ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ"

Transkript

1 ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1

2 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman serileri olarak adlandırılmaktadır ve incelenen zaman serisi z t ile simgelenmektedir. 2

3 Daha önce de belirtildiği gibi bir zaman serisi trend (T t ), mevsimsel dalgalanma (M t ), döngüsel hareket (C t ) ve düzensiz rastgele hareketlere sahip bileşenlerinden (ε t ) oluşmaktadır. Bu bölümde, bu bileşenlere sahip zaman serilerinin modellenmesi ve öngörülerin elde edilmesi üzerinde durulacaktır. Ancak döngüsel hareketler de mevsimsel dalgalanma bileşeni içinde ifade edilecektir. 3

4 4

5 Zaman serilerinin seyri ve bu seriler ile yapılacak tahminler, serinin geleceğe ilişkin davranış biçiminin belirlenmesinde yarar sağlayacaktır. Bu bağlamda özellikle ekonomi ve iş dünyasındaki belirsizlikler nedeni ile serinin geleceğe ilişkin davranış biçimini belirlemek son derece önem kazanmıştır. Böyle bir durumda zaman serisinin özelliklerini ortaya koymak için kullanılan yöntemlerden başlıca serinin bileşenlerine ayrıştırılmasıdır ve ayrıştırma zaman serileri için en eski yöntemlerden olup 20. yy.ın başından itibaren çeşitli alanlarda kullanılmaya başlamıştır. 5

6 Yöntemin ilk olarak trendden arındırma ve konjonktür hareketlerinin analizinde olmak üzere iki farklı yönde kullanıldığı görülmektedir li yıllarda verilerden trend etkisini arındırmak amacı ile kullanılan yöntemin asıl amacı, trend nedeni ile ortaya çıkan «sahte korelasyonu» ortadan kaldırmaktı ve seriyi trendden arındırmak amacı ile birkaç yılın ortalaması alınıyordu. Ardından seriden trend etkisini kesin olarak arındırma yöntemi geliştirilmiş ve 1914 de Anderson daha üst mertebelerde polinomları da içeren trendi ortadan kaldırma yöntemini genelleştirmiştir. 6

7 Daha sonraları iktisatçıların yaşanan depresyonların etkilerini görmek ve bundan sonraki olası krizleri öngörmek istemeleri üzerine anılan yöntemin yaygınlaştığı görülmektedir. Yöntem, ekonomik faaliyetlerin etkileri ayrıştırılarak konjonktür dalgalanmalarındaki değişmelerin analizine olanak sağlamıştır de Fransa da kurulan bir komite, 1907 ekonomik krizinin nedenleri ve sonuçları ile ilgili bir rapor hazırlamış ve bu amaçla da trend ile konjonktür etkisi arasında bir ayrım yapmaya çalışmışlardır. Yöntem daha sonraları ABD de uygulanarak mevsimsel dalgalanmaların diğer bileşenlerinden ayrıştırılması üzerinde durulmuştur. 7

8 Ayrıştırma yöntemi, kısa dönemli öngörülerde anlaşılması ve yapılması en kolay olan yöntemdir. Ayrıca bu yöntem, bir serinin mevsimselliğini ortaya çıkartabilmek ya da istenildiği takdirde bu mevsimsel hareketi seriden arındırabilmek amaçlı da kullanabilen bir yöntemdir. Bu yöntemin eleştirilen yönü teorisinin kuvvetli olmayışı ve dolayısıyla sezgilere dayanıyor olmasıdır. Ancak yöntemin bu özelliği uygulamalarda iyi sonuçların alınamayacağı anlamına gelmemektedir. 8

9 Zaman serisi modelleri genel olarak iki sınıfa ayrılabilir: Toplamsal modeller ve çarpımsal modeller. Toplamsal model, zaman serisinin bileşenlerin toplamından oluştuğunu kabul eder. Bu durumda; z t = T t +M t +C t +ε t olmaktadır. Burada T t serinin trendini, M t mevsimsel dalgalanmayı, C t döngüsel hareketi ve ε t hata bileşenini göstermektedir. 9

