sistemde tüm plakalar bir elevatör sistemiyle aşağı ve yukarı hareket edebilmektedirler. Bir plaka çifti yükleme seviyesine gelince, plakalar aralanmakta, dondurulmak üzere hazırlanmış bulunan ve taşıma konveyörü üzerinde toplanmış olan bir grup paketlenmiş ürün, bu iki plaka arasına itilerek yerleştirilmektedir. İtme sırasında bir önceki dondurma devresinde bu plakalar arasında dondurulmuş paketler, plaka çiftinin diğer tarafından çıkarılarak donmuş ürün taşıma konveyörü ile uzaklaştırılmaktadır. İndirekt kontakt metodu sıvı ve püre halindeki gıdaların hızlı dondurulmasında da yaygın olarak kullanılmaktadır. Ancak bu amaçla kullanılan cihazların konstrüksiyonu biraz farklıdır. Bu amaçla kullanılan soğutulmuş yüzey, silindir şeklinde olup (Şekil 9.9), dıştan yalıtılmıştır. Bu cihazların ekseni konumundaki mil ile soğutma silindirinin iç yüzeyi arasında çok dar bir boşluk bulunur. Mil üzerinde, silindir iç yüzeyini adeta sıyıran kazıyıcılar bulunmaktadır. Soğutucuya verilen sıvı veya yan sıvı haldeki ürün, silindirin iç yüzeyi ile mil arasındaki boşlukta çok ince bir film oluşturur. Bu sırada donma gerçekleşirken, milin dönüşüyle mil üzerindeki kazıyıcılar, silindir yüzeyini kazıyarak temizler. Bu suretle donma yüzeyi, ısı transferini engelleyen buz tabakasından temizlendiği gibi, bu sırada dondurulan ürünün hızla karıştırılması donmayı çabuklaştırmaktadır. Bu sistemde donma sadece birkaç saniye sürmektedir. Dondurucuya sıvı veya püre halinde verilen ürün burayı terk ederken, sıvı-kar karışımı halindedir. Yüzden sıvıkar karışımı halinde alman ürün ambalajlandıktan sonra soğuk hava dondurucularında istenen dereceye kadar dondurularak depolanır. Endüstride bu uygulama ile dondurma üretimi de yapılmaktadır.

14 Sıvı veya yan sıvı gıdalarda kullanılan bir diğer indirekt kontakt dondurucu tipi ise sürekli kontakt-bant donduruculardır. Bu sistemde gıda, çelik malzemeden yapılmış sonsuz iki bant arasına sandviç gibi alınarak dondurulmaktadır. Alttaki bant oluklu, üstteki bant ise düzdür. Bantların birlikte hareketiyle, aralarındaki sıvı gıda hem ileriye doğru taşınır ve hem de donma gerçekleştirilir. Bantların birbirinden ayrıldığı noktada, sıvı gıda donmuş tabaka halindedir. Daha sonra bir şekil verme işleminden geçirilerek sistemi terk eder ve sıvı gıda sanki bireysel dondurma yapılmış parçacıklara dönüşür. Bu tip dondurucular, meyve ve sebze pulpları, çorbalar ve çeşitli soslar gibi sıvı ve yarı sıvı ürünlerin dondurulmasında kullanılmaktadır Bantlı Dondurucular Bantlı dondurucular cebri hava akımlı tünel dondurucuların bir modifikasyonudur. Sistem, uzun bir paslanmaz çelikten ibaret hareketli taşıcı bant, bandı hareket ettiren iki adet büyük çaplı tambur bant ve bant altına yerleştirilmiş birkaç tavadan oluşmaktadır. Yaklaşık -40 C deki soğuk tuzlu salamura bandın altından sürekli olarak spreylenir ve salamura daha sonra soğutulmak üzere amonyaklı soğutma sistemine geri sirküle edilir. Soğutma sisteminin etkinliğini ve kapasitesini artırmak için soğuk hava yada kriyojenik gaz spreyi de daha fazla soğuk eidesi için kullanılabilir. Soğuk hava yada gaz ürünün taşınma yönüne zıt yönde ve yüksek hızda hareket eder. Ürün bandın baş kısmından verilir ve bant boyunca kondüksiyon ve konveksiyo ısı transfer ile dondurulur. Bantlı dondurucular çok yönlüdürler ve uygulamaya bağlı olarak fiyat değişmektedir. Bu sistemler sıvı gıdaların yanı sıra köfte, karides, hamburger, sebze, pizza ve yarı katı diğer gıdaların dondurulmasın da kullanılabilmektedir Kontakt bant kurutucular Bu sistemde paslanmaz çelik yada polietilen bant ve minimum dehidrasyon kayı ile hızlı bir şekilde dondurma sağlamak için yatay hava hareketi kullanılmaktadır. Bu dondurucular tek veya çift bantlı olarak tasarlanmıştır. Kontakt bant dondurucular, özellikle ince ürün tabakalarım veya meyve pulpları, yumurta sarısı, soslar, çorbalar, marine edilmiş tavuk paçaları, işlenmemiş et, balık ve kabartılmış hamur gibi yapışkan karakterli, ıslak, yumuşak ve yüksek nemli gıdaların dondurulmasında kullanılmaktadır. Burada ürün ile soğuk bandın bizzat teması söz konusudur. Bu dondurucular, genelde gıdaların ön dondurulmasında kullanılmaktadır. Özellikle yapışkan ve yumuşak karakterli ürünler bu sistemde ön dondurulduğu zaman daha sonraki dondurma sistemlerine yapışmadan kolayca dondurulabilirler.

15 Kontakt bant dondurucuların çalışma prensibi oldukça basittir. Sürekli bir teflon bant, soğutucu olarak sıvı amonyak yada soğuk hidrojenin kullanıldığı, dondurucu plakalar üzerinden geçer. Ürünler soğuk yüzeyde temas halinde geçtiği zaman, ürün tabam çok hızlı soğur ve böylece ön dondurma gerçekleştirilir. Daha sonra ön donması tamamlanan ürün ya spiral dondurucu veya başka bir dondurucuda dondurulabilir Daldırarak dondurma Daldırarak dondurma yöntemi, ambalajlanmış veya ambalajlanmamış gıda maddesinin düşük derecelere kadar soğutulmuş uygun bir sıvıya daldırılması veya bu sıvının ürün üzerine püskürtülmesi ile yapılır. Daldırarak dondurmada kullanılan sıvılardan en yaygınlan; salamura, tuz çözeltisi, şeker şurubu ve gliserol çözeltileridir. Ürünün ambalajlı olması durumunda, soğutucu ile soğutulan arasında bir engel bulunduğundan, bu tip daldırarak dondurma uygulaması bazılarınca indirekt kontakt metodu olarak kabul edilmektedir. Ambalajsız gıdaların daldırılarak dondurulmalarında, gıda maddesi ile dondurucu arasında mükemmel bir ısı iletimi sağlanmakta ve böylece hızlı bir donma gerçekleşmektedir. Belirgin bir şekli olmayan birçok ürünün bu yolla başarı ile dondurulması sağlanmaktadır. Ayrıca parçacık halindeki ürünler bu yöntemle bireysel olarak dondurulabilmektedirler. Soğuk hava akımında dondurmada olduğu gibi, hava ile sürekli bir şekilde temas söz konusu olmadığından özellikle oksidasyona duyarlı ürünlerde daha iyi sonuç alınmaktadır. Kullanılan dondurucularda düşük bir donma derecesine ulaşabilmek için bu çözeltilerin yeterli bir konsantrasyonda olması gerekir. Salamura ile en çok -21 Cye kadar inmek olanaklıdır. Nitekim % 23 sodyum klorür içeren bir salamuranın ötektik noktası -21 C dir. Sakkaroz şurubuyla da en çok -21 Cye inilebilmektedir. Gliserolün sudaki % 67'lik çözeltisi ile, -47 C ye kadar inilebilmektedir. Bu yöntemde, şayet gıda sızdırmaz bir ambalaj ile ambalajlanmamış ise, dondurucunun (frizantm) gıdaya bulaşması önemli bir olumsuzluktur. Diğer bir olumsuzluk ise frizantın periyodik olarak değiştirilme zorunluluğudur. Bu olumsuzluklara karşı, dondurmada yüksek bir

16 yüzey ısı transfer hızına ulaşılabilmesi, daha az masraflı ve güvenli bir uygulama olması, dondurulan gıdanın nem kaybetmemesi ve soğuk havada dondurmada olduğu gibi bir defrost sorunu bulunmaması, yukarıda değinilmiş bulunan olumlu yönlerine ek olarak sayılabilecek diğer avantajlardır. Bu yöntem, günümüzde özellikle balıkların dondurulmasında kullanılır. 2. Kriyojenik Dondurma Metotları Kriyojenik dondurmada, herhangi bir soğutma sistemine gerek bulunmamakta ve donma doğrudan bir kriyojenden yararlanılarak sağlanmaktadır. Kendi termodinamik nitelikleri nedeniyle soğutma potansiyeline sahip bileşiklere kriyojen denir. Kriyojen madde, soğutulan materyalden ısı absorbe ederek faz değiştiren bir refrijeranttır. Bazı kriyojenlerin özellikleri aşağıda gösterilmiştir. Gıdaların dondurulmasında sadece sıvı azot ve sıvı karbondioksit kullanılmaktadır. Daha önce kullanılan kloroflorokarbonlar, ozon tabakasına olumsuz etkileri nedeniyle, günümüzde artık kullanılmamaktadır. Bu yöntemde, gıdalar doğrudan sıvı azot, CO2 veya bunların buharı ile muamele edilerek, donma gerçekleştirilmektedir. Bu kriyojenler, basınç altında sıvılaştırılmış halde satın alınmakta ve işletmedeki tanklara nakledilerek özel koşullarda depolanmaktadır. Dondurucuda kullanılan bu kriyojenler, işlevini tamamladıktan sonra 0 C ile -50 C arasında sistemi terk ederek atmosfere karışmaktadır. Geri kazanılıp tekrar kullanılmaları yaygın bir uygulama değildir. Kriyojenik maddelerin kaynama derecesinin çok düşük olması, birçok gıdada bu yöntemin kullanımını sınırlandırmaktadır. Düşük kaynama derecesi, termodinamik açıdan bir avantaj olsa da, donma sırasında gıdanın çatlaması, parçalanması gibi mekanik olarak zedelenmelere yol açması önemli bir olumsuzluktur. Bu açıdan, katı CO2 (kuru buz), sıvı azota göre daha avantajlıdır. Ancak kuru buzun, dondurulacak materyalle yeterli bir temas sağlamaması durumunda bu avantaj yeterli olmamaktadır. Kriyojenik dondurma ile sabit bir evaporatör ile dondurma arasında oldukça fark vardır. Sabit bir eveporatörden oluşan bir mekanik dondurma yöntemi ile kriyojenik dondurma yöntemlerinde, ürün ve soğutucu sıcaklık farkları Şekil 9.14 de gösterilmiştir. Kriyojenik dondurma yöntemini klasik (yavaş) dondurma yöntemlerine gön önemli üstünlüleri vardır. Bunlar: -Donma zamanı oldukça kısadır. -Bu yöntemde nem ve aroma kayıpları çok azdır. -Donma, prosesi süresince buz kristali oluşumu azdır.

