9. KAVİTASYON, KAVİTASYONUN ETKİLERİ, KAVİTASYONUN BAŞLANGICI, KAVİTASYON KONTROLÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9. KAVİTASYON, KAVİTASYONUN ETKİLERİ, KAVİTASYONUN BAŞLANGICI, KAVİTASYON KONTROLÜ"

Transkript

1 9. KAVİTASYON, KAVİTASYONUN ETKİLERİ, KAVİTASYONUN BAŞLANGICI, KAVİTASYON KONTROLÜ 9.1 Kavitasyon Kavitasyon, sıvı akışkan içinde bir takım boşlukların veya kabarcıkların oluşumunu ifade eden fiziksel bir olgudur. Kavitasyon, su veya herhangi bir sıvı akışkan içerisindeki hız artışı veya bu akışkan içerisinde hızlı hareket eden herhangi bir cisim nedeni ile oluşan faz değişim olayıdır. Bernoulli prensibine göre akışkan içerisindeki hız artışı, basıncın azalmasına neden olur. Daha düşük basınç ise akışkan içerisinde daha düşük bir kaynama noktası anlamına gelir. Başka bir deyişle, basınçtaki azalma suyun kaynama noktasını ortam sıcaklığına kadar düşürebilir (Şekil 1). Bu durumda, içinde su buharı ve erimiş gazlar bulunan, hava kabarcıkları içeren bir tür soğuk kaynama meydana gelir. Bu olaya kavitasyon ismi verilir. Şekil 1 Soğuk kaynama ve kavitasyon olayı. Kavitasyon, mühendisliğin birçok dalında karşılaşılan bir oluşumdur. Kavitasyon genel bir sıvı akışkan olayıdır. Akışkan içerisinde basınç ve hız değişimleri meydana gelen her makine veya sistemde ortaya çıkabilir. Örnek olarak pompalar, türbinler, pervaneler, yataklar hatta insan vücudu verilebilir. İnsan vücudunda kalp ve eklemler kavitasyonun kötü etkilerinin görülebileceği yerlerdir. 1 PDF processed with CutePDF evaluation edition

2 Kavitasyon oluşumlarının ortak karakteristikleri aşağıdaki gibi özetlenebilir: Kavitasyon sıvı akışkanlara özgü bir olaydır. Katılarda ve gazlarda ortaya çıkmaz. Kavitasyon basınç düşüşüne bağlı olarak oluştuğundan, basınç düşüşünün kontrolü ile önlenebilir. Kavitasyon dinamik bir olaydır. Kavitasyon oluşumunun meydana gelebilmesi için akışkanın bir katı cisim yüzeyi ile temas etmesi veya akışkanın hareketli olması gerekmez. Herhangi bir sıvı için faz diyagramı Şekil de verilmektedir. B noktasındaki bir sıvıda sıcaklık artırılarak, C noktasındaki bir sıvıda da basınç azaltılarak aynı A noktasına gelinebilir. Yani bir sıvının basıncı düşürülerek veya sıcaklığı artırılarak buhar fazına geçmesi sağlanabilir. C den A ya geçişte kavitasyon, B den A ya geçişte de kaynama olayı meydana gelir. Katı Sıvı C Basınç (P) B Üçlü nokta Buhar Sıcaklık (T) A Şekil Herhangi bir sıvı için faz diyagramı. Pervane kanadı üzerinde oluştuğu konuma göre kavitasyon, sırt kavitasyonu ve yüz kavitasyonu olarak ikiye ayrılır: a) Sırt Kavitasyonu: Pervane kanat kesitlerinin giriş ucu civarında, emme kısmında oluşan kavitasyon türüdür (Şekil 3). Kanat kesit profilinin sıfır dereceye yakın hücum açılarında

3 çalışması durumunda, kesitin çıkış ucu civarında, emme kısmında maksimum kesit kalınlığının gerisinde de bu tür kavitasyon meydana gelebilir (Şekil 3). Sırt Çıkış Ucu Yüz Giriş Ucu Giriş Ucu Sırt Sırt Çıkış Ucu Yüz Giriş Ucu Şekil 3 Sırt kavitasyonu. b) Yüz Kavitasyonu: Pervane kanat kesitlerinin negatif hücum açılarında çalışması durumunda kanat kesitlerinin giriş ucu civarında basınç kısmında oluşan kavitasyon türüdür (Şekil 4). Çıkış Ucu Sırt Yüz Giriş Ucu Yüz Giriş Ucu Şekil 4 Yüz kavitasyonu. Fiziksel görünüşlerine göre kavitasyon türleri aşağıdaki başlıklar altında incelenebilir: a) Uç ve Göbek Girdap Kavitasyonu: Pervane kanatlarının basınç kısmındaki yüksek ve emme tarafındaki düşük basınç, akımın kanat ucundan ayrılmasına neden olur. Böylece her kanadın ucunda ve pervane göbeğinde girdaplar oluşur. Ağır yüklü pervanelerde ve yüksek iz katsayısı içinde çalışan pervane kanatları üzerinde şiddetli girdaplar meydana gelir. Girdap merkezinde su zerrelerinin dönme hızı çok yüksektir ve dolayısıyla buralardaki basınç akışkanın buharlaşma basıncının altına düşer ve kavitasyon oluşur. Uç girdap kavitasyonu, başlangıçta pervane kanadının uç kısmından biraz ileride ortaya çıkar, devir sayısının artması ile yavaş yavaş kanat ucuna doğru hareket ederek, sonunda sanki kanat ucunun bir parçası 3