10 Bu bileşenlerden hangisi seride yok ise bu bileşenin etkisi 0 olarak kabul edilir. Toplamsal modellerde mevsimsel dalgalanmalar trendden bağımsız olduğundan dalgalanma büyüklüğü zaman içinde değişmemekte, yani sabit kalmaktadır. Toplamsal modele uygun serinin grafiği Şekil 2.1 de verilmiştir. 10

11 Şekil 2.1. Toplamsal Modele Uygun Serinin Grafiği 11

12 Çarpımsal modeller zaman serisinin, bileşenlerinin çarpılmasından oluştuğunu kabul eder. Bu durumda; z t = T t xm t xc t xε t olmaktadır. Bu bileşenlerden hangisi seride yok ise bu bileşenin etkisi 1 olarak kabul edilir. Şekil 2.2. de görüldüğü gibi çarpımsal modele en uygun bir serinin dalgalanmasının büyüklüğü zaman içinde artar ya da azalır. Çarpımsal modele uygun bir serinin logaritması alındığında toplamsal modele uygun bir serinin grafiği elde edilebilir. 12

13 Şekil 2.2. Çarpımsal Modele Uygun Serinin Grafiği SATIS 13

14 Ancak serinin hareketine bakarak seriye toplamsal ya da çarpımsal modelin daha iyi uyum sağlayacağını söylemek yanlıştır. Eğer iki model de istatistiksel varsayımları sağlıyorsa, bu modellerden seriye uyumu daha iyi olanı bulabilmek için HKO değerlerini hesaplamak gerekmektedir. Bunun sonucunda küçük HKO değerine sahip modelin seriye daha iyi uyum sağladığı söylenmelidir. 14

15 Mevsimsel, aylık, günlük gibi verilere sahip seriler genellikle mevsimsel dalgalanmalara sahip olurlar. Bu serinin bazıları trende sahip iken bazılarında trend bulunmayabilir. Aynı mantık döngüsel hareket için de geçerlidir. Eğer bir seri trende sahip ise bu trendin doğrusal ya da eğrisel olup olmadığı incelenmelidir. Bu inceleme yapıldıktan sonra serinin trend bileşeninin modeli kurulmalıdır. Ayrıştırma yöntemini incelerken serinin doğrusal trende sahip olduğu varsayılacaktır. 15

16 Seri mevsimsel dalgalanmaya ya da döngüsel harekete sahip ise, mutlaka serinin periyodu doğru bir şekilde bulunmalıdır. Genellikle serilerde ya mevsimsel dalgalanma ya da döngüsel hareket olabileceğinden, yani her ikisinin birden olamayacağı düşünüldüğünden modellerde döngüsel hareket, C t genellikle yazılmaz. Bir başka deyişle, modeldeki M t bileşeni ile hem mevsimsel dalgalanma hem de döngüsel hareket ifade edilir. 16

17 Döngüsel hareketlerin belirlenebilmesi için serideki gözlem sayısının çok fazla olması gerekir. Çünkü periyodun sağlıklı tespit edilebilmesi için periyodun en az dört katı kadar gözlem sayısına ihtiyaç vardır. 17

18 B.TOPLAMSAL AYRIŞTIRMA YÖNTEMİ Toplamsal ayrıştırma yöntemi trende, mevsimselliğe ve hata bileşenine sahip serilerin modellenmesi için uygun bir yöntemdir. Dolayısıyla, bu yöntemdeki model; z t = T t + M t + ε t biçiminde yazılabilmektedir. Burada hata teriminin rasgele bir harekete sahip olması gerektiğine dikkat edilmelidir. 18

19 1. Toplamsal Ayrıştırma Yönteminin Adımları Toplamsal ayrıştırma yöntemini uygulanabilmesi için sırasıyla şu adımlar takip edilmelidir: 1. Serinin merkezsel hareketli ortalama serisi bulunur. Burada germe sayısı için periyot tercih edilir. 2. Orijinal seriden merkezsel hareketli ortalama serisi çıkartılarak serinin mevsimsel bileşeni bulunur. Buradaki mevsimsel bileşen içinde hata teriminin olduğu da unutulmamalıdır. 19