17 -Ekipman gereksinimi az ve basittir. -Dondurucu ekipman az yer kaplamaktadır. -Hücreye minimum zarar verilmektedir. -Düşük sermaye yatırımı, elektrik maliyeti ve risk faktörüne sahiptir. -Hızlı kurulum, kullanışlılık ve taşınabilir özelliktedir. -Esnek ve çok yönlü bir sistemdir. -Dondurma işleminde yüksek ısı transferi sağlanır. Kriyojenik dondurma, ilke olarak küçük ve orta boyutlu ürünlere uygulanmaktadır. İri boyutlu gıdalarda, kendi içindeki ısı transferinin uzun sürmesi, kriyojenik dondurmada beklenen donma hızını yavaşlatmaktadır. Kriyojenik dondurmada en yaygın kullanılan kriyojenik refrijerant sıvı azottur. Sıvı azot, havamn sıkıştırılıp basınç altında sıvılaştırıldıktan sonra, özel bir valften yararlanılarak adeta damıtma benzeri bir işlemle elde edilmektedir. Bu şekilde elde edilmiş sıvının kaynama derecesi -196 C dir. Çok iyi ısı yalıtımı yapılmış bir kapta saklanırsa atmosferik basınçta, sıcaklığı -196 C olan bir sıvı olarak saklanabilir ve bu sırada sınırlı bir buharlaşma gerçekleşir. Bu nedenle endüstride iyi yalıtılmış tanklarda depolanır C nin üzerindeki sıcaklıklarda saklanmak gerekirse, tanklarda yüksek basınç altında bulundurulmalıdır. Sıvı N2 atmosferik basınçta -196 C'de hafif bir şekilde kaynarken, yaklaşık kj/kg buharlaşma gizli ısısı absorbe ederek, -196 C'de N2 gazına dönüşerek faz değiştirir. Şu halde dondurma işleminde 1 kg N2 'nin buharlaşma gizli ısısı yardımıyla kj ısı uzaklaştırabilmektedir Püskürtmeli Kriyojenik Dondurucular Ürünlerin direk olarak sıvı azota daldırılmalarının ürünlere zarar verdiği durumlarda bu yöntem kullanılır. Sıvı azotun ürünlerin üzerine püskürtülmesi ile ürünlerin zarar görme riskini azaltır. Spiral püskürtmeli kriyojenik dondurucular ve püskürtmeli kriyojenik dondurma tüneli dondurucuları bu yöntemle çalışmaktadır. Küçük sıvı azot damlacıkları ürünlerin üzerinde buharlaşırken, onu hızla soğutup dondurur. Bu tip dondurucularda kullanılan küçük sıvı azot damlacıkları buharlaşma yüzey ısı transfer katsayısını yüksek düzeyde tutmaktadır. Bunun nedeni de sıvı-katı temasının çok iyi gerçekleşmesinden kaynaklanmaktadır. Genel olarak kriyojenik dondurma tüneli dondurucularında üç kısım bulunmaktadır, tik kısımda giren ürünlere buharlaşmayla oluşan azot gazının fanlar yardımıyla tünelde hareketi sağlanarak ön soğutma uygulanır. İkinci kısımda bant üzerindeki ürünlere sıvı azot püskürtülerek donma işlemi gerçekleştirilir. Uygulanan sıvı azot damlacıklarından buharlaşamayanlar bandın

18 altındaki haznede toplamr ve tekrar püskürtme sistemine verilir. Son kısımda ise ürünün sıcaklığı dengelenerek tünelin sonundan dışan alınır. Sıvı azot, dondurulacak gıdaya bandın çıkış ucuna yakın bir yerden sprey olarak uygulanır. Damlacıkların, gıdanın ısısını absorbe ederek buhar fazına dönüşmesi ile oluşan soğuk azot gazı, tüneldeki fanlar yardımıyla tünelin besleme ucuna doğru üflenir ve tüneli -18 C ile -20 C civarında terk eder. Bu sistemde sıvı azotun soğutma kapasitesinden maksimum düzeyde yararlanılabilmektedir. Bu sistemlerde yüksek basınç alündaki sıvı CO2 de kullanılabilmektedir. Sıvı CO2 atmosferik basınca bırakılınca % 50'si kuru buz denen -79 C deki katı faza, % 50 si ise -79 C deki soğuk gaza dönüşür. Kuru buz, ya sıvı formda yada katı formda piyasaya sürülmektedir. Sıvı CO2 ise, ya normal çevre sıcaklığında ve çok yüksek basınç altında veya çok düşük sıcaklıkta orta düzeyde basınç altında saklanmalıdır. 1 kg kuru buz, atmosfer basıncı altında yaklaşık 572 kj süblimasyon ısısı absorbe ederek -79 C'de gaz fazına dönüşmektedir. Sıvı C02 de sıvı azot gibi gıda üzerine sprey olarak uygulanır. Sıvı karbondioksit, oluşan kuru buzun bant sonuna kadar süblimasyonunun gerçekleşmesi için yeterli zaman olması için, sıvı azota göre, dondurma bandının giriş ucuna daha yakın olarak uygulanır Daldırarak Kriyojenik Dondurma Ürünlerin, sıvı azot gibi, su bazlı olmayan soğutucu akışkan içerisine daldırılması ile hızlı dondurma işlemine tabi tutulmasıdır. Sıvı azotun sahip olduğu çok düşük ( 196 *C) derecesi, içerisine daldırılan çok yüksek yüzey ısı transfer katsayısı ile kısa sürede donmalarını sağlar. Sıvı nitrojen daldırma dondurucusu genellikle kriyojenik tünel dondurmadan ünce IQF ürünlerinin dış taraflarında sert bir tabaka oluşumunu sağlar. IQF (Individual Quick Frozcn - Bireysel Hızlı Dondurma), gıdaların teker teker dondurulduğu ileri bir sistemdir. Daldırarak kriyojenik dondurmada, uygulanan hızlı

19 Dondurma ile minimum düzeyde nem kaybı, kokunun iyi şekilde korunması, aşın donmanın engellemesi ve sıvı azotun yaklaşık oda sıcaklığında gaz halinde çıkmasıyla sıvı azotun tüketimini minimuma indirmesi sağlanır. Daldırarak dondurma işleminde ürünler sıvı refrijerantın bulunduğu havuza taşınır. Burada sıvı refrijerant gaz haline dönüşürken üründen ısı absorbe eder. Böylelikle ürünün çok kısa sürede donması sağlanır. Daldırarak dondurucularda en önemli sorun sıvıdan gaz haline geçen refrijerantın tekrar geri kazanılamaması ve pahalıdır. Gıda, sıvı N2 ye daldırıldığı zaman, aralarında büyük bir sıcaklık farkı olduğu için, bu sıcaklık farkının ısı transferini artırması ile donma hızla gerçekleşir, dondurulan gıdanın dış katmanları ile iç kısımları arasında da büyük bir sıcaklık gradiyeni oluşur ve bu durum, materyalin çatlayıp yarılması ve hatta parçalanmasına neden olabilir. Kriyojenik dondurmada karşılaşılan bu tip olumsuzlukların sınırlanması, dondurma işleminin kontrol altında tutulmasıyla sağlanabilmektedir. Bu amaçla, sadece yüzeyde belli bir katmanın dondurulmasından sonra işleme son verilmesi ve materyalin tümünün dıştaki düşük sıcaklıkla dengeye erişmesinin hedeflenmesi en uygun kontrol yöntemidir. Taze meyve ve sebzelerin üretim yörelerinden tüketim yörelerine taşınmasında, taşıt aracındaki meyve ve sebzelerin istiflendiği kapak ve sızdırmaz nitelikteki hücreye sıvı N2 veya C02 enjekte edilerek hem soğumaları sağlanabilmekte ve hem de atmosfer bileşimi kontrol edilebilmekte ve böylece bu ürünlerin bozulmadan ve kalitesini kaybetmeden yerine ulaşması mümkün olmaktadır Daldırarak ve Spreyleyerek Dondurma Bu yöntem ile dondurmada, ürün kriyojenik madde içine hem daldırılır hem de ürün yüzeyine kriyojenik madde püskürtülür. Dolayısıyla bu dondurma sisteminde, ürün ile kriyojenik madde arasında, hem kondüksiyon hem de konveksiyon ısı transferi gerçekleşir. Dolayısıyla, dondurma yüksek hızda gerçekleştirilir.

20 2.4. Kriyojenik Hava Akımlı Dondurma Bu sistem refrijerant olarak taze havayı kullanır. Çevreden alman hava, kompresyon, ısı değiştirici ve turbo genleştirici olmak üzere üç aşamalı bir sistemde soğutulur. Soğuk hava sıcaklığı bu işlemde -156 C ye düşer. Daha sonra, burada elde edilen soğuk hava, gıdaları hızlı bir şekilde dondurmak için bir tünel yada spiral dondurucuya sevk edilir. Kullanıldıktan sonra, sıcak hava -73 C de atmosfere bırakılır. Kriyojenik- hava akımlı dondurma sistemi, et, balık, kanatlılar, pizza ve fırın ürünlerinde kullanılır. 3. Kriyomekanik dondurma Kriyomekanik dondurma sistemlerinde, mekanik donduruculardan önce ürünün kriyojenik daldırmalı veya püskürtmeli dondurucularda ürünün ön soğutulması veya dondurulması yapılır. Kriyojenik dondurucudan çıkan ürünün daha sonra mekanik dondurucuda son dondurmaya tabi tutulur. Kriyojenik dondurucuda ürünlerin ön dondurulması sırasında, yüzeyde oluşan kabuk tabakası, bu dondurucuya kıyasla daha sıcak olan mekanik dondurucunun ortamına dayanacak kalınlıkta olmaktadır. Bu tabaka ürünün mekanik dondurucuda donması esnasında oluşan hareketten dolayı ürünün zarar görmesini engelleyerek, ürünlerin şekillerini korumalarım sağlar. Kapasiteyi artırmak amacıyla bazen, mevcut bir mekanik dondurma birimine kriyojenik kademe eklenir. Mekanik dondurma aşaması sadece krijojenik dondurucuya göre maliyetlerin düşürülmesini sağlar. Kriyomekanik dondurucularda, kriyojenik dondurucu olarak yine sıvı azot ve karbondioksit kullanılmaktadır Sıvı Karbondioksiti Kriyomekanik Dondurucular Basınçlı sıvı karbondioksit kullanılır. Karbondioksit 300 psi basınç altında sıvı olarak depolanır ve buradan mekanik dondurucuya transfer edilir ve burada sıvı karbondioksitin hızlı dondurucu etkisinden faydalanılır. Burada kullanılan mekanik soğutucu; tünel, spiral veya bantlı dondurucu olabilmektedir. Karbondioksit gıdanın dondurucuya girdiği ilk kısımda uygulanır ve ürünün yüzeyinde hızlıca bir buz tabakası oluşturulur. Böylece dondurma sonucunda oluşacak nem kayı en aza indirilmiş olunur. Bu sistem; piliç, balık, hamburger, kurabiye, et parçalan, pizza, sebzeler gibi gıdaların dondurulmasında kullanılmaktadır Sıvı Azotlu Kriyomekanik Dondurucular Bu dondurucularda, dondurulacak ürün ilk önce sıvı azota daldırılır (-196 C) ve burada birkaç saniye bekletilir. Burada yüzeyi hızlı bir şekilde donan ürün daha sonra mekanik bir dondurucuya transfer edilir. Bu sistemlerde ürün toplamda birkaç dakika içinde dondurulur.

21 Kriyomekanik yöntemler birçok bakımdan diğer yöntemlere göre üstündürler. Ekipman etkinliğinin fazla, yer gereksiniminin az olması ve üründe ağırlık kayıplarının az olması önemli avantajlarıdır. DONMA SÜRESİ Nominal donma süresi; dondurulan gıdanın yüzey sıcaklığının 0 C ye eriştiği andan, termal merkez sıcaklığının; donma başlangıç noktasının 10 C altına düşene kadar geçen süredir. Nominal donma süresi, dondurulacak gıdanın dondurucuya girdiği andaki başlangıç sıcaklığını değil, yüzeyin 0 Cye erişmiş olmasını esas almaktadır. Bu nedenle nominal donma süresi, donma hızı hakkında bilgi veren bir değerdir. (Donma noktası -1.5 C ise 0 C den C ye) Efektif donma süresi; gıdanın bulunduğu sıcaklıktan, termal merkez sıcaklığının belli bir dereceye düşmesi için geçen süredir. Efektif donma süresi uygulamada karşılaşılan gerçek donma süresidir. (20 C den -18 C ye). DONMA SÜRESİNE ETKİ EDEN FAKTÖRLER Gıdanın ısıl iletkenlik katsayısı: Dondurulan gıdanın ısısı, kondüksiyonla yüzeye taşınarak buradan dondurucu ortama ulaşıp uzaklaştırıldığına göre, gıdanın ısıl iletkenlik katsayısının donma süresine ne kadar etkili olduğu kolaylıkla anlaşılabilir. Isı transferinin gerçekleştiği yüzey alanı: Bu alan gıdanın geometrik şekline bağlıdır. Bu nedenle, donma süresinin hesaplanmasında yararlanılan birçok eşitlikte, yüzey alanının etkisini yansıtmak amacıyla, geometrik şekil ile ilgili bazı katsayılar yer almaktadır. Nitekim aşağıda değinilecek olan Plank eşitliğinde yer alan P ve R katsayıları böyle değerlerdir ve bunlar dondurulan materyalin şekline bağlı olarak değişmektedir. Gıdanın kalınlığı: Dondurulan gıdanın iç kısımlarındaki ısının yüzeye ulaşması için kat edilen yol, donma süresine etkili faktörlerden birisidir. Kalınlık arttıkça donma süresinin uzar. Ambalaj: Gıdanın ambalajlanmış olması, donma süresini uzatan en önemli faktörlerden birisidir. Ambalaj materyalinin ısıl iletkenlik katsayısı ve kalınlığı, ambalajın donma süresi üzerine etkisini tayin eder. Gıda ve dondurucu ortam sıcaklık farkı: Gıdanın sıcaklığı ile dondurucu ortamın sıcaklığı arasındaki fark, ısı transferinin itici gücüdür. Bu fark büyüdükçe ısı transferi