4 şeklinde bu kısma tutunur, kanat ucu gerisinde kendisini bir helis şeklinde gösterir (Şekil 5). Genellikle ilk meydana gelen kavitasyon çeşididir. Şekil 5 Uç girdap kavitasyonu. Göbek girdap kavitasyonu ise her bir pervane kanadının kök kısmından göbeğe doğru saçılan ve akış içindeki moleküller arasındaki bağı bozan zayıf bölgeleri oluşturan kavitasyon çekirdekleri nedeni ile oluşur (Şekil 6). Bu kavitasyon tipi aynı zamanda pervane arkasındaki dümene de zarar verebilir. Göbek kavitasyonundan korunmak için, pervane kanatlarına veya dümene pervane göbek finleri konulabilir. Bu finler akım hızını pervaneye doğru arttırarak akımı düzeltir. Ancak finlerin dezavantajı her takıntı gibi tekne direncini arttırmasıdır. Şekil 6 Göbek girdap kavitasyonu. b) Kabarcık (Bubble) Kavitasyonu: Kabarcık kavitasyonu, kanat kesiti üzerinde basıncın en düşük olduğu bölgelerde, kanat ortası civarında oluşur (Şekil 7). Kanat kesitinin sehimi ve kalınlığı kabarcık kavitasyonunun oluşumunda etkilidir. Bu tür kavitasyonda oluşan kabarcıklar büyüyerek kanat yüzeyi üzerinde patlamaya başlarlar. 4

5 Şekil 7 Kabarcık kavitasyonu. c) Tabaka (Sheet) Kavitasyonu: Pervane kanadı üzerinde giriş ucundan başlayarak çıkış ucuna doğru yayılan genellikle kanat sırtında bazen de kanat yüzünde görülen tabaka şeklindeki kavitasyondur (Şekil 8). Şekil 8 Tabaka kavitasyonu. 5

6 d) Bulut (Cloud) Kavitasyonu: Bulut kavitasyonu genelde tabaka kavitasyonunun gelişimini takiben sis veya bulut görünümlü küçük kabarcıklar şeklinde, çoğunlukla tabakanın çıkış ucunda ortaya çıkmaktadır (Şekil 9). Bu nedenle bulut kavitasyonu, daimi olmayan tabaka kavitasyonu (unsteady sheet cavitation) olarak da adlandırılır. Şekil 9 Bulut kavitasyonu. e) Kök (Root) Kavitasyonu: Pervane kanadının kök kısmında meydana gelen bu kavitasyon türü, kama şekline benzer bir yapıya sahip olup nadir olarak görülmektedir. Ufak, aşırı yüklü pervanelerde ve CPP pervanelerinde gözlemlenebilir. Kök bölgesinde kanat kesit kalınlıklarının en büyük olduğu noktaların yakınlarında ve sırt kısmında oluşabilir (Şekil 1). Kök kavitasyonunu önlemenin bir yolu, köke yakın kanat kesitinde basınç tarafından emme tarafına bir delik açılmasıdır. Delik genellikle kökün hemen dışındaki kanat kesitinin kort ortasına yerleştirilir. Tüm kanatlardaki delikler aynı konumda olmalıdır. Şekil 1 Kök kavitasyonu. 6

7 f) Pervane-Tekne Girdap Kavitasyonu (PHV Cavitation): Girdap kavitasyonunun özel bir şekli olan bu kavitasyon, büyük ve şiddetli bir iz alanı ile pervane etkileşimi sonucunda meydana gelir (Şekil 11). Böyle bir durumda pervane kanadının ucunda meydana gelen girdap tekneye doğru bir şimşek gibi sıçrayarak tekne ile birleşir. Kısa bir zaman içinde düzensiz aralıklarla oluşur. Başka bir deyişle, pervanede yüksek oranlarda yük artışı olduğunda pervaneye gelen akım az olur. Bu eksikliği ortadan kaldırmak için pervane dönme esnasında tekne arkasından su çekmeye çalışır. Bu durumda tekneden pervaneye doğru bir akım hattı oluşur. PHV kavitasyonunun tekneye yakın bölgelerde oluşan farklı akım dağılımları ve türbülans nedeni ile oluştuğu varsayılmaktadır. PHV kavitasyonunun oluşmasına öncülük eden faktörler; düşük pervane ilerleme katsayısı, pervane ile tekne arasındaki açıklığın düşük olması ve pervane üzerinde düz yüzeylerin bulunmasıdır. Kavitasyonun bu çeşidi, pervane kanadına ve tekneye zarar verebilir ve yüksek gürültü seviyesine neden olabilir. PHV kavitasyonu genellikle dolgun kıçlı gemilerde meydana gelebilir. PHV Kavitasyonu Şekil 11 Pervane-tekne girdap kavitasyonu. Şekil 1 de tüm bu kavitasyon türleri şematik olarak gösterilmiştir: 7

8 Şekil 1 Fiziksel görünüşlerine göre kavitasyon türleri. Şekil 13 te pervane devir sayısının artırılması ile kavitasyon türlerinin oluşumu şematik olarak gösterilmiştir: Şekil 13 Artan devir sayısı ile kavitasyon türlerinin oluşumu. 8

9 9. Kavitasyonun Etkileri Pervanelerdeki kavitasyon oluşumu aşağıdaki olumsuzluklara neden olabilir: Performans Kaybı (İtme Azalması) Gürültü Titreşim Erozyon (Aşınma) İtme ve dönme performansının önemli şekilde olumsuz etkilenebilmesi için kavitasyon olayının çok belirgin olması gerekir. Ancak kavitasyon kaynaklı titreşimin ortaya çıkması, kanatlarda erozyon oluşması için aynı düzeyde belirgin bir kavitasyon olayına gerek yoktur. Bu problemler çok daha hafif kavitasyon oluşumlarında dahi meydana çıkabilir. Şekil 14 te pervane kanadında kavitasyon sonucu meydana gelmiş erozyon (aşınma) örnekleri gösterilmiştir: Şekil 14 Bir pervane kanadında kavitasyonun neden olduğu aşınma örnekleri. 9

