GABOR TABANLI AYRIK EVRİMSEL DÖNÜŞÜM KULLANILARAK GÖRÜNTÜ DAMGALAMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GABOR TABANLI AYRIK EVRİMSEL DÖNÜŞÜM KULLANILARAK GÖRÜNTÜ DAMGALAMA"

Transkript

1 GABOR TABANL AYRK EVRİSEL DÖNÜŞÜ KULLANLARAK GÖRÜNTÜ DAGALAA ahmu ÖZTÜRK (), Aydın AKAN (),, Yalçın ÇEKİÇ () Elri-Elroni ühndisliği Bölümü () İsanbul Ünivrsisi, Avılar, 343, İsanbul () Bahçşhir Ünivrsisi, Bşiaş, 34349, İsanbul ABSTRACT Warmaring hniqus ar proposd as a soluion o opyrigh proion of digial mdia fils. Warmaring algorihms ar mainly onnrad on spaial or spral domains. n his wor, a nw and robus warmaring mhod ha is basd on spaio-frquny (SF) rprsnaions is prsnd. W us h Disr Evoluionary Transform (DET) o rprsn an imag in h SF domain. A warmar is mbddd ono sld lls in h join SF domain. Hn by ombining h advanags of spaial and spral domain warmaring mhods, a robus and prpual warmaring algorihm is prsnd. Ky words: mag Warmaring, Tim-Frquny Analysis, Disr Evoluionary Transform.. GİRİŞ Sayısal mdya ürünlri, sunduları yüs ali, olaylıla dğişirilbilm v yüs vrimlilil çoğalılabilm gibi bir ço avanaj sağlamalarının yanında, olay opyalanabilmlri v dğişililr uğraılabilmlri ndniyl lif halarının orunmasının zorlaşmasına sbp olmuşlardır. Son yıllarda bu soruna çözüm olara damgalama önrilmdir. Sayısal damgalama, damga olara adlandırılan bir bilginin, bir çolu oram nsnsinin için, daha sonra isnildiğind çıarılabil vya spi dilbil bir biçimd yrlşirilmsidir. Damga olara ullanılan bilgi, damgalanan nsn haında çşili bilgilr olabilği gibi ullanııya (vya sahibin) ilişin bazı bilgilr d olabilir. Görünü vya vido damgalama söz onusuysa, damga olara başa bir görünü vya bir logo ullanılabilir. Damga olara ullanılan görünü görülbilir vya görülmz olara gömülbilir. Görünü damgalama haında yapılan çalışmalar çoğunlula uzaysal v izgsl boyularda damgalama yönmlri üzrin yoğunlaşmışır. Hr ii boyu için d başarılı damgalama yönmlri glişirilmiş olsa da, hr yönmin ndin has bazı zayıflıları da bulunmaadır. Uzaysal boyua, damgalanaa alan asıl görününün dousuna bağlı olara sçilir [,]. İzgsl boyua is, damga, Ayrı Kosinüs Dönüşümü (AKD) vya Ayrı Dalgaı Dönüşümü (ADD) gibi yönmlr ullanılara dönüşüm yapıldıan sonra gömülür. Damga dönüşüm bölgsind görünmzli şarlarını sağlayabilm için ora frans bölglrin gömülmdir [3,4,5]. İzgsl boyua damgalama, dayanılılı açısından daha avanajlıdır. Faa izgsl boyua çalışmanın girdiği bazı sınırlamalar, uzaysal boyuai fardilmzli şarına uymayı zorlaşırabilir, yani görünüd bozulmalar olabilir. Son dönmlrd bazı araşırmaılar, hm uzaysal hm d izgsl boyuların avanajlarından yararlanara daha dayanılı v fardilmz damgalama yapabilm için görününün birlşi uzaysal-izgsl gösrimini ullanan yönmlr glişirmy çalışmaadır [6,7]. Birlşi uzaysal-izgsl düzlmd damgalama, görününün içind n adar, hangi bolgd v hangi frans aralığında bilgi salanabilğin ilişin snli sağlamaadır. Bu çalışmada, boyulu işarlr için bir zaman-frans (ZF) gosrim yonmi olan Gabor açılımı abanlı Ayrı Evrimsl Dönüşüm (AED) il yni bir görünü damgalama yönmi sunulmaadır. Damgalama işlminin ardından damga szm yönmi d vrilir.. GABOR TABANL AYRK EVRİSEL DÖNÜŞÜ Ayrı zamanlı bir x(, n N-, dizisi için zamanla dgişn bir çird, X(n,ω ), yardımı il aşağıdai gibi sinüsoidal bir gösrim ld dilbilir [8,9]: K x( Burada j n X ( n, ) () K, K-, K frans / örnği sayısı, v X(n,ω ) ayrı vrimsl dönüşüm (AED) çirdğini gösrmdir. İşarin zamanla dğişn izgsi bu dönüşüm yardımı il S(n,ω ) = X(n,ω ) / K il ld dilbilmdir. AED