22 hızlanır ve donma süresi kısalır. Kriyojenik dondurmada donma süresinin kısalmasının nedenlerinden birisi budur. Yüzey filmi: Gıdaların bir akışkandan yararlanılarak ısıtılması veya soğutulmasında ısı transferine direnç gösteren faktörlerden birisi, yüzey filmidir. Nitekim örneğin soğuk hava akımında dondurmada; gıdanın yüzeyinde ve eğer ambalajlı ise ayrıca ambalajın yüzeylerinde adeta oraya yapışmış gibi hareketsiz duran ve bu nedenle ısı yalıtkanı olarak davranan yüzey filmleri bulunur ve bunlar donma süresini etkilerler. Yüzey film ısı transfer katsayısı: Bu değer arttıkça donma süresi kısalmaktadır. Yüzey ısı transfer katsayısı dondurma yöntemlerine bağlı olarak farklılık göstermektedir. DONMA HIZI Donma hızı, dondurulan gıdanın kalitesi üzerine önemli derecede etki etmektedir. Donma hızı, dondurulan materyalin termal merkezinin (en sıcak nokta) yüzeye olan en yakın mesafesinin, yüzey sıcaklığı 0 C ye eriştiği andan, termal merkez sıcaklığının donma başlangıç noktasının 10 C altına düşmesi için geçen süreye oranıdır. Buna göre donma hızı V= L/t cm/h olarak ifade edilmektedir. Burada, V, donma hızı (cm/h), L, termal merkezin yüzeye olan en yakın mesafesi (cm) ve t, nominal donma süresidir (h). Donma hızlarına göre donma; çok hızlı, hızlı, yavaş ve çok yavaş dondurma olarak sınıflandırılır. Donma hızı, mikroorganizmaların ölüm oranını ve buz kristallerinin büyüklüğünü önemli derecede etkilemektedir. Dondurma hızı artıkça ölüm oranı azalmaktadır. Dondurma hızı yavaşladıkça hücrede su kaybı ve dehidratasyon artmakladır. Yavaş dondurmada daha iri buz kristalleri oluşurken hızlı dondurmada küçük buz kristalleri oluşur. İri buz kristallerinin gerek mikrobiyal hücreler ve gerekse doku hücreleri üzerinde yarattığı fiziksel zarar daha fazladır ve gıdanın tekstürel yapısının bozulmasına neden olur. Bu nedenle de yavaş dondurmada daha fazla mikroorganizma ölmektedir. Yavaş dondurulmuş bir gıdada doku hücrelerinin daha fazla fiziksel zarar görmüş olmaları nedeniyle gıdanın çözünmesi sırasında hücre öz suyu kaybı daha yüksek olmaktadır. Gıdaların dondurulmasında asıl amaç mikroorganizmaların öldürülmesi olmadığı için gıdanın kalitesi açısından hızlı dondurma tercih edilmektedir. Hızlı dondurmanın diğer bir avantajı ise mikrobiyal aktivitenin durduğu sıcaklıklara daha kısa sürede ulaşıldığı için dondurmada işlemi

23 sırasında mikrobiyal aktivite sonucu gıdanın kalitesinde meydana gelebilecek olumsuzlukların önlenmesidir. Gıdalarda ticari dondurma koşullarında hücre içi sıvının % 80 i difuzyon ile hücre dışına çıkmaktadır ve orada donmaktadır. Çok hızlı dondurmada ise hücre içinde su donması olduğu için hücre normal şeklini korumaktadır. Yavaş dondurmada ise hücre içinde veya dışında oluşan büyük buz kristalleri hücre duvarlarını parçalamaktadır. DONDURULMUŞ ÜRÜNLERİN DEPOLANMASI Dondurarak muhafazada dondurma işlemi, muhafazanın sadece ilk aşamasıdır. Ürünün uygun koşullarda en az -18 C ile -20 C lerde depolanması, dondurarak muhafazanın ayrılmaz bir parçasıdır. Dondurulmuş ürünler üç ayrı amaçla depolanırlar. Bunlar; üretim deposu, transit deposu ve toptan/perakende satış deposudur. Depolama süresince ve depolar arasındaki taşımalarda ürün sıcaklığı -18 nin üstüne çıkmamalı ve asla çözülmemelidir. Bu olguya soğuk veya don zinciri denilmektedir. DONDURULAN ÜRÜNLERDE MEYDANA GELEN DEĞİŞİMLER 1. Donma Aşamasında Meydana Gelen Değişimler Hacim Artışı: Donma aşamasında gerçekleşen en belirgin değişme dondurulan ürün hacminde meydana gelen artışıdır. Saf su 0 C de buz hâline dönüşürken hacmi yaklaşık % 8.3 oranında artmaktadır. Sebze ve meyveler donarken bu oranda bir hacim artışı görülmez. Çünkü donma sonucu suyun hacmi artarken ortamdaki katı maddelerin hacmi azalır. Bitkisel dokularda hücreler arası boşluklar da hacim artışım sınırlandırıcı diğer bir etkendir. Bu boşluklar hacim artışım dengelemektedir, özellikle yavaş dondurmada büyük buz kristalleri oluşmasından dolayı mekanik hasarlar meydana gelir. Hücre Öz Suyunun Kaybı: Meyve-sebze ve et gibi bütün doku halindeki gıdaların dondurulmasında, çeşitli faktörlere bağlı olarak değişmekle birlikte, hücre içi suyunu

24 kaybetmesi söz konusudur, özellikle bitkisel dokuların yavaş dondurulmasında karşılaşıldığı gibi, buz kristallerinin hücre dışında oluşması ve hücre içi suyunun hücre dışına taşınarak hücrenin su kaybetmesi sonucunda hücre büzüşmektedir. Hücre içindeki unsurlar bu hacim azalışına ayak uydurmak için konfîgürasyon değişimine uğrarlar. Bunun sonucunda hücre duvarı bükülüp çarpılır ve hatta yırtılabilir. Aynı nedenle hücre membranı, hücre duvarından ayrılıp kopar. Tekstürde Meydana Gelen Değişimler: Özellikle taze meyvelerin tekstür kaybında turgor yani hücre içi basmcı önem taşır. Taze meyveler ağızda çiğnenirken meyve dokusunu oluşturan hücrelerin iç basmcı dişlerin basıncına bir direnç gösterir ve bu durum gevreklik denen özelliği oluşturur. Donma sırasında hücre duvarının zedelenip turgorun kaybolması, tekstür kaybının temel nedenidir. Sebzeler de donma sonunda turgor kaybına uğramaktadırlar. Ancak sebzeler, daha sonra pişirilerek tüketilebildiğinden ve pişirme ile zaten aşm bir turgor kaybı gerçekleşeceğinden, donmada meydana gelen tekstürel hasar meyvelerde olduğu kadar önemli değildir. Meyve ve sebzelerin dondurulması sırasında karşılaşılan tekstür haşarı, donma hızının arttırılmasıyla kısmen de olsa kontrol edilebilmektedir. Nem Kaybı: Ürünün su kaybetmesi ağırlık kaybına neden olur. Ürünün su kaybı, hammaddenin dondurucuya girdiği andaki sıcaklığı ile doğru orantılıdır. Bu nedenle özellikle ambalajlanmadan dondurulacak ürünlerde, neme doymuş soğuk hava ile ön soğutma uygulanması ve dondurucuya soğutulmuş olarak alma bu sorunu önemli ölçüde çözmektedir. Su kaybını önlemenin diğer bir yolu da ambalajsız ürünün önce ıslatılıp sonra ön soğutma bölgesinde hafifçe dondurularak yüzeyde ince bir buz tabakası oluşturulmasıdır. Donma hızı ne kadar yüksekse, evaporasyonla su kaybı o kadar daha azdır. Aynı şekilde dondurulan materyalin kalınlığı ne kadar fazlaysa su kaybı yine o kadar azdır. Gıda Bileşenlerinde Meydana Gelen Değişimler: Donma sonucunda proteinler denatüre olur ve biopolimerler agregat oluştururlar. Nişasta jeli retrogradasyona uğrar ve jel, daha sonra don çözülünce suyunu bırakır. Sineresis denen jeiin su bırakması, proteinler ve pektik bileşikler gibi diğer polimerlerin jellerinde de görülen bir durumdur. Jel yapıdaki bu polimerlerin konsantrasyonları, donmayla birlikte yükselince, polimer molekülleri arasında çapraz bağların oluşum potansiyeli artar ve çözünürlük azalır. Böylece su tutma kapasitesi azaldığından, donun çözülmesiyle suyunu bırakır ve geride kaba bir materyal kalır. Kimyasal ve Biyokimyasal Değişmeler: Donma sırasında en önemli biyokimyasal değişimler enzimlerin katalize ettiği biyokimyasal reaksiyonlardır. Bu olayların temelinde de donma

25 sonucunda hücre içi unsurlarının birbirlerine karışması, enzim sistemlerinin yer değiştirmesi yani, doğal selüler organizasyonun bozulması yatar. Nitekim zedelenmemiş bir hücrede enzimlerle, bunların substratlan birbirlerinden ayrı konumda olmalarına karşın, hücrenin zedelenmesiyle enzimler ve substratlan temasa geçebilmektedirler. Donmaya bağlı olarak oluşan bu olayı tümden önlemek olanaksız olduğuna göre, enzimleri önceden inaktive etmek, başvurulabilecek en önemli yöntemdir. Mikroorganizmalarda Meydana Gelen Değişimler: Donma işleminin mikroorganizmalar üzerine etkisi konusunda birkaç faktör bulunmaktadır. Donmanın mikroorganizmalara verdiği zararlar: Hücreler arasında buz oluşumu, Hücre içinde buz oluşumu, Hücreler arası sıvıda konsantrasyonun artması, Hücre içindeki sıvıda konsantrasyonun artması, Düşük sıcaklıktan kaynaklanmaktadır. 2. Depolama Aşamasında Değişimler 2.1. Fiziksel Değişimler Suyun Hareketi: Donmuş gıdada, depolama süresince meydana gelen en önemli değişim suyun hareketidir. Katı/sıvı ve özellikle sıvı/kristal dönüşümleri meydana gelir. Donmuş üründe su tamamen hareketsiz değildir ve suyun bu hareketi, hem ürünün nem içeriğinin değişimine hem de rekristalizasyon olarak adlandırılan buz kristallerinin büyüklüğünün değişimine neden olur. Su İçeriğinde Değişime Neden olan Su Hareketi: Kuruma ve Ağırlık kaybı: Soğuk depoculukta gıdalardaki ağırlık kaybı, gıdadaki su kaybı ile olur. Gıdalardaki su kaybı aynı zamanda kalite kaybına da neden olur. Ön soğutma veya şoklama ile soğuk veya donmuş muhafazada gıdalardaki ağırlık kaybı; soğutucu ünitede aşın karlama olayı ile soğuk oda havasındaki bağıl nem oranının düşük olmasından ileri gelir. Dondurma teknolojisinde en yaygın olarak kullanılan yöntem, soğuk hava ile dondurma yöntemidir. Ancak bu metodun en olumsuz yönü, ambalajsız ürünlerde nem kaybıdır. Ne kadar soğuk olursa olsun havanın, mutlaka bir kurutma potansiyeli vardır. Soğuk havanın nem düzeyine bağlı olarak ürün, az veya çok su kaybeder. Depodaki sıcaklığın hafif düşmesi, materyalin dış katmanının iç katmanına göre biraz daha soğumasına neden olmaktadır. Böylece iç kısımlardaki buzun su buharı basincı