20 3. Mevsimsel bileşendeki hata teriminin yok edilebilmesi için herbir periyottaki dönemlerin ortalama değerleri hesaplanır. Örneğin aylık bir seride tüm ayların ortalamaları, yani tüm yıllardaki «ocak»,»şubat», aylarına ait verilerin ortalaması alınır. Bu o ayın ortalaması olur. Böylece hesaplanan tam 12 tane ortalama değeri olur 20

21 4. Elde edilen periyottaki dönemlerin ortalama değerlerinin toplamı 0 olmalıdır. Eğer bu toplam 0 değilse, bu durumda ortalama değerlerinin ortalaması alınır ve bu ortalama değeri diğer tüm ortalama değerlerinden çıkartılır. Böylece periyottaki dönemlerin son elde edilen ortalama değerleri dönemlere dikkat edilerek eksik veri kalmayacak şekilde yazılarak mevsimsel endeks serisi bulunur. Bu seri orijinal serinin saf mevsimsel bileşenidir. Mevsimsel endeks değerleri toplamı 0 dır. 21

22 5. Orijinal seriden mevsimsel endeks serisi çıkartılarak serinin trend bileşeni bulunur. Ancak buradaki trend bileşeninde hata terimi de mevcuttur. 6. Doğrusal trende sahip serilerde trend bileşeninin içindeki hata teriminin yok edilebilmesi için trend bileşeni serisi bağımlı değişken, t= 1, 2,, T olmak üzere t bağımsız değişken olan regresyon uygulanır. Bu regresyon modelinden elde edilen tahmin serisi orijinal serinin saf trend bileşeni olmaktadır. 22

23 7. Mevsimsel endeks serisi ile saf trend bileşeni serisi olan regresyon modelinin tahmin serisi toplanarak orijinal serinin tahminleri elde edilir. Eğer mevsimsel endeks serisi ve saf trend bileşeni serisi gelecek dönemlere kadar uzatılırsa bu serilerin gelecek dönemlerdeki verilerinin toplamı orijinal serinin öngörü değerlerini oluşturacaktır. 23

24 2. Yöntemin Geçerliliği Model kurulduktan sonra modelin doğruluğunun incelenmesi amacıyla birkaç önemli nokta kontrol edilmelidir: 1. Trend bileşeni elde edilebilmesi için kurulan regresyon modelindeki katsayılar istatistiksel bakımdan önemli olmalıdır. 2. Ayrıştırma yönteminin hataları mutlaka beyaz gürültülü olmalıdır. Eğer bu seri beyaz gürültülü serisi değilse hataların orijinal seri ile ilgili belli bir bilgi taşıdığı anlamına gelir. Bu da tahmin serisinin orijinal seriyi yeterince açıklayamadığı, önemli bir bilginin dışarıda kalmış olduğu sonucunu doğurur. 24

25 3. Tahmin serisi ile orijinal serinin birlikte çizilen grafiği tam bir uyum içinde olmalıdır. 4. Theil in U istatistiğinin 0 a yakın bir değer, yani en fazla 0,55 değerini alması beklenir. 5. Orijinal serinin, tahmin serisinin alt ve üst sınırları içinde yer alması modele güveni artırır. 25

26 26

27 3. Güven Aralıkları Ayrıştırma yönteminde tahmin serisi, serinin bileşenlerinin toplanmasıyla ya da çarpılmasıyla elde edildiğinden bu yöntemin temelinde bir istatistik teorisi yer almamaktadır. Bu nedenle güven aralıklarının hesabında temel istatistiksel bilgilerden çok mantıksal bir yöntem izlenmektedir. Bu yönteme göre tahmin serisinin güven aralığının belirlenmesinde serinin trend bileşeninin elde edilebilmesi için oluşturulan regresyon modelinin güven aralığı kullanılmaktadır. 27