10 9.3 Kavitasyonun Başlangıcı Pervane kanadı etrafındaki bir noktada kavitasyon olayının başlayıp başlamadığı, o noktadaki basınç ile sıvının buharlaşma basıncı arasındaki ilişki yardımı ile anlaşılmaktadır. Yani kavitasyonun başlaması için, akışkan içindeki bir noktanın basıncının, akışkanın buharlaşma basıncına eşit veya düşük olması yeterli olmaktadır. Kavitasyon olayını anlamak için Şekil 15 te gösterilen küçük bir hücum açısındaki kanat kesitini göz önüne alalım: P = P atm + ρgh h v m, P m B v, P A Şekil 15 Üniform bir akım içinde küçük hücum açılı bir kanat kesiti. Akış iki boyutlu ve viskoz olmayan bir akış olsun. B kesit yüzeyine yakın bir nokta, A ise aynı akım hattı üzerinde ve kesitten etkilenmeyecek kadar uzaklıkta akımın üniform olduğu bir nokta olsun. A ve B noktalarının su yüzeyinden derinlikleri yaklaşık olarak aynıdır. B noktasındaki mutlak basınç P m, akım hızı v m ; A noktasındaki mutlak basınç P ve akım hızı v ise A ve B noktaları arasında Bernoulli denklemi yazılmak suretiyle, P m + 1 ρ v = P + m 1 ρ v o eşitliği bulunur. Bu denklemde basınçlar sol tarafta, hızlar ise sağ tarafta toplanarak ve her iki taraf da akışkanın dinamik basıncına ( basınç katsayısı denilir ve C P ile gösterilir: 1 ρ v ) bölünerek elde edilen ifadeye boyutsuz 1

11 P C 1 m P m P = ρ ( v v = P P ρ v v = (1 v m m 1 ) ) Yukarıda ifade edildiği gibi, B noktasında kavitasyon olayı olmaması için, B noktasındaki basıncın suyun buharlaşma basıncından (P v ) büyük olması gerekir. P m > P v Bu eşitsizliğin her iki tarafı önce (-1) ile çarpılır ve her iki tarafa (P ) eklenir ve daha sonra da her iki taraf akışkanın dinamik basıncı ( 1 ρ v ) ile bölünür ise aşağıdaki ifade elde edilir: C P = P Pm 1 ρ v < P 1 ρ v P v = σ Burada, sol taraftaki ifade (-C P ) olur ve sağ taraftaki ifadeye de kavitasyon sayısı (σ) denilir. Dolayısıyla B noktasında kavitasyonun olmaması için, olmalıdır. σ + C P > veya σ > C p C P Pm P = 1 ρv P Pv σ = 1 ρv Yukarıdaki denklemlerdeki P = P atm + ρgh, kesitten yeterince uzakta ve h derinliğindeki statik basınçtır. P atm, atmosfer basıncıdır (P atm = 1135 Pa deniz seviyesinde). Dinamik basınç ifadesindeki referans hız v ; pervaneye gelen ortalama akım hızı (v A ), pervane kanadının.7r kesitine gelen bileşke hız ( v R = v A + (.7π n D) ) veya rotasyonel hız (πnd) şeklinde alınabilir. 11

12 Şekil 16 da, üniform bir akım içindeki bir kesitin yüz ve sırt bölgelerindeki basınç dağılımları ve σ kavitasyon sayısı yardımıyla kavitasyon oluşumunun kesitin hangi bölgesinde görüleceği şematik olarak gösterilmiştir: Şekil 16 Kavitasyon bölgesinin belirlenmesi. 1

13 Tablo 1 de farklı sıcaklıklar için suyun buharlaşma basıncı değerleri verilmektedir: Tablo 1 Değişik sıcaklıklarda suyun buharlaşma basıncı değerleri. Sıcaklık ( C) P v (N/m ) Kavitasyon Kontrolü Kavitasyon kontrolü için çok sayıda yöntem uygulanmaktadır. Bu yöntemler, model deneyleri, nümerik hesaplar ve yaklaşık formüller şeklindedir. Yaklaşık formüller veya diyagramlar yardımı ile Crouch, Keller ve Burrill in kavitasyon kontrolü yaklaşımları pervane açılım ya da projeksiyon alanlarının pervanenin kavitasyon yapmayacağı şekilde belirlenmesi, pervane kanat yüklemesinin analizi yoluyla kavitasyonun incelenmesi prensibine dayanmaktadır. Küçük boyutlu gemiler, tenezzüh tekneleri vb. için kavitasyon kontrolü genellikle bu yöntemler kullanılarak yapılmaktadır. Ancak büyük gemiler, harp gemileri gibi özel gemiler için kavitasyon analizi kanat kesitleri etrafındaki basınç dağılımı bulunarak detaylı bir şekilde yapılmalıdır. 13