26 dış kısımlara göre daha yüksek olacağından; içten dışa doğru bir nem transferi gerçekleşmektedir. Don Yanığı: Aşın derecede su kaybı ve özellikle donmanın gerçekleşmesinden sonra yüzeyden süblimasyon yoluyla oluşan su kaybı; ürün yüzeyinde don yanığı denen lekelerin belirmesine neden olmaktadır. Don yanığı, hem dondurulmuş ürünün görünüşüne ait kalite kriterlerine önemli düzeyde olumsuz etkiye hem de besin değerinin düşmesine neden olmaktadır. Don yanığı, donmuş üründeki buzun süblimasyonla uzaklaşması yoluyla oluştuğuna göre, geride oksijenin derinlere doğru sızabileceği gözenekli bir yapı kalır ve böylece gıda bileşenleri bu bölgede oksidatif değişmelere elverişli bir hale gelir. Don yanığında, dondurulmuş ürün üzerinde önce parlak, sonra oksidasyon sonucu esmerleşmiş benekler meydana gelir. Don yanığını önlemek amacıyla, çeşitli önlemler alınabilmektedir. Bunların en önemlisi, dondurulacak materyalin dondurmadan önce ambalajlanmasıdır. Ancak bu önlem IQF gibi bir yöntemde olanaksız olduğu gibi, diğer yöntemlerde ambalajın ısı transferini engellemesi yüzünden donma süresinin çok uzamasına neden olmaktadır. Dolayısıyla, ambalajlama her zaman uygulanabilir bir önlem değildir. Bir diğer önlem, ürünün donma başlangıcında, nem oranı çok yüksek olan yaklaşık -4 C, -5 C'lerdeki soğuk hava ile soğutulmasıdır. Böylece bu ön soğutma ile su kaybı açısından kritik geçiş aralığı, sorunsuz olarak aşıldığından ikinci aşamada daha soğuk hava ile karşılaşan ürün süratle donar ve donma kısa sürede gerçekleştiğinden nem kaybı azalır. Nem Kaybı Olmaksızın Suyun Hareketi ve Rekristalizasyon: Dondurulmuş gıdadaki suyun katı faza dönüşmesiyle oluşmuş kristallerin daha sonra; sayısında, boyutunda, şeklinde ve hatta yönelişinde oluşan her türlü değişik rekristalizasyon olarak adlandırılır. Dondurulmuş gıdaların depolanması ve taşınması sırasında sıcaklıktaki oynamalar rekristalizasyonun başlıca nedenidir. Bir gıdanın kalitesini yüksek düzeyde tutmak amacıyla hızlı bir dondurma uygulanmış olsa bile, daha sonraki uygun olmayan koşullar nedeniyle oluşan rekristalizasyon sonucu, hızlı dondurmanın sağladığı avantajlar kaybedilebilir. Donmuş gıdalarda en yaygın; izomas, gezgin ve yapışma rekristalizasyonları gerçekleşmektedir. Gezgin rekristalizasyon: Küçük buz kristallerinin birleşerek büyümesidir. Depolama sırasında belli bir sıcaklıkta üründe bulunan buz miktarı sabit kalırken kristal sayısı azalır ve kristallerin boyutu büyür. Soğutma sistemlerinin çalışmalarını daima küçük aralar vermek suretiyle sürdürmesi yüzünden depo sıcaklığı az veya çok fakat mutlaka dalgalanır. Depo sıcaklığı dalgalanırken, sıcaklığın yükselme evresinde küçük kristaller büyüklere göre oransal olarak daha fazla küçülürler. Buna karşın sıcaklığın düşme evresinde büyük kristaller bir önceki

27 evrede küçük kristallerin erimesiyle oluşmuş su moleküllerini kendi üzerlerine çekerek onları katı faza geçirme yeteneği küçük kristallerden daha yüksek olduğundan, küçükler aleyhine büyürler. Bu yolla küçük kristaller kaybolurken büyükler gittikçe irileşirler. Kristallerin büyümesi özellikle dondurulmuş meyve ve sebzelerde doku hasarına neden olarak kalitenin düşmesine yol açmaktadır. İzomas rekristalizasyon: Bir kristal düzensiz bir şekildeyse ve bu nedenle hacmine göre geniş bir yüzey alanına sahipse, zamanla adeta derlenip toparlanarak daha kompakt bir yapıya dönüşme eğilimindedir. Böylece kendi içinde daha az yüzey alanına sahip bir kristal yapı oluşur. Bu değişime izomas rekristalizasyon denir. Yapışma ile rekristalizasyon: Yan yana gelmiş birbirlerine, değen kristallerin birleşerek, toplam yüzey alanın küçülüp boyutlarının büyümesi ve sayısının azalması olayıdır. Yapışma ile rekristalizasyon özellikle küçük kristaller arasında gerçekleşmektedir. Çözünenin Kristalizasyonu: Donmuş fazda şeker gibi pek çok çözünen süper doymuş solüsyon halindedir. Bu çözünenler, tıpkı dondurmadaki laktoz gibi kristalize olabilirler. Laktoz kristallerindeki büyüme, buz kristallerinin büyümesinden küçük olsa bile, bu durum ağızda kumlu bir tekstür oluşumuna neden olur. Çünkü kristalleşen laktoz ağızda daha geç erir. Aynı durum donmuş tatlıların buzlama veya glaze edilme işleminde de ortaya çıkabilmektedir. Donmuş gıdalarda çözünenin kristalizasyonu invert şeker veya gam kullanımı ile belli ölçüde azaltılabilmektedir. Çözünenin rekristalizasyonu genelde depolama sıcaklığının üzerindeki sıcaklıklarda görülür. Büzüşme: Özellikle ambalajlanmadan dondurulmuş ürünlerin depolanması süresince üründen nem kaybı ürün yüzeyinde kuruma ve şekil bozukluklarına neden olmaktadır. Dehidrasyon, ürünün hacminde de belli bir küçülmeye neden olur ve hacimdeki bu küçülme donma şartlarına da bağlı olarak mekanik sistemlerde %3-6 ya kadar artabilmektedir. Kriyojenik dondurucularda yapılan dondurmada hacim küçülmesinin daha düşük olduğu belirtilmektedir. Mekanik Hasarlar: Rekristalizasyon sonucu büyüyen kristal boyutlarında bu hasarın derecesi de artmaktadır. Hücresel dokular esnedikçe, yeni oluşan bu hacimde buz kristali büyüyebilir ve bu dokunun orijinal şekline geri dönmesini engelleyebilir. 2.2.Kimyasal Değişmeler Lipit Oksidasyonu: Depolama süresince, donmuş üründe kaliteyi etkileyen en önemli kimyasal reaksiyon lipit oksidasyonudur. Gıdalardaki lipidiler hem enzimatik hem de

28 nonenzimatik olarak okside olabilmektedirler. Lipitlerin oksidatif bozulmasını içeren ana reaksiyon, moleküler oksijenin ile olan otooksidasyondur. Lipit oksidasyonu özellikle yağlı et ürünlerinde meydana gelir ve ürünün depolama süresini kısıtlayan en önemli faktördür. Yüksek derecede doymamış yağ otooksidasyona çok daha yatkındır ve bunların otooksidasyonu sonucu hidroperoksitler oluşur. Hidroperoksitler de daha sonra acı gıda tadının karakteristik bileşikleri olan uçucu bileşiklere parçalanır. Bu olumsuz değişikliklere ilaveten, çoklu doymamış yağ asitlerinin oksidasyonu sonucu ortaya çıkan malonaldehit kanserojen bir madde olduğundan gıda güvenilirliğini de etkilemektedir. Protein Denatürasyonu: Konsantre tuz çözeltileri, organik çözücüler, ısı ve soğuk uygulaması proteinlerin yapılarında değişikliklere neden olmaktadır. Proteinler denatüre oldukları zaman, çözünürlükleri azalır, su bağlama yetenekleri değişir, biyolojik aktiviteleri kaybolur ve proteaz etkisine daha duyarlı hale gelir. Dondurma işlemi, tuz ve organik molekülleri içeren solüsyonları konsantre hale getirir. Donmamış fazda meydana gelen bu değişimler de proteinlerde denatürasyona neden otur. Vitamin Kayıpları: Meyve ve sebzelerde vitamin kaybı denince de çoğu kez C vitamini kaybı kastedilir. Çünkü meyve sebzelerde C vitamini temel vitamindir ve C vitamini kolaylıkla parçalanabilmelktedir. C vitamini kayıplarının başlıca nedeni askorbat oksidaz enzimidir. Eğer bu enzim ön işlemler sırasında ve dondurma işlemi sırasında inaktif hale getirilmezse, donmuş ürünlerin depolanmasında da aktif olabilir. Dondurma işlemi sırasında, sıcaklık/süre ilişkisi, meyve ve sebze çeşidi, uygulanan ön işlemler, ambalaj türü ve dondurma yöntemi farklı oranlarda C vitamini kayıplarına neden olabilmektedir. Bu nedenle, donmuş depolama sırasında sıcaklık dalgalanmaları meydana gelirse, yüksek miktarda C vitamini kayıpları olabilmektedir. Karbonhidratlarda Meydana Gelen Değişimeler: Karbonhidratlar donmuş depolama süresince hidrolize duyarlıdır. Şeker hidrolizi gıda matriksinde çözünenlerin mol sayısını artırır ve böylece donma noktası sıcaklığı düşürülür. Bu üründe buz miktarında azalmaya neden olur. Bu durum, bazı fiziksel özellikleri değiştirebilir, örneğin, dondurmanın sertliği hidrolizasyon derecesi ile ters ilişkilidir. Renk Değişmeleri: Yeşil renkli meyve ve sebzelerin dondurulmaları ve donmuş ürünlerin depolanmaları sırasında klorofiller bazı reaksiyonlar sonucu feofitinlere dönüşür ve üründe kahverengimsi bir renk meydana gelir. Klorofil parçalanmasında en önemli faktör enzim aktivitesidir. özellikle peroksidaz ve lipoksigenaz enzimleri dondurulmuş meyve sebze üretiminde dikkat edilmesi gereken enzimlerdir. Bu tür istenmeyen renk değişimlerinin

29 oluşmasını engellemek için haşlama veya inorganik tuz çözeltisi ilavesi yapılabilir. Tuz çözeltisi olarak sodyum kiorür ve potasyum klorür ya da sodyum veya potasyum sülfat kullanılmaktadır. Böylece yeşil renkli meyve ve sebzelerin dondurulması ve donmuş ürünlerin depolanması esnasında doğal yeşil renk korunmuş olur. Meyve ve sebzeler san-kırmızı rengi veren karotenoidlerin başlıca bozulma reaksiyonu izomerizasyondur. Sıcaklığın artmasıyla, ışığın etkisiyle asitlerin katalizör etkisiyle karotenoidlerde izomerizasyon meydana gelmekte ve karotenoidlerin ds formları oluşmaktadır. Cis formlarının ortaya çıkmasıyla karotenoidlerin biyolojik aktiviteleri azalmaktadır. Haşlama gibi ısıl işlemlerle enzimler inaktif hale getirilir ve karotenoidlerdeki izomerizasyon engellenir. Pembe, kırmızı, mor ve mavi renklerdeki meyve ve sebzelerde bulunan antosiyaninler suda çözünebilir renk maddeleri olup bitki hücresinde kofullarda bulunur. Hücre zarının zarar görmesiyle birlikte kofullarda etkilenir. Ve oksidasyon antosiyaninlerin bozulmasındaki en önemli etkendir. Özellikle ışığın katalizör etki ettiği oksidasyon reaksiyonlarında kayıplar daha fazla olmaktadır. Oksidasyonla oluşan peroksitlerin pigmentlerle girdiği reaksiyon sonucu pigmentler parçalanmakta ve et renginde bozulmalar meydana gelmektedir. Ete rengini veren miyoglobin donmuş depolama sırasında okside olarak metmyoglobine dönüşmekte ve ette renk solması meydana gelmektedir. Enzimatik Esmerleşme: Dondurulmuş ürünlerin depolanmaları ve çözünmeleri sırasında geri dönüşümsüz esmerleşme reaksiyonları meydana gelmektedir. Polifenol oksidaz enziminin etkin olduğu esmerleşme reaksiyonları, dondurma işleminden önce ön işlem olarak yapılan sülfit, askorbik asit veya sitrik asit ilavesiyle engellenebilmektedir. Tat ve Aroma Değişimleri: Dondurulmuş ürünlerin depolamaları süresince meydana gelen oksidasyon sonucu oluşan ve acı tat veren bileşikler tat ve aroma değişimlerinin en büyük nedenidir. Alkoller, esterler, aldehitler, ketonlar, asitler, furanlar ve terpenler gibi bileşikler gıdaların kendilerine has tat ve aromalarım oluşturur. Gıdaların dondurulması ile ürüne has tat ve aroma korunsa da bazı gıdalarda daha fazla olmak üzere dondurarak depolama süresince doğal aromada kayıplar oluşmaktadır. Mineral Maddelerde Meydana Gelen Değişimler: Mineraller ısı, ışık, okside edici maddeler ve ph gibi faktörlerle kolayca tahrip olmazlar. Süzme yada bileşenlerin fiziksel ayrılması ile kayıplar söz konusu olsa da donma ve dondurarak depolama süresince mineral maddelerde fazla bir değişim meydana gelmemektedir. 2.3.Tekstürel Değişmeler