28 28

29 29

30 C. ÇARPIMSAL AYRIŞTIRMA YÖNTEMİ Çarpımsal ayrıştırma yönteminin uygulanışı bazı noktalarda toplamsal ayrıştırma yönteminden farklılık gösterir. Bu farklılığın nedeni iki yöntemin modellerinin farklı olmasından kaynaklanmaktadır. Ancak temel mantığı bakımından bu iki yöntem arasında bir farklılık yoktur. 30

31 1. Çarpımsal Ayrıştırma Yönteminin Adımları Çarpımsal ayrıştırma yöntemi aşağıdaki adımlar takip edilerek yapılmaktadır: 1.Serinin periyodu bulunarak germe sayısı s olan merkezsel hareketli ortalama işlemi seriye uygulanır. 2.Orijinal seri merkezsel hareketli ortalama serisine bölünür ve serinin mevsimsel bileşeni bulunmaya çalışılır. Ancak elde edilen u mevsimsel bileşen serisi hata terimini de içermektedir. 31

32 3. Bu mevsimsel bileşenden hata terimini yok edebilmek amacıyla toplamsal ayrıştırma yönteminde olduğu gibi herbir periyottaki dönemlerin ortalama değerleri hesaplanır. 4. Hesaplanan dönem ortalamalarının ortalaması alınır ve herbir dönem ortalaması en son elde edilen genel ortalama değerine bölünür. Böylece dönem ortalamalarının ortalaması 1 e eşit olur. Ortalamaları 1 değerine eşit olan bu ortalama değerleri mevsimsel endeks serisinin oluşturmakta ve bu seri orijinal serinin mevsimsel bileşeni olmaktadır. 32

33 5. Orijinal seri mevsimsel endeks serisine bölünerek trend serisi elde edilir. Ancak bu trend serisi içinde hata terimi de mevcuttur. 6. Trend serisinden hata terimini yok edebilmek amacıyla doğrusal trende sahip serilerde toplamsal ayrıştırma yönteminde olduğu gibi trend serisi bağımlı, t bağımsız değişken olmak üzere regresyon yapılır. Bu regresyondan elde edilen tahmin serisi orijinal serinin trend bileşenini oluşturur. 7. Mevsimsel endeks serisi ile trend bileşeni serisi birbirleriyle çarpılarak orijinal serinin tahmin serisi elde edilir. 33

34 2. Hata Teriminin Analizi Orijinal seri ile tahmin serisi arasındaki farktan oluşan hata serisinin incelenmesi ayrıştırma yönteminin seriye uygun olup olmadığını ortaya çıkarmaktadır. Toplamsal ayrıştırma yönteminde yöntemin geçerliliğinde anlatıldığı gibi hata serisi mutlaka beyaz gürültülü olmalıdır ve diğer söz edilen özellikler de sağlanmalıdır. Ayrıca tahmin serisinin güven aralığı da toplamsal ayrıştırma yönteminde anlatıldığı gibi bulunmalıdır. 34

35 D. MEVSİMSELLİK TESTİ ACF grafiğinde mevsimselliği tam olarak tespit edilemiyor ya da seride gerçekten mevsimsellik olup olmadığı tam olarak belirlenmek isteniyorsa serinin mevsimsellik testi Kruskal-Wallis Testi ile yapılabilmektedir. Eğer seride mevsimsellik yok ise Kruskal-Wallis Testi sonucunda periyotlar arasında fark bulunmayacaktır. Eğer bu testten periyotlar arasında fark vardır sonucu elde edilirse, bu sonuç serinin mevsimsel dalgalanmaya sahip olduğu anlamına gelmektedir. 35

36 36

37 37

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS Bu çalışmada Ulusal Sınai Endeks serisiyle ilgili analizler yapılacaktır. Öncelikle seri oluşturulur. Data dan Define Dates e girilir oradan weekly,days(5) işaretlenir ve

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM ETKİLERİNDEN ARINDIRILMIŞ SEKTÖREL GÜVEN ENDEKSLERİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1 İÇİNDEKİLER

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ PERAKENDE TİCARET ENDEKSLERİ

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ PERAKENDE TİCARET ENDEKSLERİ TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ PERAKENDE TİCARET ENDEKSLERİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1

Detaylı

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM ETKİLERİNDEN ARINDIRILMIŞ HANEHALKI İŞGÜCÜ ARAŞTIRMASI GÖSTERGELERİ METAVERİ Veri Analiz Teknikleri Grubu 2014

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ DIŞ TİCARET İSTATİSTİKLERİ. Mevsim ve Takvim Etkilerinden Arındırma Nedir?