2 çirdği, X(n,ω ) işar insindn aşağıdai gibi ld dilbilir: X N j () n, xw n, Burada n, W gnl olara zaman v frans bağımlı pnr fonsiyonunu gösrmdir. AED ısa-zamanlı Fourir dönüşümünün gnllşirilmiş n, pnrsi W hali olara yorumlanabilir [9]. di olmayan aban fonsiyonları ullanan Gabor açılımı vya di aban ullanan alvar dalgaıları il ld dilbilmdir [9]. Pnrnin nrjisi normaliz dilr vrimsl izgnin işar nrjisini oruması sağlanabilir. Görüldüğü gibi AED ullanıldığında, işar ZF gösrimindn Wignr dağılımı gibi ZF dağılımlarına gör ço daha olaya gri ld dilbilmdir []. Dolayısı il damgalama uygulamaları için olduça uygun bir ZF analizi yönmidir. 3. UF TABANL GÖRÜNTÜ DAGALAA Önrdiğimiz uzay-frans abanlı damgalama yönmind, görününün saırları boyulu işarlr olara düşünülm v birlşi uzayfrans boyuuna dönüşümlri ayrı ayrı yapılmaadır. Böyl hr bir saır için ayrı bir uzay-frans marisi ld dilmdir. Damga, bu uzay-frans marislri içindn sçiln asayılara gömülmdir. Damgayı görününün büün saırlarına gömm mümün olsa da, güvnli için sad bizim sçiğimiz bazı saırlara gömülmdir. Damga, hr bir saırın AED marisi içrisind d yin sad bizim blirldiğimiz asayılara lnmdir. Böyl hm saırlar, hm d asayılar için ayrı anaharlar ullanılmaa v damgalama işlmi olduça güvnli bir hal girilmdir. İi boyulu görünülri doğrudan uzay-frans boyuunda ifad dbilm içind bazı yönmlr önrilmişir. Faa yoğun işlm yüü bu yönmlrin damgalama uygulamalarında ullanımını zorlaşırmaadır [6]. Son yıllarda, Wignr Dağılımı ullanılara görününün saırlarına damga gömm yönmi uygulanmışır [7,]. Ana saır dizisinin Wignr vya diğr bir Cohn sınıfı ZF dağılımından gri ld dilmsi gnllil zor bir problmdir. AED doğrusal bir dönüşüm olduğu için damgalama çalışmalarında ullanılması daha uygundur. Bu ndnl, bu çalışmada AED ullanılara uzayfrans abanlı bir damgalama yönmi önrilmişir. Eğr, ( x,, x, y N, asıl görünü is, görününün x. saırı için AED: X N j ) ( x, ) W ) (3) ld dilir. V burada y, N şlinddir. Damga dizisi is w (, n, il gösrilir., damga dizisinin büyülüğünü gösrmdir v n adar büyüs, önriln yönmin apasisi o adar büyü olaair. Bu çalışmada damga olara rasgl ürilmiş sıfır oralama v birim varyanslı, = ad grçl sayıdan oluşan lmana sahip bir Gauss dağılımlı dizi ullanılmışır. Görününün x. saırının AED marisindn damga dizisinin lman sayısı adar asayı sçilir v bu asayılara damga, ( (. (., (4) şlind lnir. Burada (, n,,...,, AED asayılarını, damga dizisini gösrmdir. is bizim blirlyğimiz bir ağırlı sabiidir. Damga lnn asayıların indislri, damga çıarılması ya da spii aşamasında grğindn anahar olara salanır. Hm böyl anahara sahip olmayan işilr, damganın gömüldüğü asayıları spi dilmz v damganın güvnliği sağlanmış olur. UF bölgsind damga gömm işlmi amamlandıan sonra, Trs AED (TAED) yoluyla damgalanmış görünü saırı ld dilir: K ˆ( x, Xˆ j y ). (5) Burada, Xˆ ) damga lnmiş AED asayılar marisini, ˆ ( x, is damgalanmış görünü saırını gösrmdir. Damga gömm işlmi, görününün üm saırları için yapılabilir. Ana güvnli açısından ris oluşuraağı v işlm yüünü ço arıraağı için rih dilmmişir. Bunun yrin blirli bir sayıda rasgl saır sçilmiş v sad onlar damgalanmışır. Bu durumda damgalanan saırların indislrini d bir güvnli anaharı olara salama v spi aşamasında ullanma grmişir. Bu yolla iini bir güvnli oruması da sağlanmış olur. Bu yönml uzay-frans boyuunda damga gömmnin, damgalamanın apasisinin olduça yüslilbilmsin olana vrmsi önmli bir avanajdır. 3

3 4. DAGA SEZE Tlif halarının orunması gibi prai uygulamalarda önlili amaç, görünü çşili bozulmalara, yani saldırılara uğramış olsa bil, içrisind örn damgalardan hangisinin bulunduğunu spi dbilmir. Bu çalışmada ilini abanlı bir damga szm yönmi ullanılmaadır. Bunun için ön damgalanmış görünü saırının AED si hsaplanır. AED asayılar marisindn, damgalanmış asayılar anahar yardımıyla bulunur v bir dizi halin girilir. Böyl ( dizisi ynidn ld dilmiş olur. (, damgalanmış v büyü olasılıla saldırılar sonuu bozulmalara uğramış asayıları içrir. Elimizd bulunan örn damgalar ümsindi hrhangi bir damganın ( dizisi içrisin gömülü olup olmadığını s dbilm için, bu dizinin büün örn damgalarla olan ilinisi hsaplanır.bu ilini sonuçları, s diln damganın görünüd mvu olup olmadığına arar vrilbilmsi için ullanılır. Karar vrm işlmi için bir şi dğri hsaplanmalı v ilini sonuçları bu dğr il arşılaşırılmalıdır. Sad grç damganın ilini sinin sonuu bu şi dğrini aşaaır. Böyl görünüy hangi damganın gömülmüş olduğu spi dilbilmdir. Damgalanmış v saldırılar sonuu bozulmuş asayılar dizisi, (, v damga dizisi, w (, arasındai ilini, ( ( (6) n şlind ifad dilir. İlini sin abi uulan örn damgayı il gösrirs, ( ( ( (7) ld dilir. Buradan n n ( ( (. (8) Eğr s diln damga v görünüy gömülü damga,, aynı is, yuarıdai şili ( (9) ( ( w ( n şlini alır. Bu çalışmada damga olara sıfır oralama v birim varyanslı, rasgl Gauss dizilr ullanılmışır. İlini abanlı bir szii aşağıdai şild anımlanabilir: H. () H Burada, şi dğrini gösrmdir. H il gösriln bir numaralı hipozin grçlşmsi durumunda, s diln damganın, görünüy gömülü olan damga il aynı olduğu abul dilir. H il gösriln sıfır numaralı hipozin grçlşmsi durumunda is, ya s diln v gömülü olan damgalar farlıdır, ya da görünüy hiç damga lnmmişir. Bir şi dğri sçildin sonra, hrhangi bir saldırının olmadığı oşullarda haa olasılığı aşağıdai şild ld dilbilir. P x dx rf () Bu şilin haa olasılığının am olara ld dilbilmsi için, asıl görününün varyansı,, v oralaması,, hsaplanabilmlidir. Kullanılma ihimali olan üm görünülr için AED asayılarının blnn dğrinin hsaplanması griğindn, bu ço zor bir yönmdir. Faa dnysl yönmlrl iyi yalaşımlar ld dilbilir. İlininin isaisisl ararisilri inlnirn, önlil hm damga lnn AED asayılar dizisinin, hm d damga dizisinin sıfır oralamalı v bağımsız rasgl dğişnlr olduları abul dilmişir. Bu varsayımlar alında ( nin oralaması v varyansı hsaplanmışır. Ts diln damga, görünüy gömülü olan damga il aynı is olduğu bulunmuşur. Ts diln damga, görünüy gömülü olan damga il aynı dğil is vya görünüd hiç damga yosa olduğu görülmüşür []., Damga var (), Damga yo vya farlı ( nin varyansı is, bazı abul v yalaşımlar yardımıyla, (3) olara bulunmuşur. Görüldüğü gibi, ( in olasılı yoğunlu fonsiyonu, oralamaları farlı, varyansları şi olan ii ayrı Gauss ğrisindn oluşmaadır. Bunlardan, H ın oluşma olasılığını gösrn, 4