30 Dondurularak depolanmış gıdalarda hem oluşan buz kistallerinin hücre üzerine olan etkisi hem de kimyasal ve biyokimyasal reaksiyonlar bir takım tekstürel değişimlere neden olmaktadır. Bitki hücresi duvarının yapısmda bulunan pektin, hemiselüloz ve selüloz gibi birleşiklerin parçalanmasından dolayı tektürde önemli değişiklikler oluşur. Donma sırasında oluşan buz kristallerinin boyutları ve hücre içindeki bulunduğu yer hücre duvarı açısından önemlidir. Çünkü buz kristallerinden dolayı meydana gelen enzimatik ve kimyasal reaksiyonlar hücre duvarında mekanik bir zarara neden olur. Donmuş ürünlerin depolanması sırasında meydana gelen rekristalizasyon nedeniyle de tekstürel değişimler meydana gelmektedir. 2.4.Mikrobiyal Değişmeler Bunlardan birincisi; gıdaların bozulmasına neden olan serbest suyu buz kristalleri haline getirerek dondurmaktır. İkincisi ise, belirli bir sıcaklık derecesinin altında mikroorganizma faaliyetlerinin tamamını durdurmaktır. Düşük sıcaklıkta mikroorganizmaların ölümü veya hasar görmeleri iki teori izah edilmektedir. Unlardan birincisi, hücre içindeki çözünmüş maddelerin, donma işleminde buzun ayrılması ile konsantrasyonu artması ve hücrenin ölmesi, İkincisi ise hücre içinde ve dışında oluşan buz kristallerinin hücre zanm parçalayarak çözünmeden sonra hücrenin bütünlüğünü koruyamamasıdır. Patojen mikroorganizmaların çoğu +4 "C nin altında çoğalamazlar. Gıda zehirlenmesine neden olan mikroorganizmaların faaliyetleri ise 0 "C nin altmda tam olarak durmaktadır. Mikroorganizmaların ölüm oranım ve gıdanın kalitesini donma hızı önemli ölçüde etkiler. Donma hızı arttıkça ölüm oram artar. Gıdaların kalitesi açısından hızlı dondurma daha çok tercih edilir. Çünkü mikrobiyal faaliyetin durduğu sıcaklık süresine kısa sürede ulaşılarak gıdanın kalitesinde oluşabilecek olumsuzluklar önlenir. Dondurma işleminin mikroorganizmalar üzerindeki etkisi donma sıcaklığına da bağlıdır. Muhafaza sıcaklığı düştükçe mikroorganizmaların ölüm oram artar. Dondurarak muhafaza sırasında mikrobiyal ölüm oranını gıdanın ph sı da etkiler ve ph düştükçe mikrobiyal ölüm oram artar. Dondurulmuş ürünleri ve özellikle de balıklan mikrobiyal açıdan steril kabul etmek son derece yanlıştır. Pek çok mikroorganizma dondurma işleminden zarar görmez ve daha sonra dondurulmuş depolama süresince inaktif formda olsalar bile hayatta kalabilmektedirler Gıdalarda bakterilerin gelişebildiği en düşük sıcaklık yaklaşık -10 C dir. Bu değer mayalar için 5-10 *C civarındadır *C de ise mikrobiyal gelişme söz konusu değildir. Dondurulmuş depolama süresince mikroorganizma sayısında bir azalma meydana gelmektedir.

31 Bu azalmanın pratikte fazla bir önemi yoktur. Bu nedenle, hammaddenin mikrobiyal kalitesi ve üretim süresince iyi bir hijyen çok daha önemlidir. 3. Çözme Aşamasında Değişmeler Dondurulmuş ürünler, ya tüketici tarafından çözülüp kullanılır veya bir işletmede çözülüp yeni bir ürüne işlenmektedir. Dondurma ve depolamada oluşan değişmeler, çözülme sırasında da hızlanarak devam eder. Çözülme süresinin büyük bir bölümü, donma noktasının biraz altında ve donma noktası civarında gerçekleşir. Bu bölge ise, donma noktasının altındaki diğer sıcaklıklara, göre; mikroorganizma faaliyetinin, rekristalizasyonun, kimyasal ve biyokimyasal reaksiyonların daha hızlı gerçekleştiği sıcaklık aralığıdır. Hücre özsuyunun belli oranda hücre dışına sızması, mikroorganizmaların daha iyi üreyebilecekleri ve faaliyet gösterebilecekleri bir ortam oluşturur. Dondurulmuş ve sonra çözülmüş meyve, sebze ve et gibi bütün bir dokunun, dondurulmamış olan eşdeğerine göre daha hızlı bozulduğu çok iyi bilinmektedir. Çözülme sırasında oluşan değişikliklerin en önemli diğer bir nedeni, enzimlerin kataliz ettiği reaksiyonlardır. Donmanın oluşturduğu fiziksel etkilerle hücre içi unsurlarının birbiriyle karışması ve enzimlerin yer değiştirmesi, çözülme ile belirgin bir şekilde ortaya çıktığından, enzimatik reaksiyonlar bu aşamada çok hızlanır. Bu olumsuzluk, haşlanmadığı için enzimleri inaktive edilmeyen meyvelerde daha belirgindir. Özelikle enzimatik esmerleşmeye eğilimi olan açık renkli meyvelerde bu değişim devamlı görülür. Donmuş meyve ve sebzelerin çözülmesi sırasında sadece polifenoloksidaz enzimleri değil, dokudaki diğer enzimlerin de faaliyetleri artmaktadır. Çözme sılasında, dondurma aşamasına göre daha önemli değişmeler meydana gelmektedir. Çözme sırasında oluşan değişmeleri sınırlamak için, materyalin uygun bir yöntemle çözülmesi gerekmektedir. Çözünme sırasında ve çözündükten sonra gıdada mikrobiyal faaliyet başlar. Bu faaliyet çözünme ve çözündükten sonra bekletme şartlarına bağlı olarak değişebilir. Donmuş gıdalar çözdürüldükten sonra oda ısında bekletildiğinde çabuk bozulur. Bozulmanın nedeni, donma ve çözünme sırasında doku hücrelerinin zarar görmesidir. Bu nedenle de dondurulmuş gıdalar çözdürüldükten sonra hiç bekletilmeden kullanılmalıdır. Küçük parçalar halinde dondurulmuş bazo gıda maddeleri ise hiç çözdürülmeden pişirilmelidir. Gıdayı çözdürmek zorunlu ise mikrobiyal gelişmeye ortam hazırlamayacak koşullarda yapılmalıdır.

32 Dondurulmuş Ürünlerin Çözülmesi Çözme sırasında meydana gelen değişmeler ürün kalitesini birinci derecede etkilemektedir. Çözme sırasında, gıdanın aşın ısınmasından kaçınmak, gıdanın aşın su kaybım engellemek, çözmeyi kısa sürede gerçekleştirmek, mikrobiyolojik bir bozulmaya imkan vermemek oldukça önemlidir. Çözülme, fiziksel olarak donma olayının tersi olsa da donma ve çözünmenin gelişmesi arasında önemli farklılıklar bulunmaktadır. Bu durum, çözülme «süre-sıcaklık» eğrisinin donmayı tamamlayan eğri ile aynı olmamasından da anlaşılmaktadır. Çözülme Yöntemleri Su ile çözme Nemli hava sirkülasyonu ile çözme Mikrodalga ile çözme Yüksek basınçla çözme Ohmik çözme Akustik çözme Mikrodalga ile Çözme: Bir materyalin mikrodalga enerjisi ile ısınabilmesi, içerdiği dipol moleküllere sahip olmasındandır. Bir molekülün zıt uçları pozitif ve negatif yük taşıyorsa buna dipol veya polar molekül denir. Su molekülleir oksijen atomu tarafında negatif, hidrojen atomu tarafında pozitif yüklü olduklarından dipol moleküllerdir. Dipol moleküller mikrodalga etkisine girince frekansa bağlı olarak saniyede milyarlarca defa yön değiştirerek elektrik alana uyum sağlamaya çalışırlar. Yön değiştirme sırasında materyal içerisinde yoğun bir sürtünme gerçekleşir ve sürtünme sonucu ısınır. Bir gıda maddesi dipol molekül içermiyorsa ısınması

33 olanaksızdır. Bu yöntemde de küçük parça halindeki gıdalar çabucak çözünür. 25 kg gibi büyük blok halindeki donmuş gıdaların çözünmesinde sorunlar çıkabilmekledir. Yüksek Basınçla Çözme: Son zamanlarda yapılan araştırmalarda yüksek basınçta çözmenin gıda kalitesini daha iyi koruduğu ve çözülmede gerekli süreyi kısalttığı bildirilmiştir. Maliyetinin fazla olması, protein denatürasyonu ve etlerde istenmeyen renk değişikliklerine neden olması kullanımını sınırlandırmaktadır Ohmik Çözme: Yüksek elektriksel dirence sahip gıdadan elektrik akımı geçirildiği zaman, gıdada hemen ısı üretimi gerçekleşir ve bu ısıda gıdanın sıcaklığını yükseltir. Bu yönteme ohmik ısıtma denir. Ohmik ısıtma, gıdaların çözülmesinde kullanılan en yeni yöntemlerdendir. SICAKLIK İNDİKATÖRLERİ Tüketici, dondurulmuş bir ürünü satın alırken, onun kalitesi hakkında veya bozulup bozulmadığı hakkında bir kanıya varamamaktadır. Bozulmuş bir ürünün donmuş haldeyken anlaşılmanı pek mümkün olmamakta, bu durumu ancak ürünü çözülünce ortaya çıkmaktadır. Bu nedenle, dondurulmuş ürünlerin ambalajı üzerinde, tüketici ürünü alıncaya kadar, onun sıcaklık açısından uğradığı değişimleri belirten bir göstergenin bulunması, tüketici için çok önemli bir konudur. Bu konuda günümüze kadar oldukça fazla çalışma yapılmış ve defrost indikatörleri ve süre- sıcaklık İndikatörleri olmak üzere iki çeşit indikatör sistemi geliştirilmiştir. Bu indikatörler. tüketiciye, donmuş gıdanın sıcaklığının herhangi bir zamanda yükselmiş olduğunu, bir renk oluşumu veya değişimi şeklinde yansıtmaktadırlar. Bu sistemler, sıcaklığın yükselmesi ile likit bir kristalin rengini değiştirmesi veya bir mum kitlesinin eriyerek içerisinde saklanmış boyayı dışan bırakması veya sıcaklığın yükselmesine paralel olarak aktivitesi artan bir enzimin ortamda renk değişmesine neden olan bir reaksiyonu katalize etmesi gibi esaslarla çalışmaktadır. Bu göstergeler, ürün ambalajı üzerinde yer almakta ve hemen yanında göstergedeki renk değişiminin ne anlama geldiğine ait açıklamalara da yer verilmektedir.