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ DIŞ TİCARET İSTATİSTİKLERİ. Mevsim ve Takvim Etkilerinden Arındırma Nedir? TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ DIŞ TİCARET İSTATİSTİKLERİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1 İÇİNDEKİLER

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

Sanayi Üretim Endeksi Neden Mevsim ve Takvim Etkilerinden Arındırılıyor?

Sanayi Üretim Endeksi Neden Mevsim ve Takvim Etkilerinden Arındırılıyor? TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ SANAYİ ÜRETİM ENDEKSİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1 İÇİNDEKİLER

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

BÜRO, MUHASEBE VE BİLGİ İŞLEM MAKİNELERİ İMALATI Hazırlayan M. Emin KARACA Kıdemli Uzman

BÜRO, MUHASEBE VE BİLGİ İŞLEM MAKİNELERİ İMALATI Hazırlayan M. Emin KARACA Kıdemli Uzman BÜRO, MUHASEBE VE BİLGİ İŞLEM MAKİNELERİ İMALATI Hazırlayan M. Emin KARACA Kıdemli Uzman 516 1. SEKTÖRÜN TANIMI Büro, muhasebe ve bilgi işlem makineleri imalatı ISIC Revize 3 ve NACE Revize 1 sınıflandırmasına

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

ENFLASYON YOKSULU VURUYOR. Yönetici özeti

ENFLASYON YOKSULU VURUYOR. Yönetici özeti Araştırma Notu 10/68 26 Mart 2010 ENFLASYON YOKSULU VURUYOR Seyfettin Gürsel * ve Onur Altındağ ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon sepeti ağırlıklandırması

Detaylı

Tahminleme Yöntemleri

Tahminleme Yöntemleri PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri

Detaylı

Forex Göstergeler. www.ifcmarkets.com

Forex Göstergeler. www.ifcmarkets.com Forex Göstergeler Forex piyasasında teknik analiz yaparken trader lar için ana araçlardan biri trend göstergesidir. Ataletinin bir sonucu olarak bu gösterge seti eğilimli piyasa sırasında fiyat hareketinin

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

Araştırma Notu 14/162

Araştırma Notu 14/162 p Araştırma Notu 14/162 4 Şubat 2014 YOKSUL İLE ZENGİN ARASINDAKİ ENFLASYON FARKI ARTIYOR Seyfettin Gürsel * ve Melike Kökkızıl ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon

Detaylı

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ HAYVANCILIK İSTATİSTİKLERİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1 İÇİNDEKİLER

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

TÜRKİYE` DE ELEKTRİK PİYASA TAKAS FİYATI VE SİSTEM MARJİNAL FİYATI FARKI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1

TÜRKİYE` DE ELEKTRİK PİYASA TAKAS FİYATI VE SİSTEM MARJİNAL FİYATI FARKI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1 TÜRKİYE` DE ELEKTRİK PİYASA TAKAS FİYATI VE SİSTEM MARJİNAL FİYATI FARKI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1 Gökhan Ceyhan Yöneylem Araştırması Uzmanı, EPİAŞ ÖZET Bu çalışmada, Türkiye gün öncesi elektrik

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri

Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri 5-1 Risk ve Getiri : Portföy Teorisi ve Varlık Fiyatlandırma Modelleri Portföy Teorisi Sermaye Varlıklarını Fiyatlandırma Modeli (CAPM) Etkin set Sermaye Piyasası Doğrusu (CML) Hisse Senedi Piyasası Doğrusu