4 H in oluşma olasılığını gösrn is dğrin sahipir. oralama Görününün hrhangi bir saldırıya uğramadığı durumda şi dğri, Gauss ğrilrinin ora noası olara sçilbilir. Burada, birini Gauss ğrisinin oralaması, iini Gauss ğrisinin oralaması is şlinddir. Bu ndnl, saldırı olmadığı durumda şi dğrini, (4) şlind hsaplayabiliriz. Prai uygulamalarda, asıl görününün oralama dğrini bazı yalaşımlarla bulup, ondan şi dğrini hsaplama yrin, doğrudan damgalanmış görününün AED asayılarının oralamasını ullanma daha uygulanabilir olaaır: ( (5) n Çşili dnysl çalışmalar gösrmişir i, görünüy saldırı uygulanırsa, H hipozini arşılayan sıfır oralamalı Gauss ğrisinin varyansı,, hmn hmn aynı almaadır. Faa H hipozini arşılayan oralamalı Gauss ğrisinin varyansı dia çii biçimd armaadır. Ayrıa in saldırı alında bil dğişmdiğini v sıfır olara aldığını abul dbiliriz. Faa dğişmiş olsa bil, son ifaddn görülbildiği gibi, damgalanmış v bozulmuş AED asayılarından sirilbilir. Sonuç olara saldırı uygulanması durumunda, nin olasılı yoğunlu fonsiyonunda ii Gauss ğrisinin hala mvu olduğu, faa oralamalı olan v H hipozinin olasılığını gösrn ğrinin varyansının olduça arığı söylnbilir. Bu durumda si şi dğri ullanılmaya dvam dilirs haa olasılığı yüslir. Bu sbpl damga szm aşamasında damganın bulunup bulunmadığına arar vrm için daha düşü bir şi dğri sçilmlidir. Yani şi dğri sıfıra daha yaın olmalıdır. Bu durumda şi dğri, * ( (6) 4 n siligindn ld dilbilir. Burada * ( damgalanmış v saldırıya uğramış görününün AED asayılarını gösrmdir. Kısaa, çşili saldırıların uygulanmış olması ihimalinin bulunduğu durumlarda sıfıra daha yaın bir şi dğri sçilmsi uygun olaaır. 5. DENEYSEL SONUÇLAR Önriln damgalama yönmi, yaygın olara ullanılan Lna v Baboon görünülrin uygulanara szim başarımı inlnmişir. Damga olara sıfır oralama v birim varyanslı, rasgl, Gauss dağılımlı dizilr ullanılmışır. Damgalanmış Baboon görünüsü Şil d, damgalanmış v asıl Baboon görünülri arasındai farın a güçlndirilmiş hali is Şil d vrilmişir. Görüldüğü gibi damgalama işlmi gözl görülbilir bir bozulma oluşurmamışır. 6. TARTŞA VE SONUÇLAR Bu çalışmada ZF analizi abanlı yni bir damgalama yönmi önrilmişir. ZF dönüşümlrini grçlşirm için Ayrı Evrimsl Dönüşüm (AED) ullanılmışır. Önriln damga gömm yönmi hm uzaysal hm d izgsl boyuların avanajlarını birlşirmdir. Böyl sad uzaysal ya da sad izgsl boyua yapılan damgalama çalışmalarına gör daha başarılı bir yönm sunulmaadır. Damganın szilmsi amaıyla, asıl görününun ullanılmadığı bir yönm önrilmişir. Damgalama işlmi dğişi görünülr için dnnmiş v gözl görülür bir dğişili yaramadığı gözlmlnmişir. Yönmin saldırılar arşısındai başarımı dnnm aşamasındadır. Önriln doğrusal damga gömm v szim algorimaları hsaplama açısından olduça basi v hızlıdır. 7. KAYNAKÇA [] N.Niolaidis, and.pias, Robus imag warmaring in h spaial domain, Signal Prossing, vol.66, pp , 998. [] O.Bruyndonx, J.J.Quisquar, and B.aq, Spaial mhod for opyrigh labling of digial imags, in Pro. EEE Worshop on Nonlinar Signal and mag Prossing, Jun 995, pp [3].Barni, F.Barolini, A. D Rosa, and A. Piva, Capaiy of h warmar hannl: How many bis an b hiddn wihin a digial imag?, in Pro. SPE, Jan. 999, vol. 3657, pp [4] J.J.K. O Ruanaidh and T. Pun, Roaion, sal and ranslaion invarian digial imag warmaring, Signal Prossing, Spial ssu on Copyrigh Proion and Conrol, vol.66, no.3, pp , ay

5 [5] S.Prira, S.Voloshynosiy, and T.Pun, Opimal ransform domain warmar mbdding via linar programming, Signal Prossing, vol.8, no.6, pp.5-6, Jun. [6] S. Sanovi,. Djurovi, and. Pias, Warmaring in h spa/spaial-frquny domain using wo-dimnsional radon-wignr disribuion, EEE Transaions on mag Prossing, vol., pp , April. [7] B.G. obassri, Digial warmaring in h join im-frquny domain, in EEE nrnaional Confrn on mag Prossing,, vol.3, pp [8] Aan, A., and Chaparro, L.F., Dmbr 997, uli-window Gabor Expansion for Evoluionary Spral Analysis, Signal Prossing, vol. 63, pp Şil. Damgalanmış Baboon Görünüsü. [9] Sulsahira, R., Chaparro, L.F., and Aan, A., Disr Evoluionary Transform for Tim- Frquny Analysis, Journal of Th Franlin nsiu, Vol. 337, No. 4, pp , July. []. Al-Khassawnh and S. Aviyn, A imfrquny inspird robus imag warmaring, Confrn Rord of h Thiry-Eighh Asilomar Confrn on Signals, Sysms and Compurs 4, vol., pp , 4. [] G.C. Langlaar,. Syawan, and R.L. Lagndij, Warmaring digial imag and vido daa, EEE Signal Prossing agazin, vol.7, no.5, pp.-46, Spmbr 5. [].Barni, F.Barolini, V.Cappllini, A.Piva, A DCT-domain sysm for robus imag warmaring, Signal Prossing, vol.66, no.3, pp , ay 998. Şil. Damgalanmış v Asıl Baboon Görünülri Arasındai Far ( a güçlndirilmiş). 6

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE. Alp Arslan Kıraç

KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE. Alp Arslan Kıraç Afyon Koa Ünivrsisi 8 Afyon Koa Univrsiy FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE ÖZET Al Arslan

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler Kirişli döşmlr Dört tarafından irişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşlulu döşmlr Düznsiz gomtrili döşmlr bir tarafı irişli üç tarafı boşta döşm (Konsol döşm) Đi tarafı irişli ii

Detaylı

İŞLEM KURALLARI BİLDİRİM FORMU

İŞLEM KURALLARI BİLDİRİM FORMU İŞLEM KURALLARI BİLDİRİM FORMU SERMAYE PİYASASI KURULU'NUN YAPTIĞI DEĞERLENDİRME SONUCUNDA, BORSA İSTANBUL A.Ş. DE İŞLEM GÖREN PAYLAR A, B, C v D GRUBU OLMAK ÜZERE DÖRT GRUBA AYRILMIŞ OLUP, GRUPLAR İLE

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

Günlük Bülten. 27 Aralık 2012. Merkez Bankası Baş Ekonomisti Hakan Kara 2012 yılının %6 civarında enflasyonla tamamlanacağını düşündüklerini söyledi

Günlük Bülten. 27 Aralık 2012. Merkez Bankası Baş Ekonomisti Hakan Kara 2012 yılının %6 civarında enflasyonla tamamlanacağını düşündüklerini söyledi 27 Aralık 2012 Prşmb Günlük Bültn İMKB vrilri İMKB 100 77,991.1 Piyasa Dğri-TÜM ($m) 304,387.4 Halka Açık Piyasa Dğri-TÜM ($m) 87,677.3 Günlük İşlm Hami-TÜM ($m) 1,243.42 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

Günlük Bülten. Günlük Bülten

Günlük Bülten. Günlük Bülten 0 Oak 203 Prşmb Günlük Bültn İMKB vrilri İMKB 00 8,49. Piyasa Dğri-TÜM ($m) 320,064.6 Halka Açık Piyasa Dğri-TÜM ($m) 92,060.8 Günlük İşlm Hami-TÜM ($m) 2,046.97 Yurtdışı piyasalar Borsalar Kapanış % Dğ.

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

IŞINIM VE DOĞAL TAŞINIM DENEYİ

IŞINIM VE DOĞAL TAŞINIM DENEYİ IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan

Detaylı

İyon Kaynakları ve Uygulamaları

İyon Kaynakları ve Uygulamaları İyon Kaynakları v Uygulamaları E. RECEPOĞLU TAEK-Sarayköy Nüklr Araştırma v Eğitim Mrkzi rdal.rcpoglu rcpoglu@tak.gov.tr HPFBU-2012 2012-KARS KONULAR İyon kaynakları hakkında gnl bilgi İyon kaynaklarının

Detaylı

Günlük Bülten. 26 Aralık 2012. Merkez Bankası Erdem Başçı 2013 Yılı Para ve Kur Politikası nı açıkladı

Günlük Bülten. 26 Aralık 2012. Merkez Bankası Erdem Başçı 2013 Yılı Para ve Kur Politikası nı açıkladı 26 Aralık 2012 Çarşamba Günlük Bültn İMKB vrilri İMKB 100 77,596.2 Piyasa Dğri-TÜM ($m) 302,542.1 Halka Açık Piyasa Dğri-TÜM ($m) 87,060.7 Günlük İşlm Hami-TÜM ($m) 976.12 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5 FIRT ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ EMÜ419 OTOMTİK KONTROL LORTURI DENEY 5 PID KONTROLÖR KRKTERİSTİKLERİNİN İNELENMESİ VE NLOG OLRK POZİSYON KONTROL SİSTEMLERİNDE

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş BÖLÜM II. FOURIER DÖNÜŞÜMÜ. Giriş Yr ürmizd gözl joizi olaylar zamaa yada uzalığa bağlı olara glişir. Gözl joizi olay zamaı bir osiyou is zama oramı im Domai uzuluğu bir osiyou is uzalı oramı Spac Domai

Detaylı

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ TEKNOLOJİ, Cilt 7, (2004), Sayı 3, 407-414 TEKNOLOJİ GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ ÖZET Himet DOĞAN Mustafa AKTAŞ Tayfun MENLİK

Detaylı

BÖLÜM 6 SINIR TABAKANIN TÜRBÜLANSLI HALE GEÇİŞİ

BÖLÜM 6 SINIR TABAKANIN TÜRBÜLANSLI HALE GEÇİŞİ BÖLÜM SINI TABAKANIN TÜBÜLANSLI HALE GEÇİŞİ - ZB 38 Sınır Tabaa Drs notları - M. Adil Yüsln TÜBÜLANSA GEÇİŞ Çoğu mühndisli problmind arşılaşılan aım türbülanslıdır. Aımın laminrvya türbülanslı Bu farlılı

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ YENİLEME SÜREÇLERİNDE YAŞ VE BLOK DEĞİŞTİRME STRATEJİLERİ.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ YENİLEME SÜREÇLERİNDE YAŞ VE BLOK DEĞİŞTİRME STRATEJİLERİ. ANKARA ÜNİVERSİESİ EN BİLİMLERİ ENSİÜSÜ YÜKSEK LİSANS EZİ YENİLEME SÜREÇLERİNDE YAŞ VE BLOK DEĞİŞİRME SRAEJİLERİ Duygu SAVAŞCI İSAİSİK ANABİLİM DALI ANKARA 2006 Hr hakkı saklıdır ÖZE YENİLEME SÜREÇLERİNDE

Detaylı

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ Srkan SUNU - Srhan KÜÇÜKA Dokuz Eylül Ünivrsitsi Makina Mühndisliği Bölümü -posta: srhan.kuuka@du.du.tr Özt: Bu çalışmada, komprsör,

Detaylı

Günlük Bülten. 27 Şubat 2013. TCMB, Şubat ayı PPK toplantısı özetini yayınladı

Günlük Bülten. 27 Şubat 2013. TCMB, Şubat ayı PPK toplantısı özetini yayınladı 27 Şuat 2013 Çarşama Günlük Bültn İMKB vrilri İMKB 100 77,514.3 Piyasa Dğri-TÜM ($m) 302,886.2 Halka Açık Piyasa Dğri-TÜM ($m) 86,403.0 Günlük İşlm Hacmi-TÜM ($m) 1,629.94 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak TİMAK-Taarım İmalat Analiz Kongri 6-8 Nian 006 - BALIKESİ KAYIŞ KASNAK MEKANİZMALAINDA KAYMA OLAYINI ETKİLEYEN AKTÖLEİN ANALİZİ M. Ndim GEGE Maina Mühndiliği Bölümü Mühndili aülti -Balıir/Türi Özt Kaış

Detaylı

ABSORPSİYONLU SOĞUTMA SİSTEMLERİ İLE MEKANİK SIKIŞTIRMALI SOĞUTMA SİSTEMLERİNİN ETKİNLİK VE EKSERJİ VERİMLİLİKLERİ YÖNÜNDEN KARŞILAŞTIRILMALARI

ABSORPSİYONLU SOĞUTMA SİSTEMLERİ İLE MEKANİK SIKIŞTIRMALI SOĞUTMA SİSTEMLERİNİN ETKİNLİK VE EKSERJİ VERİMLİLİKLERİ YÖNÜNDEN KARŞILAŞTIRILMALARI PAMUKKALE ÜNİ VESİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVESITY ENGINEEING COLLEGE MÜHENDİ SLİ K B İ L İ MLEİ DEGİ S İ JOUNAL OF ENGINEEING SCIENCES YIL CİLT SAYI SAYFA : 5 : : : 6-69 ABSOPSİYONLU

Detaylı

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi 9-11 Aralı 2009 Ço Yüse Mobiliteli Sönümlemeli Kanallardai OFDM Sistemleri için Kanal Kestirimi İstanbul Üniversitesi Eletri-Eletroni Mühendisliği Bölümü {myalcin, aan}@istanbul.edu.tr Sunum İçeriği Giriş

Detaylı

İdeal Sınıf Mekanının Yapay Sinir Ağı Modeli İle Belirlenmesi

İdeal Sınıf Mekanının Yapay Sinir Ağı Modeli İle Belirlenmesi 6 h Inernaional Advanced Technologies Symposium (IATS ), 6-8 May 20, Elazığ, Turey İdeal Sınıf Meanının Yapay Sinir Ağı Modeli İle Belirlenmesi H. D. Arslan, M. Ceylan 2, K. Çınar, P. Dinç 3 Selçu Üniversiesi,

Detaylı

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ - Nair Stos dnlmlri - Nair Stos dnlmlrinin tam çözümlri - Daimi, ii-botl, laminr sınır tabaa dnlmlri - Daimi, ii-botl, laminr sınır

Detaylı

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm BİLİŞİM TEKOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 1, OCAK 2008 23 Geneti Algoritma ile Mirofon Dizilerinde Ses Kaynağının Yerinin Bulunması Erem Çontar, Hasan Şair Bilge Bilgisayar Mühendisliği Bölümü, Gazi

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

Akustik Eko Yok Etme Uygulamasında Uyarlamalı Hammerstein Filtre Yakla

Akustik Eko Yok Etme Uygulamasında Uyarlamalı Hammerstein Filtre Yakla Asti Eo Yo Etm Uyglamasıda Uyarlamalı Hammrsti Filtr Yalaşımları Hammrsti Filtr Approahs i th Appliatio of Aosti Eho Callatio ğba Özg ÖZDİÇ, Rıfat HACIOĞ U Eltri v Eltroi ühdisliği Bölümü Zoglda Karalmas

Detaylı

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI Niğde Üniversitesi İİBF Dergisi, 2013, Cilt: 6, Sayı: 1, s. 96-115. 96 BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI ÖZ Arzu ORGAN* İrfan ERTUĞRUL**

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ

FARKLI SICAKLIKLARDAKİ GÖZENEKLİ İKİ LEVHA ARASINDA AKAN AKIŞKANIN İKİNCİ KANUN ANALİZİ FARKLI ICAKLIKLARDAKİ GÖZEEKLİ İKİ LEVHA ARAIDA AKA AKIŞKAI İKİCİ KAU AALİZİ Fthi KAMIŞLI Fırat Ünivrsit Mühndislik Fakültsi Kimya Mühndisliği Bölümü, 39 ELAZIĞ, fkamisli@firat.du.tr Özt Farklı sıcaklıklara

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ NOKTASAL SÜREÇLERDE EN YÜKSEK OLABİLİRLİKLİ KESTİRİM İŞLEMİNİN EVRE İZGESİ

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ NOKTASAL SÜREÇLERDE EN YÜKSEK OLABİLİRLİKLİ KESTİRİM İŞLEMİNİN EVRE İZGESİ DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cil: 15 No:2 Sayı: 44 sh. 53-76 Mayıs 2013 NOKTASAL SÜREÇLERDE EN YÜKSEK OLABİLİRLİKLİ KESTİRİM İŞLEMİNİN EVRE İZGESİ (PHASE SPECTRUM OF POINT PROCESS

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

DÜŞÜK SICAKLIKTA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TERMOEKONOMİK OPTİMİZASYONU

DÜŞÜK SICAKLIKTA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TERMOEKONOMİK OPTİMİZASYONU Isı Bilimi ve eniği Dergisi, 33, 2, 111-117, 2013 J. of hermal Siene and ehnology 2013 IBD Printed in urey ISSN 1300-3615 DÜŞÜK SICAKLIKA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUMA SİSEMİNİN ERMOEKONOMİK

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

KBÇE SİSTEMLERDE ÇOKLU ERİŞİM KARIŞIMI HESAPLAMA TEKNİKLERİ. Ahmet OTURAK

KBÇE SİSTEMLERDE ÇOKLU ERİŞİM KARIŞIMI HESAPLAMA TEKNİKLERİ. Ahmet OTURAK KBÇ SİSMLRD ÇOKLU RİŞİM KARIŞIMI HSAPLAMA KİKLRİ Ahmet OURAK Zongulda Karaelmas Üniversitesi Fen Bilimleri nstitüsü letri-letroni Mühendisliği Anailim Dalında Yüse Lisans ezi Olara Hazırlanmıştır ZOGULDAK

Detaylı

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA.

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA. SAU Fn Bilimlri Enstitüsü Drgisi PIC16F84 Mikrodntlcisi Kullanılarak Ciaziarın Tlfon D Kontrolün Bir Uygulama PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA Rabman

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

ŞARTNAME DİJİTAL PENS AMPERMETRE GARANTİ GÜVENLİK BİLGİLERİ. Uyarı ELEKTRİK SEMBOLLERİ

ŞARTNAME DİJİTAL PENS AMPERMETRE GARANTİ GÜVENLİK BİLGİLERİ. Uyarı ELEKTRİK SEMBOLLERİ DİJİTAL PENS AMPERMETRE Pil apağını açmadan veya AC aımı ölçmeden önce sayaçtan test uçlarını ve test edilen iletenden germe GARANTİ Bu cihazın bir yıl süreyle malzeme ve işçili hatası bulunmadığı garanti

Detaylı

Yatrm getirileri bir gecikmeli hareketli ortalama modeline uyduunda performans kriterine dayal optimal amortisman süresinin belirlenmesi

Yatrm getirileri bir gecikmeli hareketli ortalama modeline uyduunda performans kriterine dayal optimal amortisman süresinin belirlenmesi www.isaisikcilr.org saisikçilr Drgisi (9) 7-8 saisikçilr Drgisi Yarm girilri bir gcikmli harkli oralama modlin uyduunda prformans kririn dayal opimal amorisman sürsinin blirlnmsi Yasmin Gnçürk Hacp Ünivrsisi

Detaylı

Bölüm V Darbe Kod Modülasyonu

Bölüm V Darbe Kod Modülasyonu - Güz Bölüm V Dare Kod Modülasyonu emel Bilgiler Bi nerjisi Gürülü Gücü İlinisel lıcı Uygun Süzgeçli lıcı Bi Haa Olasılığı Semoller rası Girişim DKM ve Ha Kodlama DC veya Bilgisayardan sayısal daa k Semol

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

Çelik. Her şey hesapladığınız gibi!

Çelik. Her şey hesapladığınız gibi! Çlik Hr şy hsapladığınız gibi! idyapi Bilgisayar Dstkli Tasarım Mühndislik Danışmanlık Taahhüt A.Ş. Piyalpaşa Bulvarı Famas Plaza B-Blok No: 10 Kat: 5 Okmydanı Şişli 34384 İstanbul Tl : (0212) 220 55 00

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi Bulanı Programlama Yöntemi ile Süre-- Eniyilemesi Eran Karaman, Serdar Kale BAÜ Mühendisli Mimarlı Faültesi, 045, Çağış, Balıesir Tel: (266) 62 94 E-posta: earaman@baliesir.edu.tr sale@baliesir.edu.tr

Detaylı

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI

VOLEYBOLCULARIN FARKLI MAÇ PERFORMANSLARI İÇİN TEKRARLANAN ÖLÇÜMLER YÖNTEMİNİN KULLANILMASI 96 OLEBOLCULAIN FAKLI MAÇ PEFOMANSLAI İÇİN TEKALANAN ÖLÇÜMLE ÖNTEMİNİN KULLANILMASI ÖET Gürol IHLIOĞLU Süha KAACA Farklı yr, zaman v matryallr üzrind tkrarlanan dnylr il bir vya birdn fazla faktörün tkisi

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

{ } { } Ters Dönüşüm Yöntemi

{ } { } Ters Dönüşüm Yöntemi KESĐKLĐ DAĞILIMLARDAN RASGELE SAYI ÜRETME Trs Dönüşüm Yöntmi F dağılım fonksiyonuna sahip bir X rasgl dğişknin dağılımından sayı ürtmk için n çok kullanılan yöntmlrdn biri, F dağılım fonksiyonunun gnllştirilmiş

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

Günlük Bülten. 05 Mart 2013. Şubat ayında TÜFE %0.30 arttı, ÜFE %0.13 azaldı. Şubat ayında elektrik tüketimi %6 düşüş gösterdi

Günlük Bülten. 05 Mart 2013. Şubat ayında TÜFE %0.30 arttı, ÜFE %0.13 azaldı. Şubat ayında elektrik tüketimi %6 düşüş gösterdi XU 100 U SD /TR Y (S ağ taraf) 05 Mart 2013 Salı Günlük Bültn İMKB vrilri İMKB 100 80,612.2 Piyasa Dğri-TÜM ($m) 315,101.9 Halka Açık Piyasa Dğri-TÜM ($m) 89,968.2 Günlük İşlm Hacmi-TÜM ($m) 1,595.93 Şuat

Detaylı

DERS 11. Belirsiz İntegral

DERS 11. Belirsiz İntegral DERS Blirsiz İnral.. Blirsiz İnral. B rs ürvi bilinn bir onksiyonn ynin inşasını l alacağız. Türvi bilinn bir onksiyonn ynin inşası işlmin rs ürv işlmi aniirniaion nir. v F onksiyonlar, F is, F y nin rs

Detaylı

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYNN BİLGİSAYAR DESTEKLİ ANALİZİ Cen GEZEGİN Muammer ÖZDEMİR Eletri Eletroni Mühendisliği Bölümü Mühendisli Faültesi Ondouz Mayıs Üniversitesi, 559, Samsun e-posta:

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

Almon Gecikme Modeli ile Domates Üretiminde Üretim-Fiyat İlişkisinin Analizi: Türkiye Örneği

Almon Gecikme Modeli ile Domates Üretiminde Üretim-Fiyat İlişkisinin Analizi: Türkiye Örneği TÜRK TARIM ve DOĞA BİLİMLERİ DERGİSİ TURKISH JOURNAL of AGRICULTURAL and NATURAL SCIENCES www.urjans.com Almon Gecime Modeli ile Domaes Üreiminde Üreim-Fiya İlişisinin Analizi: Türiye Örneği a Şenol ÇELİK*,

Detaylı

KANUN TOHUMCULUK KANUNU. Kanun No. 5553 Kabul Tarihi : 31/10/2006 BİRİNCİ BÖLÜM. Amaç, Kapsam ve Tanımlar

KANUN TOHUMCULUK KANUNU. Kanun No. 5553 Kabul Tarihi : 31/10/2006 BİRİNCİ BÖLÜM. Amaç, Kapsam ve Tanımlar 8 Kasım 2006 ÇARŞAMBA Rsmî Gazt Sayı : 26340 KANUN TOHUMCULUK KANUNU Kanun No. 5553 Kabul Tarihi : 31/10/2006 Amaç BİRİNCİ BÖLÜM Amaç, Kapsam v Tanımlar MADDE 1 Bu Kanunun amacı; bitkisl ürtimd vrim v

Detaylı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı Makin Tknolojilri Elktronik Drgisi Cilt: 6, No: 2, 2009 (-8) Elctronic Journal of Machin Tchnologis Vol: 6, No: 2, 2009 (-8) TEKNOLOJİK ARAŞTIRMALAR www.tknolojikarastirmalar.com -ISSN:304-44 Makal (Articl)

Detaylı

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere,

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere, Kaosu Kaosan Kuraralım ve Rasgeleliğin Haını Verelim Kaos sözcüğü ile ilgili Tür Dil Kurumu web sayfasındai Güncel Türçe Sözlü e yazılı olanlar: aos (isim, a os, Fransızca). Evrenin düzene girmeden öncei

Detaylı

Mühendisler İçin DİFERANSİYEL DENKLEMLER

Mühendisler İçin DİFERANSİYEL DENKLEMLER Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ

Detaylı

NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar NOKTASAL KAYNAKLI TOPRAK KİRLİLİĞİNİN KONTROLÜ YÖNETMELİĞİ Amaç BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak v Tanımlar MADDE 1 Bu Yöntmliğin amacı; alıcı ortam olarak toprağın kirliliktn korunması, noktasal kaynaklı

Detaylı

YENİ NESİL CAM KORKULUK SİSTEMLERİ

YENİ NESİL CAM KORKULUK SİSTEMLERİ F Mtal v Rklam Ürünlri San Tic AŞ YENİ NESİL CAM KORKULUK SİSTEM F TAL v NTİCAŞ Zmin Üstü Bağlantılı EGANT Srisi C50 Elgant srisi yüksk mimari standarttaki yapıların, dğrin, sağlamlığı v sttiği il dğr

Detaylı

Çay Atıklarından Aktif Karbon Üretimi ve Adsorpsiyon Proseslerinde Kullanımı

Çay Atıklarından Aktif Karbon Üretimi ve Adsorpsiyon Proseslerinde Kullanımı ÖZET Çay Atıklarından Aktif Karbon Ürtimi v Adsorpsiyon Prosslrind Kullanımı Mrym OZMAK a, Işıl Gürtn b, Emin YAĞMUR b, Zki AKTAŞ b a DSİ Gn.Md. TAKK Dairsi Başkanlığı, Ankara, 61 b Ankara Ünivrsitsi Mühndislik

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

BİLEŞENLER. Demiryolu Araçları için yüksek hızlı DC devre kesiciler Tip UR6, UR10 ve UR15

BİLEŞENLER. Demiryolu Araçları için yüksek hızlı DC devre kesiciler Tip UR6, UR10 ve UR15 İLŞNLR miryolu raçları için yüksk hızlı dvr ksicilr Tip R, R v R Gnl bilgi R, R v R; doğal soğutmalı, açmasız, tk kutuplu, çift yönlü, lktromanytik üflmli, lktrik kontrol dvrlrin v doğrudan aşırı akım

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

Ödülü hayat olanlar için... Ayrıcalığı ile

Ödülü hayat olanlar için... Ayrıcalığı ile Ödülü hayat olanlar için... Ayrıcalığı il Bylikdüzü nd özlnn bir hayat... Huzur dolu mkanlar, yüksk konforlu yaşamlar Bylikdüzü Kavaklı da, bölgnin glişmkt olan n önmli yrlrindn birind sizin için ypyni

Detaylı

Yrd. Doç. Dr. Birol SOYSAL

Yrd. Doç. Dr. Birol SOYSAL Kablosuz Saısal Habrlşmd Paramtr Kstrm Yrd. Doç. Dr. Brol SOYSAL Atatür Ünvrsts Mühndsl Faülts Eltr-Eltron Mühndslğ Bölümü LMS v RLS Algortmaları: Gnş bantlı ltşm sstmlrnd arşılaşılan sorunların büübrısmının

Detaylı

Malzeme Güvenliği Bilgi Formu (EC) No. 1907/2006 (REACH) Düzenlemesi ile uyumludur Hazırlandığı tarih: 02/03/09 Revize edildiği tarih: 12/11/12

Malzeme Güvenliği Bilgi Formu (EC) No. 1907/2006 (REACH) Düzenlemesi ile uyumludur Hazırlandığı tarih: 02/03/09 Revize edildiği tarih: 12/11/12 BÖLÜM 1. MADDENİN/KARIŞIMIN VE FİRMANIN/İŞLETMENİN TANIMI 1.1 Ürün kimliği: EB25SS Ticari isim: Ekstra Güçlü Pisuar Kapakları 1.2 Maddnin vya karışımın blirtiln ilgili kullanımları v blirtiln kullanımlara

Detaylı

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri Ço Taşıyıcılı Gerçe Zaman WiMA adyoda Zaman Bölgesi ve Freans Bölgesi Kanal Denleştiricilerin Teori ve Deneysel Başarım Analizleri E. Tuğcu, O. Çaır, A. Güner, A. Özen, B. Soysal, İ. Kaya Eletri-Eletroni

Detaylı

ÖDEV SORULARI Güz Yarıyılı Öğretim Üyesi: Prof. Dr. Sedef Kent

ÖDEV SORULARI Güz Yarıyılı Öğretim Üyesi: Prof. Dr. Sedef Kent LĐNEER CEBĐR ve UYGULMLRI DERSĐ ÖDEV SORULRI 9- Güz Yarıyılı Öğreim Üyesi: Prof. Dr. Sedef Ken Ödev ile ilgili açıklamalar:. Derse ai dör bölümden oluşan ödevlerin amamı buradadır. ncak ödevler konular

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AF VE DF TABANLI İŞBİRLİKLİ SİSTEMLERDE RÖLE SEÇİMİ AYŞE İPEK AKIN

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AF VE DF TABANLI İŞBİRLİKLİ SİSTEMLERDE RÖLE SEÇİMİ AYŞE İPEK AKIN T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AF VE DF TABANLI İŞBİRLİKLİ SİSTEMLERDE RÖLE SEÇİMİ AYŞE İPEK AKIN YÜKSEK LİSANS TEZİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ANABİLİM DALI HABERLEŞME

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler.

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler. Eğitim ve Bilim Cilt 40 (2015) Sayı 177 31-41 Türiye dei Vaıf Üniversitelerinin Etinli Çözümlemesi Gamze Özel Kadılar 1 Öz Oran analizi ve parametri yöntemlerin eğitim urumlarını ıyaslaren yetersiz alması

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ

MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ Onuncu Ulusal Kimya Mühndisliği Kongrsi, 3-6 Eylül 1, Koç Ünivrsitsi, İstanbul MANYEZİT ARTIĞI KULLANILARAK SULU ÇÖZELTİLERDEN Co(II) İYONLARININ GİDERİMİ İlkr KIPÇAK, Turgut Giray ISIYEL Eskişhir Osmangazi

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Oca 2011 STOKASTİK KULLANICI DENGESİ TRAFİK ATAMA PROBLEMİNİN SEZGİSEL METOTLAR KULLANILARAK ÇÖZÜLMESİ (HEURISTIC METHODS

Detaylı

Günlük Bülten. 26 Şubat 2013. İtalya da seçim sonuçları belli oldu

Günlük Bülten. 26 Şubat 2013. İtalya da seçim sonuçları belli oldu 26 Şuat 2013 Salı Günlük Bültn İMKB vrilri İMKB 100 76,670.3 Piyasa Dğri-TÜM ($m) 302,093.4 Halka Açık Piyasa Dğri-TÜM ($m) 86,034.3 Günlük İşlm Hacmi-TÜM ($m) 1,341.46 Yurtdışı piyasalar Borsalar Kapanış

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ İsmail KINACI 1, Aşır GENÇ 1, Galip OTURANÇ, Aydın KURNAZ, Şefik BİLİR 3 1 Selçuk Üniversiesi, Fen-Edebiya Fakülesi İsaisik

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ

ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN

Detaylı

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B

Cevap: B. x + y = 5 ve y + z = x = 3z y. x + y = 5 z + y = 3 x t = 2 bulunur. 7x 9y = y 3x 10x = 8y. 3/ 3y = x + z 15k = 4k + z + Cevap: B 6 LYS/MAT MATEMATİK ÇÖZÜMLERİ DENEME. ( ab) ( ab) 6( ab) 6. 6 y z ( ab) ( ab) 6( ab) 6 6 6y y z 6y ( ab) 6 6( y) ( y z) ab.. olur. y v y z. 7 z y / y z k k z y z y t bulunur. 7 9y y 8y k, y k zk A) y 8,

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 0 Haziran www.guvn-kua.h VİNÇTE ÇEİ ONSTRÜSİON ÖZET _09 M. Güvn UT Smbollr v anaklar için "_00_ClikonsruksionaGiris.do" a bakınız. oordina ksnlri "GENE GİRİŞ" d blirildiği gibi DIN 8800 T gör alınmışır.

Detaylı

EZ ONAYI Göhan Soysal arafından hazırlanan Mulisai Hedef aibi Başarım Analizinde Gözlenen Bilgi Marisi Kullanımı adlı ez çalışması 08/06/01 arihinde a

EZ ONAYI Göhan Soysal arafından hazırlanan Mulisai Hedef aibi Başarım Analizinde Gözlenen Bilgi Marisi Kullanımı adlı ez çalışması 08/06/01 arihinde a ANKARA ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ DOKORA EZİ MULİSAİK HEDEF AKİBİ BAŞARIM ANALİZİNDE GÖZLENEN BİLGİ MARİSİ KULLANIMI Göhan SOYSAL ELEKRONİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 01 Her haı salıdır EZ

Detaylı

YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ

YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ YAPAY SİNİR AĞLARI VE ARIMA MODELLERİNİN MELEZ YAKLAŞIMI İLE ZAMAN SERİLERİNDE ÖNGÖRÜ Erol EĞRİOĞLU Haceepe Üniversiesi, Fen Fakülesi, İsaisik Bölümü, 06532, Beyepe, Ankara, TÜRKİYE, erole@haceepe.edu.r

Detaylı

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Fırat Üniv. Fen Bilimleri Dergisi Fırat Unv. Journal of Science 25(), 7-76, 23 25(), 7-76, 23 Matris Unutma Fatörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Özet Cener BİÇER * Esin KÖKSAL

Detaylı