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası İçerik Gıda dondurma ve donma olayı Gıda dondurma sistemleri 1 GIDALARIN DONDURULARAK MUHAFAZASI Bir gıdanın donması,

Detaylı

GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ

GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ GIDALARIN BAZI FİZİKSEL ÖZELLİKLERİ Gıdalara uygulanan çeşitli işlemlere ilişkin bazı hesaplamalar için, gıdaların bazı fiziksel özelliklerini yansıtan sayısal değerlere gereksinim bulunmaktadır. Gıdaların

Detaylı

Gıdaların Dondurularak Muhafazası

Gıdaların Dondurularak Muhafazası 1 Gıdaların Dondurularak Muhafazası Donma hızı ve donma süresi Gıdaların dondurulmasında soğutma yükü DONMA SÜRESİ VE DONMA HIZI 2 Bir gıdada donma üç aşamada gerçekleşmektedir; 1) Gıda bulunduğu sıcaklıktan,

Detaylı

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Gıdaların Dondurularak Muhafazası İçerik Dondurma yöntemleri 1 4. Gıdaların Dondurularak Muhafazası Dondurma yöntemleri 2 Donma öncesi hücrelerin görünüşü

Detaylı

2. Dondurma İşlemi, Ön Soğutma ve Dondurma Yöntemleri

2. Dondurma İşlemi, Ön Soğutma ve Dondurma Yöntemleri 1 / 9 Günümüzde birçok ürünün bir blok haline gelmeden tek tek parçalar halinde dondurulması istenmektedir. Bu nedenle bantlı donduruculardan, bantın deliklerinden üflenen hava hızı ürünleri tek tek bir

Detaylı

Meyve ve Sebze suyu ve pulpunun konsantrasyonu

Meyve ve Sebze suyu ve pulpunun konsantrasyonu Meyve ve Sebze suyu ve pulpunun konsantrasyonu Meyve suları genel olarak %80-95 düzeyinde su içerirler. Çok iyi koşullarda depolansalar bile, bu süre içinde gerçekleşen kimyasal reaksiyonlar ürünün kalitesini

Detaylı

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı)

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı) Soğutma devresine ilişkin bazı parametrelerin hesaplanması "Doymuş sıvı - doymuş buhar" aralığında çalışma Basınç-entalpi grafiğinde genel bir soğutma devresi

Detaylı

BÖLÜM 3 SOĞUTMA YÜKÜ HESAPLAMALARI

BÖLÜM 3 SOĞUTMA YÜKÜ HESAPLAMALARI BÖLÜM 3 SOĞUTMA YÜKÜ HESAPLAMALARI Bir soğutma tesisinin yapılandırılmasında ilk iş tesisin soğutma gereksiniminin hesaplanmasıdır. Bu nedenle, soğuk kayıplarının ya da ısı kazançlarının iyi belirlenmesi

Detaylı

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır. MADDE VE ISI Madde : Belli bir kütlesi, hacmi ve tanecikli yapısı olan her şeye madde denir. Maddeler ısıtıldıkları zaman tanecikleri arasındaki mesafe, hacmi ve hareket enerjisi artar, soğutulduklarında

Detaylı

ENERJİ DENKLİKLERİ 1

ENERJİ DENKLİKLERİ 1 ENERJİ DENKLİKLERİ 1 Enerji ilk kez Newton tarafından ortaya konmuştur. Newton, kinetik ve potansiyel enerjileri tanımlamıştır. 2 Enerji; Potansiyel, Kinetik, Kimyasal, Mekaniki, Elektrik enerjisi gibi

Detaylı

GIDALARIN SOĞUTULMALARINDA SOĞUTMA YÜKÜ VE HESAPLANMASI

GIDALARIN SOĞUTULMALARINDA SOĞUTMA YÜKÜ VE HESAPLANMASI GIDALARIN SOĞUTULMALARINDA SOĞUTMA YÜKÜ VE HESAPLANMASI Bir soğuk deponun soğutma yükü (soğutma kapasitesi), depolanacak ürünün ön soğutmaya tabi tutulup tutulmadığına göre hesaplanır. Soğutma yükü; "bir

Detaylı

GIDA İŞLEME VE ANALİZ TEKNİKLERİ I

GIDA İŞLEME VE ANALİZ TEKNİKLERİ I GIDA İŞLEME VE ANALİZ TEKNİKLERİ I RAPOR NO: 1 GRUP NO: 3 KONU: Bazı gıdalarda dondurma prosesi ve donma noktası alçalmasının tespiti ÖĞRETMENİN ADI SOYADI: Doç. Dr. Nesimi AKTAŞ ÖĞRENCİNİN ADI SOYADI:

Detaylı

KOYULAŞTIRMA VE KOYULAŞTIRMA TESİSLERİ (BUHARLAŞTIRICILAR) PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK

KOYULAŞTIRMA VE KOYULAŞTIRMA TESİSLERİ (BUHARLAŞTIRICILAR) PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK KOYULAŞTIRMA VE KOYULAŞTIRMA TESİSLERİ (BUHARLAŞTIRICILAR) PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK 10. KOYULAŞTIRMA VE KOYULAŞTIRMA TESİSLERİ (BUHARLAŞTIRICILAR) Gıda sanayinde, koyulaştırma yada buharlaştırma

Detaylı

SOĞUK DEPOLARDA DEFROST VE YALITIM. Ayla Soyer. Soyer, A. Soğutma Teknolojisi, yalıtım ve defrost

SOĞUK DEPOLARDA DEFROST VE YALITIM. Ayla Soyer. Soyer, A. Soğutma Teknolojisi, yalıtım ve defrost SOĞUK DEPOLARDA DEFROST VE YALITIM Ayla Soyer Soyer, A. Soğutma Teknolojisi, yalıtım ve 1 Defrost nedir? Soğutma yüzeylerindeki karlanmayı giderme işlemine adı verilir. Hava soğutan sistemlerde daima evaporatör

Detaylı

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer İçerik Soğutma ile ilgili temel kavramlar Soğutma sistemleri Mekaniki soğutma sistemi Soyer, A. Temel kavramlar, Soğutma sistemleri 1 Sıcaklık ve ısı

Detaylı

KAYNAMALI ISI TRANSFERİ DENEYİ. Arş. Gör. Emre MANDEV

KAYNAMALI ISI TRANSFERİ DENEYİ. Arş. Gör. Emre MANDEV KAYNAMALI ISI TRANSFERİ DENEYİ Arş. Gör. Emre MANDEV 1. Giriş Pek çok uygulama alanında sıcak bir ortamdan soğuk bir ortama ısı transferi gerçekleştiğinde kaynama ve yoğuşma olayları gözlemlenir. Örneğin,

Detaylı

KAYNAMALI ISI TRANSFERİ DENEYİ

KAYNAMALI ISI TRANSFERİ DENEYİ DENEY FÖYÜ DENEY ADI KAYNAMALI ISI TRANSFERİ DENEYİ DERSİN ÖĞRETİM ÜYESİ DR. EYÜPHAN MANAY Deneyin Amacı: Kaynamadaki üç durumun (taşınım ile kaynama, çekirdekli kaynama, film kaynaması) deneysel olarak

Detaylı

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri DENEY 3 MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri AMAÇ: Maddelerin üç halinin nitel ve nicel gözlemlerle incelenerek maddenin sıcaklık ile davranımını incelemek. TEORİ Hal değişimi,

Detaylı

TARIMSAL YAPILAR. Prof. Dr. Metin OLGUN. Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü

TARIMSAL YAPILAR. Prof. Dr. Metin OLGUN. Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü TARIMSAL YAPILAR Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, İklimsel Çevre ve Yönetimi Temel Kavramlar 2 İklimsel Çevre Denetimi Isı

Detaylı

Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma

Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma MADDE VE ISI Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma Isı enerjisi alan maddenin sıcaklığı artar. Maddenin sıcaklığının artması ısınma sonucunda gerçekleşir. Örneğin;Yanmakta olan ocağın üzerinde

Detaylı

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer İçerik Mekaniki soğutma sistemi Refrijerantların basınç-entalpi grafikleri Soğutma devresinin analizi Soyer, A., Soğutma Teknolojisi, mekaniki soğutma

Detaylı

ÇÖZELTİLERİN KOLİGATİF ÖZELLİKLERİ

ÇÖZELTİLERİN KOLİGATİF ÖZELLİKLERİ ÇÖZELTİLERİN KOLİGATİF ÖZELLİKLERİ Çözeltilerin sadece derişimine bağlı olarak değişen özelliklerine koligatif özellikler denir. Buhar basıncı düşmesi, Kaynama noktası yükselmesi, Donma noktası azalması

Detaylı

MADDENİN ISI ETKİSİ İLE DEĞİŞİMİ

MADDENİN ISI ETKİSİ İLE DEĞİŞİMİ MADDENİN ISI ETKİSİ İLE DEĞİŞİMİ ISINMA-SOĞUMA Isı enerjisi alan maddenin sıcaklığı artar. Maddenin sıcaklığının artması ısınma sonucunda gerçekleşir Özel karışımlı toprakların pişmesi ile seramik,porselen,kiremit,tuğla

Detaylı

MADDENİN HALLERİ VE ISI ALIŞ-VERİŞİ

MADDENİN HALLERİ VE ISI ALIŞ-VERİŞİ MADDENİN HALLERİ VE ISI ALIŞ-VERİŞİ Maddeler doğada katı - sıvı - gaz olmak üzere 3 halde bulunurlar. Maddenin halini tanecikleri arasındaki çekim kuvveti belirler. Tanecikler arası çekim kuvveti maddeler

Detaylı

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ 1 3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ (Ref. e_makaleleri) Isı değiştiricilerin büyük bir kısmında ısı transferi, akışkanlarda faz değişikliği olmadan gerçekleşir. Örneğin, sıcak bir petrol

Detaylı

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ. Nazife ALTIN Bayburt Üniversitesi, Eğitim Fakültesi

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ. Nazife ALTIN Bayburt Üniversitesi, Eğitim Fakültesi MADDENİN AYIRT EDİCİ ÖZELLİKLERİ Bayburt Üniversitesi, Eğitim Fakültesi www.nazifealtin.wordpress.com MADDENİN AYIRT EDİCİ ÖZELLİKLERİ Bir maddeyi diğerlerinden ayırmamıza ve ayırdığımız maddeyi tanımamıza

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

SU HALDEN HALE GİRER. Nazife ALTIN. Fen ve Teknoloji

SU HALDEN HALE GİRER. Nazife ALTIN. Fen ve Teknoloji SU HALDEN HALE GİRER SU DÖNGÜSÜ Güneş, yeryüzündeki karaları ve suları ısıtır. Havayı ise yeterince ısıtamaz. Havanın bir kısmı dolaylı yoldan ısınır. Karalar ve suların ısınması sırasında bunlarla temas

Detaylı

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer İçerik Soğutma sistemleri Çok aşamalı kompresyon sistemi Absorpsiyonlu soğutma sistemleri 1 Çok aşamalı kompresyon sistemi Tek aşamalı sistemlerde, düşük

Detaylı

Isı Cisimleri Hareket Ettirir

Isı Cisimleri Hareket Ettirir Isı Cisimleri Hareket Ettirir Yakıtların oksijenle birleşerek yanması sonucunda oluşan ısı enerjisi harekete dönüşebilir. Yediğimiz besinler enerji verir. Besinlerden sağladığımız bu enerji ısı enerjisidir.

Detaylı

SU VE HÜCRE İLİŞKİSİ

SU VE HÜCRE İLİŞKİSİ SU VE HÜCRE İLİŞKİSİ Oluşturacağı her 1 g organik madde için bitkinin 500 g kadar suyu kökleriyle alması ve tepe (uç) noktasına kadar taşıyarak atmosfere aktarması gerekir. Normal su düzeyinde hayvan hücrelerinin

Detaylı

9.7 ISIL İŞLEM SIRASINDA GIDA BİLEŞENLERİNİN PARÇALANMASI

9.7 ISIL İŞLEM SIRASINDA GIDA BİLEŞENLERİNİN PARÇALANMASI 9.7 ISIL İŞLEM SIRASINDA GIDA BİLEŞENLERİNİN PARÇALANMASI 9.7.1 Sabit Sıcaklıkta Yürütülen Isıl işlemde Bileşenlerin Parçalanması 9.7.2 Değişen Sıcaklıkta Yürütülen Isıl İşlemde Bileşim Öğelerinin Parçalanması

Detaylı

MADDENiN HÂLLERi ve ISI ALISVERiSi

MADDENiN HÂLLERi ve ISI ALISVERiSi MADDENiN HÂLLERi ve ISI ALISVERiSi Maddenin en küçük yapı taşının atom olduğunu biliyoruz. Maddeler, atomlardan ya da atomların bir araya gelmesiyle oluşan moleküllerden meydana gelmiştir. Şimdiye kadar

Detaylı

c harfi ile gösterilir. Birimi J/g C dir. 1 g suyun sıcaklığını 1 C arttırmak için 4,18J ısı vermek gerekir

c harfi ile gösterilir. Birimi J/g C dir. 1 g suyun sıcaklığını 1 C arttırmak için 4,18J ısı vermek gerekir Saf bir maddenin 1 gramının sıcaklığını 1 C değiştirmek için alınması gereken ya da verilmesi gereken ısı miktarına ÖZ ISI denir. Öz ısı saf maddeler için ayırt edici bir özelliktir. Birimi J/g C dir.

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Otomotivde Isıtma, Havalandırma ve Amaç; - Tüm yolcular için gerekli konforun sağlanması,

Detaylı

Proses Tekniği TELAFİ DERSİ

Proses Tekniği TELAFİ DERSİ Proses Tekniği TELAFİ DERSİ Psikometrik diyagram Psikometrik diyagram İklimlendirme: Duyulur ısıtma (ω=sabit) Bu sistemlerde hava sıcak bir akışkanın bulunduğu boruların veya direnç tellerinin üzerinden

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir. GENEL KİMYA 1 LABORATUARI ÇALIŞMA NOTLARI DENEY: 8 ÇÖZELTİLER Dr. Bahadır KESKİN, 2011 @ YTÜ Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir

Detaylı

METEOROLOJİ. VI. Hafta: Nem

METEOROLOJİ. VI. Hafta: Nem METEOROLOJİ VI. Hafta: Nem NEM Havada bulunan su buharı nem olarak tanımlanır. Yeryüzündeki okyanuslardan, denizlerden, göllerden, akarsulardan, buz ve toprak yüzeylerinden buharlaşma ve bitkilerden terleme

Detaylı

Buhar çevrimlerinde akışkan olarak ucuzluğu, her yerde kolaylıkla bulunabilmesi ve buharlaşma entalpisinin yüksek olması nedeniyle su alınmaktadır.

Buhar çevrimlerinde akışkan olarak ucuzluğu, her yerde kolaylıkla bulunabilmesi ve buharlaşma entalpisinin yüksek olması nedeniyle su alınmaktadır. Buhar Çevrimleri Buhar makinasının gerçekleştirilmesi termodinamik ve ilgili bilim dallarının hızla gelişmesine yol açmıştır. Buhar üretimi buhar kazanlarında yapılmaktadır. Yüksek basınç ve sıcaklıktaki

Detaylı

Diffüzyonun özel bir halini ortaya koyan ve osmozis adı verilen bu olgu, bitkilerin yaşamında büyük öneme sahip bulunmaktadır.

Diffüzyonun özel bir halini ortaya koyan ve osmozis adı verilen bu olgu, bitkilerin yaşamında büyük öneme sahip bulunmaktadır. 3. Osmozis Ayrımlı geçirgen (yarı geçirgen) bir zarla ayrılmış ortamda suyun, su potansiyelinin (su yoğunluğunun) yüksek olduğu yönden daha düşük olduğu yöne geçişi Osmozis olarak bilinmektedir. Osmozis,

Detaylı

5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI

5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI 5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI Yeryüzündeki sular küçük damlacıklar halinde havaya karışır. Bu damlacıklara su buharı diyoruz. Suyun küçük damlacıklar halinde havaya

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AKIŞKAN YATAKLI ISI TRANSFER DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ

Detaylı

Sıvılar ve Katılar. Maddenin Halleri. Sıvıların Özellikleri. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN

Sıvılar ve Katılar. Maddenin Halleri. Sıvıların Özellikleri. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Sıvılar ve Katılar MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Sıcaklık düşürülürse gaz moleküllerinin kinetik enerjileri azalır. Bu nedenle, bir gaz yeteri kadar soğutulursa moleküllerarası

Detaylı

METEOROLOJİ. III. Hafta: Sıcaklık

METEOROLOJİ. III. Hafta: Sıcaklık METEOROLOJİ III Hafta: Sıcaklık SICAKLIK Doğada 2 tip denge var 1 Enerji ve sıcaklık dengesi (Gelen enerji = Giden enerji) 2 Su dengesi (Hidrolojik döngü) Cisimlerin molekülleri titreşir, ancak 273 o C

Detaylı

Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları. Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır.

Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları. Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır. Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır. 28.11.2011 S.1) Bir evin duvarı 3 m yükseklikte, 10 m uzunluğunda 30

Detaylı

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü BÖLÜM 3 Sürekli Isı iletimi Yrd. Doç.Dr. Erbil Kavcı Kafkas Üniversitesi Kimya Mühendisliği Bölümü Düzlem Duvarlarda Sürekli Isı İletimi İç ve dış yüzey sıcaklıkları farklı bir duvar düşünelim +x yönünde

Detaylı

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ Enerji analizi termodinamiğin birinci kanununu, ekserji analizi ise termodinamiğin ikinci kanununu kullanarak enerjinin maksimum

Detaylı

Proses Tekniği 6.HAFTA 6.HAFTA BUHARLAŞTIRICILAR YRD.DOÇ.DR. NEZAKET PARLAK

Proses Tekniği 6.HAFTA 6.HAFTA BUHARLAŞTIRICILAR YRD.DOÇ.DR. NEZAKET PARLAK Proses Tekniği 6.HAFTA 6.HAFTA BUHARLAŞTIRICILAR YRD.DOÇ.DR. NEZAKET PARLAK Kaynama Kaynama Mekanizmaları: Kaynamakta olan bir sıvıya ısı aktarımı, buharlaştırma ve damıtmanın olduğu petrol işleme, kimyasal

Detaylı

11. BÖLÜM: TOPRAK SUYU

11. BÖLÜM: TOPRAK SUYU 11. BÖLÜM: TOPRAK SUYU Bitki gelişimi için gerekli olan besin maddelerinin açığa çıkmasını sağlar Besin maddelerini bitki köküne taşır Bitki hücrelerinin temel yapı maddesidir Fotosentez için gereklidir

Detaylı

ET TEKNOLOJİSİNDE DÜŞÜK SICAKLIK UYGULAMALARI. K.Candoğan-ET

ET TEKNOLOJİSİNDE DÜŞÜK SICAKLIK UYGULAMALARI. K.Candoğan-ET ET TEKNOLOJİSİNDE DÜŞÜK SICAKLIK UYGULAMALARI Teknolojik Temel İşlemler Hamburger, köfte Küçük parça et ürünleri Sucuk Salam, sosis Jambon Büyük parça et ürünleri Pastırma Pişirme Soğutma Dondurma Kurutma

Detaylı

DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ)

DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ) DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ) DERS SORUMLUSU : PROF. DR. Đnci MORGĐL HAZIRLAYAN Mustafa HORUŞ 20040023 ANKARA/2008

Detaylı

Özgül ısı : Q C p = m (Δ T)

Özgül ısı : Q C p = m (Δ T) Özgül ısı : Bir maddenin faz değişimine uğramaksızın belli bir sıcaklığa ulaşması için, bu maddenin birim kütlesi tarafından kazanılan veya kaybedilen ısı miktarıdır. Q C p = m (Δ T) 1 Gıdaların Özgül

Detaylı

Soğutma Teknolojisi. Bahar Yarıyılı Gıda Mühendisliği Bölümü Prof. Dr. Ayla Soyer. İçerik; Ders akışı Gıda bozulma ilkeleri Soğutma ve dondurma

Soğutma Teknolojisi. Bahar Yarıyılı Gıda Mühendisliği Bölümü Prof. Dr. Ayla Soyer. İçerik; Ders akışı Gıda bozulma ilkeleri Soğutma ve dondurma Soğutma Teknolojisi İçerik; Ders akışı Gıda bozulma ilkeleri Soğutma ve dondurma Bahar Yarıyılı Gıda Mühendisliği Bölümü Prof. Dr. Ayla Soyer Soyer, A. Soğutma Teknolojisi, Giriş 1 Yararlanılan Kaynaklar

Detaylı

Isı Kütle Transferi. Zorlanmış Dış Taşınım

Isı Kütle Transferi. Zorlanmış Dış Taşınım Isı Kütle Transferi Zorlanmış Dış Taşınım 1 İç ve dış akışı ayır etmek, AMAÇLAR Sürtünme direncini, basınç direncini, ortalama direnc değerlendirmesini ve dış akışta taşınım katsayısını, hesaplayabilmek

Detaylı

ISI VE SICAKLIK. 1 cal = 4,18 j

ISI VE SICAKLIK. 1 cal = 4,18 j ISI VE SICAKLIK ISI Isı ve sıcaklık farklı şeylerdir. Bir maddeyi oluşturan bütün taneciklerin sahip olduğu kinetik enerjilerin toplamına ISI denir. Isı bir enerji türüdür. Isı birimleri joule ( j ) ve

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe İmal Usulleri DÖKÜM Katılaşma Döküm yoluyla üretimde metal malzemelerin kullanım özellikleri, katılaşma aşamasında oluşan iç yap ile belirlenir. Dolaysıyla malzeme özelliklerinin kontrol edilebilmesi

Detaylı

Kütle dengesine dayalı hesaplamalardan:

Kütle dengesine dayalı hesaplamalardan: KÜTLE DENKLİĞİ 1 Kütle dengesine dayalı hesaplamalardan: Reçete düzenlemede (formülasyon), Yeni karışımdaki çeşitli maddelerin konsantrasyonlarının belirlenmesinde, Randıman saptamada, Mekaniki ayırma

Detaylı

Kurutma teknolojisinde kütle dengesi hesaplamalarına ilişkin uygulamalar

Kurutma teknolojisinde kütle dengesi hesaplamalarına ilişkin uygulamalar Kurutma teknolojisinde kütle dengesi hesaplamalarına ilişkin uygulamalar 1 Örnek 24 : Su içeriği %80 olan kayısılar %18 olana kadar kurutulunca ağırlığının ne kadar azaldığını hesaplayınız. 2 Kayısıların

Detaylı

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 8 AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 2 2.1 BİR NOKTADAKİ BASINÇ Sıvı içindeki bir noktaya bütün yönlerden benzer basınç uygulanır. Şekil 2.1 deki gibi bir sıvı parçacığını göz önüne alın. Anlaşıldığı

Detaylı

Gıdalarda Temel İşlemler

Gıdalarda Temel İşlemler Gıdalarda Temel İşlemler Gıdaların işlenmesi; gıda endüstrisinde uygulanan işlemlerin yanı sıra evde gıdaların hazırlanması ve pişirilmesi sırasında uygulanan işlemleri de kapsar. İşlenmemiş gıdaların

Detaylı

ENERJİ YÖNETİMİ VE POLİTİKALARI

ENERJİ YÖNETİMİ VE POLİTİKALARI ENERJİ YÖNETİMİ VE POLİTİKALARI KAZANLARDA ENERJİ VERİMLİLİĞİ ÖĞRENCİNİN ADI:KUBİLAY SOY ADI:KOÇ NUMARASI:15360038 KAZANLAR Yakıtın kimyasal enerjisini yanma yoluyla ısı enerjisine dönüştüren ve bu ısı

Detaylı

HÜCRE MEMBRANINDAN MADDELERİN TAŞINMASI. Dr. Vedat Evren

HÜCRE MEMBRANINDAN MADDELERİN TAŞINMASI. Dr. Vedat Evren HÜCRE MEMBRANINDAN MADDELERİN TAŞINMASI Dr. Vedat Evren Vücuttaki Sıvı Kompartmanları Vücut sıvıları değişik kompartmanlarda dağılmış Vücuttaki Sıvı Kompartmanları Bu kompartmanlarda iyonlar ve diğer çözünmüş

Detaylı

Termal Enerji Depolama Nedir

Termal Enerji Depolama Nedir RAŞİT AYTAŞ 1 Termal Enerji Depolama Nedir 1.1. Duyulur Isı 1.2. Gizli Isı Depolama 1.3. Termokimyasal Enerji Depolama 2 Termal Enerji Depolama Nedir Termal enerji depolama sistemleriyle ozon tabakasına

Detaylı

Isı transferi (taşınımı)

Isı transferi (taşınımı) Isı transferi (taşınımı) Isı: Sıcaklık farkı nedeniyle bir maddeden diğerine transfer olan bir enerji formudur. Isı transferi, sıcaklık farkı nedeniyle maddeler arasında meydana gelen enerji taşınımını

Detaylı

Meteoroloji. IX. Hafta: Buharlaşma

Meteoroloji. IX. Hafta: Buharlaşma Meteoroloji IX. Hafta: Buharlaşma Hidrolojik döngünün önemli bir unsurunu oluşturan buharlaşma, yeryüzünde sıvı ve katı halde farklı şekil ve şartlarda bulunan suyun meteorolojik faktörlerin etkisiyle

Detaylı

Yardımcı Hava Akımlı Tarla Ve Bahçe Pülverizatörlerinde Kullanılan Fanlar

Yardımcı Hava Akımlı Tarla Ve Bahçe Pülverizatörlerinde Kullanılan Fanlar Yardımcı Hava Akımlı Tarla Ve Bahçe Pülverizatörlerinde Kullanılan Fanlar Fanlar hareketlerini traktör kuyruk milinden yada pülverizatör üzerindeki ayrı bir motordan alırlar. Çoğunlukla hafif alaşımlı

Detaylı

Solunum (respirasyon)

Solunum (respirasyon) Soğukta Depolama Soğukta Depolama Meyve ve sebzelerin soğukta depolanmaları sınırlı bir muhafaza tekniğidir. Her meyve sebzenin en iyi şekilde depolanabildiği (5 gün 6 ay) belli bir sıcaklık derecesi (DN

Detaylı

ÖĞRENME ALANI : MADDE VE DEĞĐŞĐM ÜNĐTE 5 : MADDENĐN HALLERĐ VE ISI

ÖĞRENME ALANI : MADDE VE DEĞĐŞĐM ÜNĐTE 5 : MADDENĐN HALLERĐ VE ISI ÖĞRENME ALANI : MADDE VE DEĞĐŞĐM ÜNĐTE 5 : MADDENĐN HALLERĐ VE ISI F- HAL DEĞĐŞĐM ISILARI (ERĐME DONMA VE BUHARLAŞMA YOĞUŞMA ISISI) 1- Hal Değişim Sıcaklıkları (Noktaları) 2- Hal Değişim Isısı 3- Hal Değişim