Detaylı

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ SANAYİ CİRO ENDEKSLERİ

MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ SANAYİ CİRO ENDEKSLERİ TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM VE TAKVİM ETKİLERİNDEN ARINDIRILMIŞ SANAYİ CİRO ENDEKSLERİ METAVERİ Veri Analiz Teknikleri Grubu 2015 1 İÇİNDEKİLER

Detaylı

TEPGE BAKIŞ Temmuz 2011 / ISSN: 1303 8346 / Nüsha: 1

TEPGE BAKIŞ Temmuz 2011 / ISSN: 1303 8346 / Nüsha: 1 TARIMSAL EKONOMİ VE POLİTİKA GELİŞTİRME ENSTİTÜSÜ TEPGE BAKIŞ Temmuz 2011 / ISSN: 1303 8346 / Nüsha: 1 TARIM ÜRÜNLERİ FİYATLARINDA MEVSİMSEL DALGALANMALAR Kübra TAŞDEMİR TEPGE Dr. Kemalettin TAŞDAN TEPGE

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

SON ÇEYREKTE İHRACAT VE YATIRIMLAR HIZLANDI

SON ÇEYREKTE İHRACAT VE YATIRIMLAR HIZLANDI Ekonomik Görünüm ve Tahminler: Şubat 2011 11 Şubat 2011 SON ÇEYREKTE İHRACAT VE YATIRIMLAR HIZLANDI Zümrüt İmamoğlu* ve Barış Soybilgen Yönetici Özeti TÜİK'in açıkladığı rakamlara göre, sanayi üretimi

Detaylı

Araştırma Notu 12/134

Araştırma Notu 12/134 Araştırma Notu 12/134 4 Haziran 2012 YOKSULUN ENFLASYONU ZENGİNİN ENFLASYONUNDAN YÜKSEK Seyfettin Gürsel * ve Ayşenur Acar ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

ÖRNEK ALMA : ÇEYREKLEME YÖNTEMİ AGREGA YIĞINININ ORTA BÖLGESİ TESPİT EDİLİR. BU BÖLGENİN DEĞİŞİK YERLERİNDEN ÖRNEK ALINIR

ÖRNEK ALMA : ÇEYREKLEME YÖNTEMİ AGREGA YIĞINININ ORTA BÖLGESİ TESPİT EDİLİR. BU BÖLGENİN DEĞİŞİK YERLERİNDEN ÖRNEK ALINIR AGREGALAR ÖRNEK ALMA : ÇEYREKLEME YÖNTEMİ AGREGA YIĞINININ ORTA BÖLGESİ TESPİT EDİLİR. BU BÖLGENİN DEĞİŞİK YERLERİNDEN ÖRNEK ALINIR AGREGA YIĞINININ ORTA BÖLGESİ TESPİT EDİLİR. BU BÖLGENİN DEĞİŞİK YERLERİNDEN

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Ağustos 2013 1

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Ağustos 2013 1 SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv Otomotiv İç Satışlarda Hızlı Artış Temmuz Ayında Devam Ediyor. Beyaz Eşya Beyaz Eşya İç Satışlarda Artış Temmuz Ayında Hızlandı. İnşaat Reel Konut Fiyat Endeksinde

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2011-17 / 14 Kasım 2011 EKONOMİ NOTLARI

Türkiye Cumhuriyet Merkez Bankası Sayı: 2011-17 / 14 Kasım 2011 EKONOMİ NOTLARI EKONOMİ NOTLARI İç ve Dış Talebe İlişkin Alternatif Göstergeler: Yurt İçi ve Yurt Dışı Satış Endeksleri Hüseyin Çağrı Akkoyun İhsan Bozok Bahar Şen Doğan Küresel kriz sonrası dönemde, dış pazarlardaki

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

Büyüme Değerlendirmesi: 2013 4. Çeyrek

Büyüme Değerlendirmesi: 2013 4. Çeyrek Büyüme Değerlendirmesi: 2013 4. Çeyrek 31.03.2014 YATIRIMSIZ BÜYÜME Seyfettin Gürsel*, Zümrüt İmamoğlu, ve Barış Soybilgen Yönetici Özeti TÜİK'in bugün açıkladığı rakamlara göre Türkiye ekonomisi 2013