14 a) Crouch Yöntemi: Bu yöntemde müsaade edilebilir kanat yüklemesi bulunarak, gerçek pervane kanat yüklemesi hesaplanır ve karşılaştırma yapılır. Bu yöntemin uygulanabilmesi için öncelikle müsaade edilebilir kanat yüklemesi aşağıdaki gibi hesaplanır: Gerr in (1989) Wageningen de yapılmış model deney sonuçlarından yararlanarak geliştirmiş olduğu, PSI = maks VA Ft ampirik formülü ile kavitasyonun oluşabileceği basınç yaklaşık olarak hesaplanabilmektedir. Burada, PSI V A F t : Kavitasyonun başlama basıncı (psi) : Pervaneye gelen suyun ortalama hızı (knot) : Pervane şaft merkezinin derinliği (fit) Bir pervane kanadı üzerindeki gerçek kanat yüklemesi ise aşağıdaki formül yardımı ile yaklaşık olarak hesaplanabilir: PSI 36 SHP ηo = V A A D PSI : Kanat yükü (psi) SHP : Şaft beygir gücü (HP) η o V A : Açık su pervane verimi : Pervaneye gelen suyun ortalama hızı (knot) A D : Pervane kanat yayılım alanı (inç ) Pervane kanadında kavitasyon olmaması için, PSI < PSI maks olmalıdır. b) Keller Yöntemi: Keller yönteminde pervanenin kavitasyon göstermeyecek minimum kanat açılım alanı oranı aşağıdaki formül yardımı ile hesaplanır: A E ( Z) T = + k A ( P Pv ) D 14 T : Pervane itmesi (N) Z : Pervane kanat sayısı P : Yerel statik basınç (P = P atm + ρgh) (Pa) h : Pervane şaft ekseninin derinliği (m) P v : Suyun buharlaşma basıncı (Pa) D : Pervane çapı (m) k : [.]

15 Keller formülündeki k katsayısı ise ile. arasında değişen bir sabit olup, ayna kıçlı ve hızlı gemiler için k =, yüksek güce sahip tek pervaneli gemiler için k =. ve yavaş ticaret gemileri için de k =.1 alınması tavsiye edilir. Gemi tipine ve tecrübeye dayanılarak ara değerler kullanılabilir. Formülde gerekli olan T itme değeri aşağıdaki bağıntıdan yararlanılarak bulunabilir: T RT RT v s PE = = = 1 t (1 t) v (1 t) v s s Keller formülünde kullanılan değerlere sahip mevcut pervanenin kanat açılım alanı oranı, bu formülle bulunan kanat açılım alanı oranından büyük veya eşit olması halinde, kanat yüklenmesinin yaklaşık bir ilk tahmin olarak kabul edilebilir sınırlar içerisinde olacağı kabul edilebilir. c) Burrill Yöntemi: Bu yöntem sabit hatveli klasik pervaneler için geliştirilmiş olup, Şekil 17 de gösterilen diyagram (Burrill kavitasyon diyagramı) esas alınmaktadır. Ortalama kavitasyon sayısı (σ.7r ) şaft ekseni temel alınarak bulunan statik basınca (P ) göre, dinamik basınç ise.7r pervane kesitine gelen bileşke hız esas alınarak hesaplanır: σ.7r h v n D = A Pervane dizayn aşamasında Burrill kriterine göre önce (σ.7r ) hesaplanır ve kavitasyon üst sınır eğrilerinden (τ c, σ.7r eğrileri) kavitasyon için müsaade edilebilir seviyeye karşılık gelen τ c değeri okunur. Bu değer kullanılarak aşağıdaki formülden A P çekilmek suretiyle kavitasyon göstermeyecek pervane için gerekli minimum izdüşümü alanı bulunur: T / AP τ c =, 1 ρ v R h : Pervane şaft ekseninin derinliği (m) D : Pervane çapı (m) n : Pervanenin saniyedeki devir sayısı (dev/s) v A : Pervane ilerleme hızı (m/s) T : Pervane itmesi (kn) A P : Pervane kanadı izdüşümü alanı (m ) 15

16 ρ : Suyun kütlesel yoğunluğu (ton/m 3 ) v R :.7R kanat kesitine gelen bileşke akım hızı, v = v + (.7π n D (m/s) R A ) İzdüşümü alanı yardımı ile kavitasyon göstermeyecek minimum yayılım alanı (A D ) aşağıdaki Taylor formülünden hesaplanabilir: A D AP = P/D: Hatve/Çap P D Yaklaşık olarak A E = A D alınarak minimum pervane açılım alanı bulunur ve mevcut pervane açılım alanının yeterli olup olmadığı kontrol edilir. Not: Burril kavitasyon diyagramının sağ alt köşesinde sırt kavitasyonu için verilen yüzde değerler, düzgün (üniform) akımda kavitasyon tünellerinde elde edilen yaklaşımlardır. 16

17 17 Şekil 17 Burrill Kavitasyon Diyagramı.

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3.1 Gemi Direnci Bir gemi viskoz bir akışkanda (su + hava) v hızıyla hareket ediyorsa, gemiye viskoziteden kaynaklanan yüzeye teğet sürtünme kuvvetleri

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

5. BORU HATLARI VE BORU BOYUTLARI

5. BORU HATLARI VE BORU BOYUTLARI h 1 h f h 2 1 5. BORU HATLARI VE BORU BOYUTLARI (Ref. e_makaleleri) Sıvılar Bernoulli teoremine göre, bir akışkanın bir borudan akabilmesi için, aşağıdaki şekilde şematik olarak gösterildiği gibi, 1 noktasındaki

Detaylı

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008 Makina * Prof. Dr. İrfan AY Arş.Gör.T.Kerem DEMİRCİOĞLU * Balıkesir - 008 1 HİDROLİK VE PNÖMATİK 1.BÖLÜM HİDROLİK VE PNÖMATİĞE GİRİŞ TARİHÇESİ: Modern hidroliğin temelleri 1650 yılında Pascal ın kendi

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi VANTİLATÖR DENEYİ Deneyin amacı Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi Deneyde vantilatör çalışma prensibi, vantilatör karakteristiklerinin

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SINIR TABAKA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMAN

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SERİ-PARALEL BAĞLI POMPA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

8. GEMİ İLE PERVANE ARASINDAKİ KARŞILIKLI ETKİLER, GEMİLER İÇİN KULLANILAN GÜÇLER ve VERİMLER. 8.1 Gemi İzi ve İz Katsayısı

8. GEMİ İLE PERVANE ARASINDAKİ KARŞILIKLI ETKİLER, GEMİLER İÇİN KULLANILAN GÜÇLER ve VERİMLER. 8.1 Gemi İzi ve İz Katsayısı 8. GEMİ İLE EVNE SINKİ KŞILIKLI EKİLE, GEMİLE İÇİN KULLNILN GÜÇLE e VEİMLE 8.1 Gemi İzi e İz Katsayısı s Geminin ilerleme hızı, ise perane üzerine gelen suyun perane düzlemindeki ortalama hızı olarak alındığında,

Detaylı

Uluslararası Yavuz Tüneli

Uluslararası Yavuz Tüneli Uluslararası Yavuz Tüneli (International Yavuz Tunnel) Tünele rüzgar kaynaklı etkiyen aerodinamik kuvvetler ve bu kuvvetlerin oluşturduğu kesme kuvveti ve moment diyagramları (Aerodinamic Forces Acting

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar KAYMALI YATAKLAR II: Radyal Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM DERSİ-DÖNEM SONU PROJELERİ

BİLGİSAYAR DESTEKLİ TASARIM DERSİ-DÖNEM SONU PROJELERİ BİLGİSAYAR DESTEKLİ TASARIM DERSİ-DÖNEM SONU PROJELERİ 4. Proje: Hidrolik Türbin Tasarımı (Hydrolic Turbine) Barajlardan ve çaylardan elektrik üretmek için hidrolik (sıvı) türbinler kullanılır. Bunlar

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

Özel Laboratuvar Deney Föyü

Özel Laboratuvar Deney Föyü Özel Laboratvar Deney Föyü Deney Adı: Mikrokanatlı borlarda türbülanslı akış Deney Amacı: Düşey konmdaki iç yüzeyi mikrokanatlı bordaki akış karakteristiklerinin belirlenmesi 1 Mikrokanatlı Bor ile İlgili

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

TEKNE FORMUNUN BELİRLENMESİ

TEKNE FORMUNUN BELİRLENMESİ TEKNE FORMUNUN ELİRLENMESİ Ön dizaynda gemi büyüklüğünün ve ana boyutların belirlenmesinden sonraki aşamada tekne formunun belirlenmesi gelir. Tekne formu geminin, deplasmanını, kapasitesini, trimini,

Detaylı

Kavitasyon. Pompa Teknolojileri ve Çalışma Prensipleri

Kavitasyon. Pompa Teknolojileri ve Çalışma Prensipleri Kavitasyon Pompanın içinde statik basınç, basılan sıvının buharlaşma basıncının altına düştüğünde sıvı buharlaşır ve içinde küçük buhar kabarcıkları oluşur. Sıvının pompa içinde dinamik hareketiyle sürüklenen

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

Santrifüj Pompalar: MEKANİK ENERJİYİ, AKIŞKANDA KİNETİK ENERJİYE ÇEVİREN VE AKIŞKANLARI TRANSFER EDEN MAKİNALARDIR.

Santrifüj Pompalar: MEKANİK ENERJİYİ, AKIŞKANDA KİNETİK ENERJİYE ÇEVİREN VE AKIŞKANLARI TRANSFER EDEN MAKİNALARDIR. KSB DÜNYASINA D HOŞGELD GELDİNİZ SANTRİFÜJ J POMPALAR Santrifüj Pompalar: MEKANİK ENERJİYİ, AKIŞKANDA KİNETİK ENERJİYE ÇEVİREN VE AKIŞKANLARI TRANSFER EDEN MAKİNALARDIR. POMPA KESİT T RESMİ POMPA ANA PARÇALARI

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN İstanbul Üniversitesi Fen Fakültesi Giriş Bilimsel amaçla veya teknolojide gerekli alanlarda kullanılmak üzere, kapalı bir hacim içindeki gaz moleküllerinin

Detaylı

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Proses Tekniği 3.HAFTA 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Sürekli Akışlı Açık Sistemlerde Enerji Korunumu de = d dt Sistem dt eρdv + eρ V b n A Bu denklemde e = u + m + gz Q net,g + W net,g = d dt eρdv

Detaylı

Orifis, Nozul ve Venturi Tip Akışölçerler

Orifis, Nozul ve Venturi Tip Akışölçerler Orifis, Nozul ve Venturi Tip Akışölçerler Bu tür akışölçerlerde, akışta kısıtlama yapılarak yaratılan basınç farkı (fark basınç), Bernoulli denkleminde işlenerek akış miktarı hesaplanır. Bernoulli denkleminin

Detaylı

(p = osmotik basınç)

(p = osmotik basınç) EK II RAOULT KANUNU OSMOTİK BASINÇ Şek- 1 Bir cam kap içine oturtulmuş gözenekli bir kabın içinde şekerli su, cam kapla da saf su bulunsun ve her iki kapta düzeyler aynı olsun (şek. 1). Bu koşullar altında

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

Çalışma hayatında en çok karşılaşılan soru işyerinden patlama tehlikesi olup olmadığı yönündedir. Bu sorunun cevabı, yapılacak risk

Çalışma hayatında en çok karşılaşılan soru işyerinden patlama tehlikesi olup olmadığı yönündedir. Bu sorunun cevabı, yapılacak risk Çalışma hayatında en çok karşılaşılan soru işyerinden patlama tehlikesi olup olmadığı yönündedir. Bu sorunun cevabı, yapılacak risk değerlendirmesiyle birlikte aşağıdaki sorularla birlikte basitçe değerlendirilebilir.

Detaylı

Temel Hidrolik- Karakteristik Eğrilerğ

Temel Hidrolik- Karakteristik Eğrilerğ Temel Hidrolik- Karakteristik Eğrilerğ Arzu Kulil, KSB A.Ş., İstanbul Hydraulic basics - Characteristic curves 1 Bir santrifüj pompanın Karakteristik QH-eğrileriğ Basma yüksekliği H [%] 160 140 120 Pompa

Detaylı

Makina Mühendisliği Bölümü Makine Laboratuarı

Makina Mühendisliği Bölümü Makine Laboratuarı Makina Mühendisliği Bölümü Makine Laboratuarı Reynolds Sayısı ve Akış Türleri Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün akım çizgileriyle belirtilen

Detaylı

GEMI SEVK SISTEMLERI N. MENDERES INALMAN I.T.U DF GEMI MAK ISL MUH 2002

GEMI SEVK SISTEMLERI N. MENDERES INALMAN I.T.U DF GEMI MAK ISL MUH 2002 GEMI SEVK SISTEMLERI { N. MENDERES INALMAN I.T.U DF GEMI MAK ISL MUH 2002 İÇERİK GEMI SEVK SISTEMLERINE GENEL BAKIŞ PERVANE KANADININ ÇALIŞMA TEORİSİ PERVANE ÇEŞİTLERİ SABİT KANATLI PERVANELER HAREKETLİ

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

13. ÖZEL SEVK SİSTEMLERİ

13. ÖZEL SEVK SİSTEMLERİ Enerji Kayıpları (%) (%) 13. ÖZEL SEVK SİSTEMLERİ Klasik pervaneler, kanatlarında oluşan kaldırma kuvveti ile itme sağlarlar. Ancak pervaneye iletilen enerjinin tamamı itmeye dönüştürülemez. Bu enerjinin

Detaylı

YATAK HASARLARI (I) Mustafa YAZICI TCK

YATAK HASARLARI (I) Mustafa YAZICI TCK YATAK HASARLARI (I) Mustafa YAZICI TCK Yataklar makinalarda hareket ve yük iletimini aynı anda sağlayan parçalardır. Makinalarda hareketli ve sabit parçalar arasında yük iletimini sağlamak ve bu parçaları

Detaylı

7. GEMİ SEVKİNE GİRİŞ, SEVK ŞEKİLLERİ, PERVANE GEOMETRİSİ, PERVANE ÇİZİMİ

7. GEMİ SEVKİNE GİRİŞ, SEVK ŞEKİLLERİ, PERVANE GEOMETRİSİ, PERVANE ÇİZİMİ 7. GEMİ SEVKİNE GİRİŞ, SEVK ŞEKİLLERİ, PERVANE GEOMETRİSİ, PERVANE ÇİZİMİ 7.1 Gemi Sevkine Giriş Genel olarak gemiler sevk şekillerine göre iki gruba ayrılırlar: a) Kendi Kendini Sevk Edebilen Gemiler:

Detaylı

T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN

T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN Şube Müdürü Ekim 2010 Kastamonu 1 Hız: Baca içerisinde

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam)

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam) UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam) Hazırlayan Prof. Dr. Mustafa CAVCAR Güç Sistemi Kuvvetleri Türbojet ve Türbofan Motorlar Türbojet Türbofan Türbojet ve türbofan motorlar,

Detaylı

MANOMETRELER 3.1 PİEZOMETRE

MANOMETRELER 3.1 PİEZOMETRE 18 3 MANOMETRELER Düşük sıvı basınçlarını hassas olarak ölçmek için yaygın bir metot, bir veya birden fazla denge kolonu kullanan piezometre ve manometrelerin kullanılmasıdır. Burada çeşitli tipleri tartışılacaktır,

Detaylı

SANTRİFÜJ POMPA DENEYİ

SANTRİFÜJ POMPA DENEYİ 1 SANTRİFÜJ POMPA DENEYİ 1. Giriş Deney düzeneği tank, su dolaşımını sağlayan boru sistemi ve küçük ölçekli bir santrifüj pompadan oluşmaktadır. Düzenek, üzerinde ölçümlerin yapılabilmesi için elektronik

Detaylı

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. Yeni sanayi sitesi 36.Sok. No:22 BALIKESİR Telefaks:0266 2461075 http://www.deneysan.com R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ HAZIRLAYAN Yrd.Doç.Dr. Hüseyin

Detaylı

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Yoğunluğu 850 kg/m 3 ve kinematik viskozitesi 0.00062 m 2 /s olan yağ, çapı 5 mm ve uzunluğu 40

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Pompalar: Temel Kavramlar

Pompalar: Temel Kavramlar Pompalar: Temel Kavramlar Sunum Akışı 1. Genel Tanımlar 2. Tesisat ve Sistem 3. Tasarım 4. Çok Pompalı Sistemler 5. Problemler Tarihçe Santrifüj pompanın esas mucidi Fransız fizikçi DENIS PAPIN (1647-1714).

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I OSBORN REYNOLDS DENEY FÖYÜ 1. Deney Amacı Bu deneyin amacı laminer (katmanlı)

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

GÜNEŞ ENERJĐSĐ IV. BÖLÜM. Prof. Dr. Olcay KINCAY

GÜNEŞ ENERJĐSĐ IV. BÖLÜM. Prof. Dr. Olcay KINCAY GÜNEŞ ENERJĐSĐ IV. BÖLÜM Prof. Dr. Olcay KINCAY DÜZ TOPLAYICI Düz toplayıcı, güneş ışınımını, yararlı enerjiye dönüştüren ısı eşanjörüdür. Akışkanlar arasında ısı geçişi sağlayan ısı eşanjörlerinden farkı,

Detaylı

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK DALGA NEDİR? Bir deprem veya patlama sonucunda meydana gelen enerjinin yerkabuğu içerisinde farklı nitelik ve hızlarda yayılmasını ifade eder. Çok yüksek

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

RÜZGAR JENERATÖRÜ TASARIMI

RÜZGAR JENERATÖRÜ TASARIMI RÜZGAR JENERATÖRÜ TASARIMI Derste anlatılan Reklam panosu örneğini ve bazı gruplarda anlatılan Pervane örneğini kullanarak bir Rüzgar Jeneratörü tasarımı yapınız. Buna göre aşağıdaki uygulamaları gerçekleştirin.

Detaylı

DİZAYN VE İLERİ MÜHENDİSLİK HİZMETLERİ

DİZAYN VE İLERİ MÜHENDİSLİK HİZMETLERİ DİZAYN VE İLERİ MÜHENDİSLİK HİZMETLERİ Prof. Dr. Tamer YILMAZ Prof. Dr. Mesut GÜNER Doç. Dr. Hüseyin YILMAZ YILDIZ TEKNĠK ÜNĠVERSĠTESĠ GEMĠ ĠNġAATI ve GEMĠ MAKĠNELERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ DİZAYN VE İLERİ

Detaylı

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu HAFTALIK DERS PLANI Hafta Konular Kaynaklar 1 Zeminle İlgili Problemler ve Zeminlerin Oluşumu [1], s. 1-13 2 Zeminlerin Fiziksel Özellikleri [1], s. 14-79; [23]; [24]; [25] 3 Zeminlerin Sınıflandırılması

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 AKIŞKANLAR MEKANİĞİ DENEY FÖYÜ (BORULARDA SÜRTÜNME KAYIPLARI) Hazırlayan: Araş. Gör.

Detaylı

TAM KLİMA TESİSATI DENEY FÖYÜ

TAM KLİMA TESİSATI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TAM KLİMA TESİSATI DENEY FÖYÜ 2015-2016 Bahar Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN

Detaylı

TEKNİK DOKÜMANLAR SERİSİ TERMOSTATİK GENLEŞME VALFLERİ

TEKNİK DOKÜMANLAR SERİSİ TERMOSTATİK GENLEŞME VALFLERİ TEKNİK DOKÜMANLAR SERİSİ TERMOSTATİK GENLEŞME VALFLERİ www.totem.com.tr 1 GENLEŞME VALFLERİ Genleşme valfi,soğutma sisteminin yük gereksinimine göre,soğutucu akışkanın akışını başlatan,durduran ve modüle

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar).

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). . KONSOLİDASYON Konsolidasyon σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). σ nasıl artar?. Yeraltısuyu seviyesi düşer 2. Zemine yük uygulanır

Detaylı

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Dr. Fatih AY Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Düzlemsel Güneş Toplayıcıları Vakumlu Güneş Toplayıcıları Yoğunlaştırıcı Sistemler Düz Toplayıcının Isıl Analizi 2 Yapı olarak havası boşaltılmış

Detaylı

f = 1 0.013809 = 0.986191

f = 1 0.013809 = 0.986191 MAKİNA MÜHNDİSLİĞİ BÖLÜMÜ-00-008 BAHAR DÖNMİ MK ISI TRANSFRİ II (+) DRSİ YIL İÇİ SINAVI SORULARI ÇÖZÜMLRİ Soruların çözümlerinde Yunus A. Çengel, Heat and Mass Transfer: A Practical Approach, SI, /, 00,

Detaylı

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

ATOM HAREKETLERİ ve ATOMSAL YAYINIM ATOM HAREKETLERİ ve ATOMSAL YAYINIM 1. Giriş Malzemelerde üretim ve uygulama sırasında görülen katılaşma, çökelme, yeniden kristalleşme, tane büyümesi gibi olaylar ile kaynak, lehim, sementasyon gibi işlemler

Detaylı

!" #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.*

! #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.* 2. BÖLÜM SAF MADDELERİN ERMODİNAMİK ÖZELLİKLERİ Saf madde Saf madde, her noktasında aynı e değişmeyen bir kimyasal bileşime sahip olan maddeye denir. Saf maddenin sadece bir tek kimyasal element eya bileşimden

Detaylı

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru AKI KAN MÜHENDİSİĞİ Uçak Aerodinamiği: Akışkanın uçak uygulamasındaki rolleri Jet Motoru Y.O Yakıt K T 1 İçerik: Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler -Giriş ve genel bilgiler -Akışkan özellikleri

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Hazırlayan Prof. Dr. Mustafa Cavcar Aerodinamik Kuvvet Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın havayagörehızının () karesi, havanın yoğunluğu

Detaylı

YANLIŞ METEOROLOJİ (2): Bulutların Oluşum Nedeni: Soğuk havanın sıcak hava kadar su buharı tutamaması değildir* Nemli hava soğuyunca bulut oluşabilir. Evet, bu doğru. Değişik soğuma işlemleri, aşağıda

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ ONDOKUZ MAYIS ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MM30 MAKİNA MÜHENDİSLİĞİ LABORATUARI DERSİ BORULARDA BASINÇ KAYBI E SÜRTÜNME DENEYİ Hazırlayan Yrd.Doç.Dr. Mustafa ÖZBEY SAMSUN

Detaylı

BÖLÜM 4. GEMİ GEOMETRİSİ

BÖLÜM 4. GEMİ GEOMETRİSİ 4.1. Genel Geometrik Tanımlar ÖÜ 4. GEİ GEOETRİSİ Gemi geometrisini tanımlamada kullanılan genel tanımlar aşağıdaki şekilde görülmektedir. O P f T D P FP f T D Güverte Güverte Yüklü su hattı / Yüklü su

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

Su seviyesi = ha Qin Kum dolu sütun Su seviyesi = h Qout

Su seviyesi = ha Qin Kum dolu sütun Su seviyesi = h Qout Su seviyesi = h a in Kum dolu sütun out Su seviyesi = h b 1803-1858 Modern hidrojeolojinin doğumu Henry Darcy nin deney seti (1856) 1 Darcy Kanunu Enerjinin yüksek olduğu yerlerden alçak olan yerlere doğru

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

TAŞINIM VE IŞINIMLA BİRLEŞİK ISI TRANSFERİ DENEYİ

TAŞINIM VE IŞINIMLA BİRLEŞİK ISI TRANSFERİ DENEYİ TAŞINIM VE IŞINIMLA BİRLEŞİK ISI TRANSFERİ DENEYİ İÇİNDEKİLER Sayfa. Genel Bilgiler. Deney Düzeneği. Teori... Analiz 8 . GENEL BİLGİLER Aralarında sonlu sıcaklık farkı olan katı bir yüzey ve bu yüzeyle

Detaylı

2. AKIŞKANLARDAN ISI AKIŞI İLKELERİ

2. AKIŞKANLARDAN ISI AKIŞI İLKELERİ 1 2. AKIŞKANLARDAN ISI AKIŞI İLKELERİ (Ref. e_makaleleri) Kimya mühendisliğinde çok sık karşılaşılan bir işlem, katı bir malzeme içinden geçen sıcak bir akışkan yoluyla, daha soğuk bir akışkana ısı transferidir.

Detaylı

HAVACILIK VE UZAY MÜHENDİSLİĞİ LABORATUVAR CİHAZLARI ALIM İŞİ TEKNİK ŞARTNAME. Genel Çalışma Koşulları: 0-40 C. Sıcaklık

HAVACILIK VE UZAY MÜHENDİSLİĞİ LABORATUVAR CİHAZLARI ALIM İŞİ TEKNİK ŞARTNAME. Genel Çalışma Koşulları: 0-40 C. Sıcaklık HAVACILIK VE UZAY MÜHENDİSLİĞİ LABORATUVAR CİHAZLARI ALIM İŞİ TEKNİK ŞARTNAME Genel Çalışma Koşulları: Sıcaklık 0-40 C Nem 80% (31 C altında) 50% (40 C da) Elektrik Teknik şartnamede listelenen CİHAZ 1-12

Detaylı

Havacılık Meteorolojisi Ders Notları. 11. Buzlanma

Havacılık Meteorolojisi Ders Notları. 11. Buzlanma Havacılık Meteorolojisi Ders Notları 11. Buzlanma Yard.Doç.Dr. İbrahim Sönmez Ondokuz Mayıs Üniversitesi Ballıca Kampüsü Havacılık ve Uzay Bilimleri Fakültesi Meteoroloji Mühendisliği Bölümü isonmez@omu.edu.tr

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI 2. HİDROLİK SİSTEMLERDE KULLANILAN ENERJİ TÜRÜ

MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI 2. HİDROLİK SİSTEMLERDE KULLANILAN ENERJİ TÜRÜ MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI Bu deneyin amacı temel ilkelerden hareket ederek, hidrolik sistemlerde kullanılan elemanların çalışma ilkeleri ve hidrolik devre kavramlarının

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN

DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN VULCAN döküm simülasyon yazılımı ile imalat öncesi döküm kusurlarının tespiti ve iyileştirilmesi ÖZET Makalede uygulama yapılan model

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

Yapılara Etkiyen Karakteristik. yükler

Yapılara Etkiyen Karakteristik. yükler Yapılara Etkiyen Karakteristik Yükler G etkileri Q etkileri E etkisi etkisi H etkisi T etkileri Kalıcı (sabit, zati, öz, ölü) yükler: Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye

Detaylı

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları SIVILAŞMA Sıvılaşma Nedir? Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Sıvılaşmanın Etkileri Geçmiş Depremlerden Örnekler Arazide tahkik; SPT, CPT, Vs çalışmaları

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Açık Kanallarda Debi Ölçümü. Hazırlayan: Onur Dündar

Açık Kanallarda Debi Ölçümü. Hazırlayan: Onur Dündar Açık Kanallarda Debi Ölçümü Hazırlayan: Onur Dündar Doğal nehirlerde debi ölçümü ğ ç Orta nokta yöntemi ile debi hesabı Debi ölçümünde doğru kesitin belirlenmesi Dbiöl Debi ölçümü ü yapılacak kkesit nehrin

Detaylı

Mühendislik hizmetlerimizi taleplerinize özel olarak geniş bir yelpazede sizlere sunmaktayız:

Mühendislik hizmetlerimizi taleplerinize özel olarak geniş bir yelpazede sizlere sunmaktayız: Novosim, bünyesindeki uzmanlık alanlarında denizcilik sektöründe özellikle yat ve mega yat sınıfındaki ürünlere mühendislik proje ve danışmanlık hizmeti vermektedir. Oldukça tecrübeli ve konusunda uzman

Detaylı

Temel Hidrolik- Karakteristik Eğriler

Temel Hidrolik- Karakteristik Eğriler Temel Hidrolik- Karakteristik Eğriler Vahap UĞURLUDEMİR, KSB A.Ş., Adana Hydraulic basics - Characteristic curves 1 Bir santrifüj pompanın ana parçaları Bir santrifüj pompa 4 ana parçadan oluşur. 1 Çark:Kinetik

Detaylı

SERTLİK DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Sertlik Deneylerinin Amacı

SERTLİK DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Sertlik Deneylerinin Amacı 1. Sertlik Deneylerinin Amacı Malzemeler üzerinde yapılan en genel deney, sertliğinin ölçülmesidir. Bunun başlıca sebebi, deneyin basit oluşu ve diğerlerine oranla numuneyi daha az tahrip etmesidir. Diğer

Detaylı