Detaylı

ÜNİTE 4 DÜNYAMIZI SARAN ÖRTÜ TOPRAK

ÜNİTE 4 DÜNYAMIZI SARAN ÖRTÜ TOPRAK ÜNİTE 4 DÜNYAMIZI SARAN ÖRTÜ TOPRAK ÜNİTENİN KONULARI Toprağın Oluşumu Fiziksel Parçalanma Kimyasal Ayrışma Biyolojik Ayrışma Toprağın Doğal Yapısı Katı Kısım Sıvı Kısım ve Gaz Kısım Toprağın Katmanları

Detaylı

7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR

7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR 7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR 1) Denver, Colorao da (rakım 1610 m) yerel atmosfer basıncı 8.4 kpa dır. Bu basınçta ve 0 o C sıcaklıktaki hava, 120 o C sıcaklıkta ve 2.5m 8m boyutlarında düz bir plaka

Detaylı

2016 Yılı Buharlaşma Değerlendirmesi

2016 Yılı Buharlaşma Değerlendirmesi 2016 Yılı Buharlaşma Değerlendirmesi GİRİŞ Tabiatta suyun hidrolojik çevriminin önemli bir unsurunu teşkil eden buharlaşma, yeryüzünde sıvı ve katı halde değişik şekil ve şartlarda bulunan suyun meteorolojik

Detaylı

METEOROLOJİ. IV. HAFTA: Hava basıncı

METEOROLOJİ. IV. HAFTA: Hava basıncı METEOROLOJİ IV. HAFTA: Hava basıncı HAVA BASINCI Tüm cisimlerin olduğu gibi havanın da bir ağırlığı vardır. Bunu ilk ortaya atan Aristo, deneyleriyle ilk ispatlayan Galileo olmuştur. Havanın sahip olduğu

Detaylı

Refrigerantlar (soğutucular)

Refrigerantlar (soğutucular) Refrigerantlar (soğutucular) Soğutma sistemlerinde kullanılan refrigerantlar soğutma sisteminde bizzat soğuk üretiminde kullanılan veya üretilmiş soğuğun taşınmasında yararlanılan maddeler olarak tanımlanmakta

Detaylı

İlk çamur arıtım ünitesidir ve diğer ünitelerin hacminin azalmasını sağlar. Bazı uygulamalarda çürütme işleminden sonra da yoğunlaştırıcı

İlk çamur arıtım ünitesidir ve diğer ünitelerin hacminin azalmasını sağlar. Bazı uygulamalarda çürütme işleminden sonra da yoğunlaştırıcı İlk çamur arıtım ünitesidir ve diğer ünitelerin hacminin azalmasını sağlar. Bazı uygulamalarda çürütme işleminden sonra da yoğunlaştırıcı kullanılabilir. Çürütme öncesi ön yoğunlaştırıcı, çürütme sonrası

Detaylı

ENERJİ DEPOLAMA. Özgür Deniz KOÇ

ENERJİ DEPOLAMA. Özgür Deniz KOÇ ENERJİ DEPOLAMA Özgür Deniz KOÇ 16360057 1 İÇİNDEKİLER Katılarda depolama Duvarlarda Enerji Depolama Mevsimsel depolama 2 KATILARDA ENERJİ DEPOLAMA Katı ortamlarda enerji depolama sistemlerinde genellikle

Detaylı

MUTFAKLARDA ENERJİ VERİMLİLİĞİ. İbrahim KOLANCI Enerji Yöneticisi

MUTFAKLARDA ENERJİ VERİMLİLİĞİ. İbrahim KOLANCI Enerji Yöneticisi BİNALARDA ELEKTRİK TÜKETİMİ 35 30 25 20 15 10 5 0 YÜZDE % STANDBY KURUTUCULAR ISITICILAR TELEVİZYON AYDINLATMA BULAŞIK MAKİNASI ÇAMAŞIR MAKİNASI KLİMA BUZDOLABI DİĞER Soğutucu ve Dondurucular Bir soğutucu

Detaylı

Meyve ve Sebze Depolanması ve İhracatında Kullanılan Modifiye Atmosfer Ambalajlarındaki Gelişmeler Doç. Dr. Fatih ŞEN

Meyve ve Sebze Depolanması ve İhracatında Kullanılan Modifiye Atmosfer Ambalajlarındaki Gelişmeler Doç. Dr. Fatih ŞEN Meyve ve Sebze Depolanması ve İhracatında Kullanılan Modifiye Atmosfer Ambalajlarındaki Gelişmeler Doç. Dr. Fatih ŞEN Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü fatih.sen@ege.edu.tr Modifiye

Detaylı

ÜRÜN ISITMA TESİSLERİ PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK

ÜRÜN ISITMA TESİSLERİ PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK ÜRÜN ISITMA TESİSLERİ PROF. DR. AHMET ÇOLAK PROF. DR. MUSA AYIK ÜRÜN ISITMA TESİSLERİ Gıda ürünlerinin işlenmesinde ısıl işlem aşamaları kaçınılmazdır. Ürün içinde bulunan mikroorganizmalar, ısıl işlem

Detaylı

Meyve Suyu Üretiminde Ozmotik Destilasyon ve Membran Destilasyon Uygulamaları

Meyve Suyu Üretiminde Ozmotik Destilasyon ve Membran Destilasyon Uygulamaları Meyve Suyu Üretiminde Ozmotik Destilasyon ve Membran Destilasyon Uygulamaları Çok aşamalı vakum evaporasyon düzenekleri flavor kaybı ( pişmiş tat) renk bozulmaları besin öğeleri kaybı DONDURARAK KONSANTRASYON

Detaylı

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli

Detaylı

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10 Öğrenci Numarası Adı ve Soyadı İmzası: CEVAP ANAHTARI Açıklama: Sınavda ders notları ve dersle ilgili tablolar serbesttir. SORU. Tersinir ve tersinmez işlemi tanımlayınız. Gerçek işlemler nasıl işlemdir?

Detaylı

Su ve çevrenin canlılar için uygunluğu

Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Su ve çevrenin canlılar için uygunluğu Yeryüzündeki yaşam su içinde ortaya çıkmış ve canlıların karalar üzerine yayılışından önceki 3 milyar yıl boyunca su içinde

Detaylı

Maddeye dışarıdan ısı verilir yada alınırsa maddenin sıcaklığı değişir. Dışarıdan ısı alan maddenin Kinetik Enerjisi dolayısıyla taneciklerinin

Maddeye dışarıdan ısı verilir yada alınırsa maddenin sıcaklığı değişir. Dışarıdan ısı alan maddenin Kinetik Enerjisi dolayısıyla taneciklerinin Maddeye dışarıdan ısı verilir yada alınırsa maddenin sıcaklığı değişir. Dışarıdan ısı alan maddenin Kinetik Enerjisi dolayısıyla taneciklerinin titreşim hızı artar. Tanecikleri bir arada tutan kuvvetler

Detaylı

Dolaylı Adyabatik Soğutma Sistemi

Dolaylı Adyabatik Soğutma Sistemi Soğutma 400 kw a kadar Kapasitesi 50-400kW EC ADYABATİK EC FAN Canovate Dolaylı Adyabatik Soğutma Sistemi -IAC Serisi Canovate Veri Merkezi Klima Santrali Çözümleri Canovate IAC serisi İndirekt Adyabatik

Detaylı

YOĞUŞMA DENEYİ. Arş. Gör. Emre MANDEV

YOĞUŞMA DENEYİ. Arş. Gör. Emre MANDEV YOĞUŞMA DENEYİ Arş. Gör. Emre MANDEV 1. Giriş Yoğuşma katı-buhar ara yüzünde gerçekleşen faz değişimi işlemi olup işlem sırasında gizli ısı etkisi önemli rol oynamaktadır. Yoğuşma yoluyla buharın sıvıya

Detaylı

Proses Tekniği HAFTA 11-12 KURUTMA

Proses Tekniği HAFTA 11-12 KURUTMA Proses Tekniği HAFTA 11-12 KURUTMA Kurutma Kurutma nedir? Gözenekli yapıya sahip üründeki nemin, ısı ve kütle transferi yardımıyla alınarak kurutucu akışkana (gaz veya hava) taşınması olayına Kurutma denir.

Detaylı

Kurutma Gıda Muhafazasının İlkeleri. Gıdaların Kurutulması. Bozucu unsurların; 1. Fiziksel olarak ortamdan uzaklaştırılması

Kurutma Gıda Muhafazasının İlkeleri. Gıdaların Kurutulması. Bozucu unsurların; 1. Fiziksel olarak ortamdan uzaklaştırılması Gıda Muhafazasının İlkeleri Bozucu unsurların; 1. Fiziksel olarak ortamdan uzaklaştırılması Kurutma 2. Kontrol altına alınması 3. Bozucu aktivitelerin yavaşlatılması 4. Bozucu aktivitelerin tamamen yok

Detaylı

Karbonmonoksit (CO) Oluşumu

Karbonmonoksit (CO) Oluşumu Yanma Kaynaklı Emisyonların Oluşum Mekanizmaları Karbonmonoksit (CO) Oluşumu Karbonmonoksit emisyonlarının ana kaynağı benzinli taşıt motorlarıdır. H/Y oranının CO emisyonu üzerine etkisi çok fazladır.

Detaylı

HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri

HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri Veriliş Tarihi: 18/11/2018 1) Durdurucular bulunan bir piston silindir düzeneğinde başlanğıçta

Detaylı

Havacılık Meteorolojisi Ders Notları. 7. Yağış

Havacılık Meteorolojisi Ders Notları. 7. Yağış Havacılık Meteorolojisi Ders Notları 7. Yağış Yard.Doç.Dr. İbrahim Sönmez Ondokuz Mayıs Üniversitesi Ballıca Kampüsü Havacılık ve Uzay Bilimleri Fakültesi Meteoroloji Mühendisliği Bölümü isonmez@omu.edu.tr

Detaylı

ZEMİNLERDE SU ZEMİN SUYU

ZEMİNLERDE SU ZEMİN SUYU ZEMİNLERDE SU ZEMİN SUYU Bir zemin kütlesini oluşturan taneler arasındaki boşluklar kısmen ya da tamamen su ile dolu olabilir. Zeminlerin taşıma gücü, yük altında sıkışması, şevler ve toprak barajlar gibi

Detaylı

KONVEKTİF KURUTMA. Kuramsal bilgiler

KONVEKTİF KURUTMA. Kuramsal bilgiler KONVEKTİF KURUTMA Deneyin amacı Deneyin amacı, katı haldeki ıslak gıda maddelerin kritik ve denge nem değerlerini, kuruma eğrisi karakteristiğini ve kurutma prosesinin etkin parametrelerinin araştırılmasıdır.

Detaylı

Suyun Fizikokimyasal Özellikleri

Suyun Fizikokimyasal Özellikleri Suyun Fizikokimyasal Özellikleri Su bitkinin yaşamında yaşamsal bir rol oynar. Bitki tarafından yapılan her gram başına organik madde için kökler tarafından 500 gr su alınır. Bu su, bitkinin bir ucundan

Detaylı

T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ

T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ Hazırlayan Arş. Gör. Hamdi KULEYİN RİZE 2018 TERMAL

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

B) KONDENSERLER. Q=m x Cp x ΔT. Kondenserleri su veya hava kullanma durumuna ve yapılış şekillerine göre 6 grupta toplamak mümkündür.

B) KONDENSERLER. Q=m x Cp x ΔT. Kondenserleri su veya hava kullanma durumuna ve yapılış şekillerine göre 6 grupta toplamak mümkündür. B) KONDENSERLER Kompresörden kızgın buhar olarak basılan soğutucu akışkanın kızgınlığının alındığı, yoğuştuğu ve soğuduğu ısı değiştiricilerdir Bu kısımda evaporatörlerde alınan ısı ile kompresör yoluyla

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402

Detaylı

3.KABARTILI DİRENÇ KAYNAĞI. 05.05.2015 Dr.Salim ASLANLAR 1

3.KABARTILI DİRENÇ KAYNAĞI. 05.05.2015 Dr.Salim ASLANLAR 1 3.KABARTILI DİRENÇ KAYNAĞI 05.05.2015 Dr.Salim ASLANLAR 1 KABARTILI DİRENÇ KAYNAĞI Kabartılı direnç kaynağı, seri imalat için ekonomik bir birleştirme yöntemidir. Uygulamadan yararlanılarak, çoğunlukla

Detaylı