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

F12 Piyasa Riskine Karşı Özel Risk Daha önceden belirtildiği gibi çok küçük bir çeşitlendirme bile değişkenlikte önemli oranda azalma sağlamaktadır. F13 Piyasa Riskine Karşı Özel Risk Doğru aynı zamanda,

Detaylı

Araştırma Teknikleri

Araştırma Teknikleri Prof.Dr. Filiz Karaosmanoğlu Yrd.Doç.Dr. Bayram Kılıç Ekim 11, 2010 Yalova Bilimsel Yöntem Modeli Bilimsel Yöntem Bilimsel yöntem, tümevarım ile tümdengelim yaklaşımlarının ayrı ayrı yeterli olamayışları

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama

İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Çerçeve... 3 III- Kapsam... 3 IV-

Detaylı

Kentsel Hava Kirliliği Riski için Enverziyon Tahmini

Kentsel Hava Kirliliği Riski için Enverziyon Tahmini DEVLET METEOROLOJİ İŞLERİ GENEL MÜDÜRLÜĞÜ ARAŞTIRMA ve BİLGİ İŞLEM DAİRESİ BAŞKANLIĞI ARAŞTIRMA ŞUBE MÜDÜRLÜĞÜ Kentsel Hava Kirliliği Riski için Enverziyon i 2008-2009 Kış Dönemi (Ekim, Kasım, Aralık,

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

HOŞGELDİNİZ Mustafa ERGÜN Şevket ATEŞ

HOŞGELDİNİZ Mustafa ERGÜN Şevket ATEŞ HOŞGELDİNİZ Mustafa ERGÜN Şevket ATEŞ Karadeniz Teknik Üniversitesi HOŞGELDİNİZ KÖPRÜLERİN DİNAMİK ANALİZLERİNDE ÖLÇEKLENDİRİLMİŞ DEPREM KAYITLARININ KULLANIMI Konu Başlıkları Yapıların Dinamik Analizlerinde

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Reel Sektör Risk Yönetimi

Reel Sektör Risk Yönetimi Temel Analiz Ocak ayının ilk yarısını geride bırakırken piyasalardaki olumlu havanın sorgulanmaya başladığını söyleyebiliriz. Amerika kanadında Aralık ayında sürpriz bir iyileşme gözlenen tarım dışı istihdam

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

1. Aşağıdakilerden hangisi fizik bilim insanının özelliklerinden değildir?

1. Aşağıdakilerden hangisi fizik bilim insanının özelliklerinden değildir? FİZİK ÖDEV TESTİ - DÖNEM - ÖDEV - FİZİĞİN DOĞASI FİZİK ÖDEV TESTİ - DÖNEM - ÖDEV - FİZİĞİN DOĞASI Aşağıdakilerden hangisi fizik bilim insanının özelliklerinden değildir? A) Fizik biliminin sınanabilir

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

STRATEJİK YATIRIM TEKNİKLERİ

STRATEJİK YATIRIM TEKNİKLERİ STRATEJİK YATIRIM TEKNİKLERİ TEKNİK ANALİZE GİRİŞ-TERMİNOLOJİ GRAFİK ÇİZME ÇİZİM ÇALIŞMALARI FORMASYONLAR İNDİKATÖRLER BORSANIN İŞLEVİ EKONOMİYE KAYNAK AKTARMAK SERMAYEYİ TABANA YAYMAK BORSANIN İŞLEVİ

Detaylı

Tekirdağ&Ziraat&Fakültesi&Dergisi&

Tekirdağ&Ziraat&Fakültesi&Dergisi& NamıkKemalÜniversitesi ISSN:1302*7050 TekirdağZiraatFakültesiDergisi Journal(of(Tekirdag(Agricultural(Faculty( ( ( ( ( ( ( An(International(Journal(of(all(Subjects(of(Agriculture( Cilt(/(Volume:(10Sayı(/(Number:(2(((((Yıl(/(Year:(2013

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı