Yeniden π. Matematik literatüründe karşımıza çıkan ve matematikçiler tarafından estetik özelliğinden pek çok sözedilen

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yeniden π. Matematik literatüründe karşımıza çıkan ve matematikçiler tarafından estetik özelliğinden pek çok sözedilen"

Transkript

1 Yeniden π Dr. Levent Özbek Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü 6 Tandoğan-Ankara ozbek@science.ankara.edu.tr Web : Giriş π sayısı, Archimedes'ten beri yüzlerce yıldır matematikçilerin ve diğer bilim insanlarının merak ve ilgiyle kokladıkları, matematik bahçesinin en zarif çiçeklerinden birisi olagelmiştir. Bu sayının birçok özelliği vardır: Dairenin çevresinin çapına oranıdır, transandant (aşkın) bir sayıdır (katsayıları tam sayı olan cebirsel bir denklemin çözümü olamayan sayı). π 'nin geometri, olasılık, diferensiyel ve integral hesaplamalarda farklı bir biçimde kullanıldığını görmek gerçekten de ilginçtir. Niye biri bugün süper bilgisayarlarla yapıldığı gibi, π 'nin değerini milyonlarca basamağa kadar hesaplamak istesin? π 'nin ondalık basamaklarına karşı bu ilginin kaynağı nedir? Bu, süper bilgisayarların donanım ve yazılımlarının kapasitelerinin ölçülmesinde kullanılır. Hesaplama yöntemleri, yeni düşüncelerin ve kavramların ortaya çıkmasını sağlar. Gerçekten, π 'nin bir düzeni, kalıbı yok mu? Sonsuz çeşitlilikte kalıplar mı içeriyor? π 'nin içindeki bazı sayılarla daha sık mı karşılaşılıyor? Öyleyse bu sayılar tam da rasgele dağılmış değil mi acaba? Belki de matematikçilerin yüzyıllar boyunca π 'ye duydukları ilgi ve hayranlık, dağcıları hep daha yükseklere tırmanmaya yönelten güçlü istek ve duygulara benzetilebilir. Binlerce yıldır insanlar π 'nin daha çok ondalık basamağını hesaplamaya çalışmaktadır ve bu ondalık basamakların nasıl bir dağılım gösterdiği merak konusudur. π 'ye duyulan bu ilgi nereden kaynaklanmaktadır? Acaba π 'nin bugüne kadar bilinen özelliklerinden başka daha keşfedilmeye hazır hangi özellikleri vardır? Aslında tüm bu soruların yanıtı henüz açık bir şekilde verilebilmiş değildir. Hergün π ile ilgili yeni bir araştırma yazısı yayınlanmaktadır. İnsanın merak ve tutkusu sürdüğü sürece π de yeni bir estetik yön bulma arzusu sonsuza dek devam edecek gibi görünmektedir. Matematik literatüründe karşımıza çıkan ve matematikçiler tarafından estetik özelliğinden pek çok sözedilen iπ e = eşitliği, matematiğin en önemli sabit sayıları olan e, i, π,, ve sayılarını içermesi açısından da oldukça ilginçtir. Yine ilginç bir eşitlik = π n e 5 n= Jonathan Borwein ve Peter Borwein (985) tarafından verilmiştir.

2 Matematik bahçesinin en zarif çiçeği orada durmakta ve belki de sonsuz özelliklerini sunmaya hazır bir sevgili gibi beklemektedir. Yazının devamında sorulan soruların yanıtlarının neden zor olduğu ve insanlığın bugüne kadar bu çiçeği hangi yönlerden koklamaya çalıştıkları üzerinde durulmaya çalışılacaktır.. Kısa Tarihçe Hemen hemen tüm matematik kitaplarında, özellikle matematiğe genelde bilime ilgi duyan kişilerin okuması için yazılan kitaplarda π ve onun özelliklerinden söz edilmeden geçilmemiştir. Archimedes'ten sonra π sayısı üzerinde çok çalışmalar yapılmıştır. Bunlardan ilki, π sayısının irrasyonel bir sayı olduğunun gösterilmesidir. Lindemann (85-939), 88 yılında pi sayısının transandant (aşkın) bir sayı olduğunu göstermiştir. π 'yi hesaplamak için kullanılan en ilginç yollardan birini 8.yy'da Fransız doğa bilimci Buffon, İğne Probleminde kullanmıştır. Bir düzlem, araları d birim olan paralel çizgilerle ayrılmıştır. Uzunluğu d'den kısa olan bir iğne, bu çizgili yüzeye düşürülür. Eğer iğne bir çizginin üzerine düşerse, iyi atış olarak kabul edilir. Buffon' un şaşırtıcı buluşu, iyi atışların, kötü atışlara oranının π 'yi içeren bir açıklamasının olmasıydı. Eğer iğnenin uzunluğu d birimse, iyi atış olasılığı /π dir. π 'yi hesaplamak için başka bir olasılık yöntemi 9'de R.Charles tarafından 6 bulundu. Buna göre, rasgele yazılan iki sayının göreceli asal olmalarının olasılığı dir. π nin hesabı için çok değişik yöntemler kullanılmakla birlikte günümüzde yakınsak sozsuz seriler, çarpımlar ve ardışık yineleme bağıntıları kullanılmaktadır. İnternet üzerinde π ile ilgili yapılan son hesaplama yöntemlerine ulaşmak için [] nolu adresten yararlanılabilir. Tablo- den π ile kimlerin hangi yıllarda uğraştığı ve hangi basamağa kadar hesaplama yaptıkları görülebilir.. π İçin Bazı Hesaplama Yöntemleri ve Bilgisayar Programları π sayısını hesaplamak için çok değişik yöntemler kullanılmakla birlikte küçük bilgisayar programları ile kolaylıkla hesaplanabilecek olanlardan bazıları aşağıda verilmiştir. Daha farklı yöntemler için internet adresinden bilgi edinilebilir. Archimedes (MÖ 5) a = 3 ve b = 3 başlangıç değerlerine bağlı olarak anbn an = ve b n = an bn ardışık yineleme formulüyle hesaplanır. a b n n Madhava, James Gregory, Gottfried Wilhelm Leibnitz (5-67) π

3 π = Leonard Euler (78) π 6 π 9 = = Roy North (989) 5, k ( ) = k = k burada sadece altı çizgili olan rakamlarda hata vardır. Jonathan Borwein ve Peter Borwein (99) a = / 3, s = ( 3 ) / başlangıç değerleri için r k 3 = ( s ) 3 / 3 k rk s = k k a k = rk ak 3 ( rk ) olmak üzere /, π ye yakınsar. a k 3. Model, Rasgelelik, Simülasyon ve π Sayısı π sayısının neden bu başlık altında incelendiği Model, Rasgelelik ve Simülasyon kavramları hakkında biraz sözedildikten sonra açıklık kazanacaktır. Evrende olup bitenleri anlama ve anlatma çabası içinde olan insan, ilgilendiği olay ve süreçlerle ilgili çeşitli modeller kurar ve bu modeller üzerinde çalışarak gelecekte ne gibi durumlar ortaya çıkabileceğini bilmeye çalışır. Model, gerçek dünyadaki bir sistemin yapı ve işleyişinin, ilgili olduğu bilim sahasının kavram ve kanunlarına bağlı olarak ifade edilmesidir. Model gerçek dünyadaki bir olgunun bir anlatımıdır, bir temsilidir. Modeller gerçeğin kendileri değildir ve ne kadar karmaşık görünseler de gerçeğin bir eksik anlatımıdırlar. Kısaca model denilen şey model kurucunun gerçeği "anlayışının" bir ürünüdür. Modeller değişik biçimlerde sınıflandırılmaktadır. Matematiksel modeller anlatım gücü en fazla ve en geçerli olan modellerdir. Model kurucunun gerçek dünyadaki olguya bakış açısına bağlı olarak modellemede farklı durumlar sözkonusu olabilir. Newton'un Mekaniği ile doruk noktasına ulaşan belirlenimci dünya görüşü (determinizm-gerekircilik, saat gibi tıkır-tıkır işleyen evren modeli) kuantum fiziğinin gelişimi ile beraber yerini olasılıkçı dünya görüşüne bırakmak zorunda kalmıştır. Belirlenimci dünya görüşü (determinizm, belirlenmişlik) ve bununla ilişkili nedensellik ve rasgelelik kavramları bilim, felsefe, sanat gibi alanlarda çok tartışılan konular arasında yer almaktadır.

4 Gerçek dünyayı anlama ve anlatmada, yani modellemede insan aklının en güçlü iki aracı matematik ve istatistiktir. İstatistik özellikle, rasgelelik içeren olguların modellenmesinde ön plana çıkmaktadır. Bu durumda rasgelelik nedir sorusu önem taşımaktadır. Teorik fizikçi Pagels "rasgelelik nedir?" sorusuna cevap vermeye çalışırken, matematiksel ve fiziksel rasgelelik problemleri arasında ayrım yapmanın önemine değinmiştir ve Matematiksel problem, sayılar veya fonksiyonların rasgele sırasının ne anlama geldiğini tanımlayan bir mantıksal problemdir. Fiziksel rasgelelik problemi gerçek fiziksel olayların rasgelelik konusundaki matematiksel kriterlere uyup uymadığını belirlemektir. Rasgeleliğin matematiksel bir tanımına sahip olana kadar, doğal olayların bir dizisinin gerçekten rasgele olup olmadığını belirleyemeyiz. Bir kere böyle bir tanımımız olunca, o zaman, gerçek olayların böyle bir tanıma karşılık gelip gelmediğini belirleme konulu ek deneysel bir problemimiz olur. Burada ilk problemle karşılaşırız: Matematikçiler, rasgeleliğin kesin bir tanımını verme ya da onunla bağlantılı bir iş olan olasılığı tanımlama işinde hiç bir zaman başarı sağlayamamıştır... demiştir. Yine Pagels π sayısının ondalık açılımındaki sayıların rasgelelik testlerinden geçebileceğini veya bu sayıların çeşitli olasılık dağılımlarına uyabileceğini belirtmiştir. Dolayısıyla π ye bir de rasgelelik açısından bakılmasında yarar vardır. Yine π 'yi tahmin etmek için, π = x dx özelliği kullanılarak Monte Carlo İntegrasyonu olarak bilinen yöntem kullanılabilir. U, U,..., U n rasgele değişkenleri (, ) aralığında düzgün dağılıma sahip olmak üzere (hesap makinalarındaki RND tuşuna basılarak ya da bilgisayarlardaki RND fonksiyonu kullanılarak üretilen sayılar) n U i n i= toplamı ; π için bir tahmin verecektir. Model, rasgelelik, nedensellik gibi pek çok kavramdan sonra bir de rasgele sayı diye bir şey çıktı karşımıza. Peki bunun π ile ne ilgisi var? Ekonometri, Sayısal Çözümleme, Şifreleme, Bilgisayar Programlama, Deneysel Fizik, İstatistik,... gibi birçok uygulamalı bilim alanında rasgele sayılar simülasyon (benzetim) aşamasında kullanılmaktadır. Artık gelelim şu π 'ye diyorsanız biraz daha sabır göstermeniz gerekecek. Kısaca simülasyon; model üzerinde deney yapmadır. Rasgelelik içeren olay ve süreçlerin bilgisayar ortamında deneyinin yapılmasıdır. Bir olay, süreç veya sistemle ilgili bir özelliğin ya da davranışın model üzerinde gözlenmesine simülasyon (simulation) denir. "Simulation" - taklit, benzetim anlamına gelen bir sözcüktür. Matematiksel modellerde, analitik veya sayısal bir çözüm bulunamadığında simülasyona başvurulur. Değişik koşullar altında yapılan denemelerle bir takım "gözlem" sonuçları elde edilir. Modeller kurulduktan sonra, bu modellerden sonuç çıkarma yöntemlerinden veya başka bir ifadeyle çözüm yöntemlerinden birisi olan simülasyon, analitik veya sayısal çözümler arasında en son başvurulması gereken bir çare olarak

5 düşünülmesine karşılık bilgisayar ve diğer teknolojik gelişmeler sonucunda çok kullanılan bir yöntem haline gelmiştir. Bununla birlikte simülasyon ile elde edilen gözlemlerin gerçek dünyadakine göre ucuz, çabuk ve tekrarlanabilir şekilde elde edilmesi ve özellikle rasgelelik içeren modellerde çok değişik koşullar altında gözlem yapma olanağı vermesi bazı durumlarda simülasyonu birinci sırada tercih edilen bir yöntem haline getirmektedir. Ancak, simülasyon sonucunda gerçek olay, süreç veya sistemle ilgili "model üzerinde yapılan deneyler" ile bazı gözlem değerlerinin elde edildiği unutulmamalıdır. Özellikle rasgele değişken içeren modellerdeki simülasyonda rasgeleliğin sağlanması (olasılık dağılımlarından rasgele sayı üretilmesi) ve simülasyon sonucunda elde edilen "gözlem" değerlerine bağlı sonuçların "iyiliği" gibi sorunlar kendi başına bir araştırma konusudur. Olasılık dağılımlarından rasgele sayı üretmenin ilk aşaması düzgün dağılımdan sayı üretilmesine bağlıdır. Düzgün dağılıma sahip sayıların üretimi de kendi başına bir araştırma konusudur. Kısaca simülasyon işleminin temelinde rasgele sayılar yatmaktadır. Yapılan simülasyon işleminin gerçek dünyadaki olayı iyi bir şekilde taklit edebilmesi istenir, eğer taklit iyi yapılamıyorsa deney gerçek dünyadaki olayı iyi temsil edemeyecektir. Bu nedenlerle rasgelelik özelliğine sahip sayı dizisi üretmenin uygulama açısından önemi büyüktür. Olasılık dağılımlardan örnek almak (model üzerinde deney yapma, bilgisayarda deney yapma, gözlem alma) için ( ), aralığında düzgün dağılıma sahip rasgele değişkenlerin çeşitli fonksiyonları kullanılır. Eğer ( ), aralığındaki düzgün dağılımdan rasgele sayı üretilemiyorsa doğaldır ki diğer dağılımlardan da sayı üretmek mümkün olmayacaktır. Bunun için çeşitli üreteçler (ardışık yineleme bağıntıları) kullanılmakta ve çeşitli istatistiksel özellikleri sağlayan üreteçler rasgele sayı üreteçleri olarak kullanılmaktadır. Bu sayılar belirli kurallara göre üretildiklerinden "sözde rasgele sayı" olarak bilinmektedir. Hepimizin yakından bildiği bilgisayar oyunlarının da temeli bu rasgele sayılara bağlıdır. Bilgisayarla oynanan tavla oyununda zar atışının yapılabilmesi için yine rasgele sayı üreteçlerinden yararlanır. Bilgisayarda oynanan talih oyunlarında da rasgele sayı üreteçleri kullanılır. Bazı kişiler bu rasgele sayı üreteçlerinin formulünü keşfederek bu oyunlarda hile yapmaktadır. Kısaca bilgisayarda oyun oynayan ya da oyun programları yazanların rasgele sayıları kullanmadan herhangi bir şey yapmaları olanaklı değildir. Eğitimde de simülasyon hem masrafsız hem de kolay olduğundan bilgisayar destekli eğitim yazılımları son yıllarda kullanılan programların başında gelmektedir. Bu programlar öğrenenin konuya ilgisini çekmek için hareketli görüntüler, grafikler kullanarak öğrenenin aktif bir şekilde öğrenme sürecine girmesini sağlar. Bilindiği gibi kişinin konuya ilgi duyması eğitim açısından çok önemlidir. Biraz programlama bilgisi olan kendi simülasyonlarını kendisi de kolaylıkla yapabilir. Özellikle çeşitli araçların kullanımı ile ilgili eğitiminde (Uçak, Gemi, Uzay araçları gibi) bu araçların hangi ortamda nasıl kullanılacağını, kontrol edileceğini öğretmek amacıyla kullanıcının gerçek durumda karşılaşabileceği farklı ortamlar hazırlanır ve kullanıcı bu durumlara göre davranış biçimleri ortaya koyar. Eğer kullanıcıya belirli, sabit değişmeyen ortamlar oluşturulursa belli bir süre sonra kullanıcı bunlara alışacağından gerçeğin kendisinden uzaklaşılmış olur. Bu nedenle kullanıcıya hep farklı durumlarla karşılaşabileceği ortamların yani gerçek dünyada rasgele olarak karşısına çıkabilecek ortamların oluşturulması gerekir ki bu da ancak rasgele sayıların kullanılmasıyla olur.

6 π sayısının ondalık basamakları üzerinde yapılan bugüne kadar ki çalışmalarda bu sayıların istatistiksel (rasgelelik) testlerin hepsinden geçtiği görülmüştür. Şunu da belirtmek gerekir ki yeni bir istatistiksel test geliştirilebilir ve bu sayılar bu testden kalabilir. Bu ondalık basamaklarda herhengi bir düzen olmadığı bugüne kadar bulunamamış olmasına rağmen bir düzen olabileceği varsayımı altında araştırmacılar çalışmalarını sürdürmektedir. π nin ilk 3. basamağında yeralan,,,...,9 rakamlarının kaç tane olduğu Şekil- de gösterilmiştir. Bu tablodan görülebileceği gibi bunlar birbirine yakındır. Eğer bir yerlerde birikme olsaydı, biryerlerde yığılma olduğunu yani bazı rakamların daha sık tekrarlandığını düşünmeye başlayacak acaba daha fazla basamak için bu hesaplamaları yapsak yine böyle bir durum karşımıza çıkar mı diye düşünmeye başlayacaktık. Aslında 3. basamak değil de milyarlarca basamağı gözönüne alsaydık bu sayıların hemen hemen eşit olacağını görecektik. Merak eden okuyucularımız bunu deneyebilir. Yine bu 3. basamaktaki rakamlar ikililer şeklinde (,,...,98,99) ele alındığında bunların sayıları Şekil- de gösterilmiştir. Buradaki sayılar da birbirine yakın görünmektedir. Bu çalışma sürdürülerek üçlüler, dörtlüler, beşliler, altılılar, yedililer gibi genelleştirmelere gidilebilir. Tabi bu araştırmayı yapmak için 3. rakam yetmemeye başlayacak ve belli bir süre sonra milyarlara, trilyonlara, katrilyonlara vs. geçmemiz gerekecektir. Yani trilyonlarca basamağı hesaplamamız gerekecektir. Giriş kısmında neden insanların bukadar basamağı hesaplamaya çalıştıklarını sormuştuk. Bu son kısımda elealdığımız konular umarız ki neden insanların daha çok ondalık basamakları hesaplamak istediklerini ve bu hesapları yapmak için de daha hızlı hesap yöntemleri arayışı içinde oldukları sorusuna bir yanıt getirmiştir. Günümüzde bilgisayar teknolojilerinin gelişmesi ile beraber π 'nin milyarlarca ondalık basamağı CD-ROM'lara kaydedilerek simülasyon çalışması yapanların kullanımına sunulmuştur ve π sayısı doğal rasgele sayı üreteci olarak adlandırılmıştır. Şekil- Birliler 3 adet ,,,... rakamları Şekil-

7 İkililer adet,,,...,99 rakamları Tablo- : Tarihi gelişim. yy dan önce Kişi Basamak sayısı Babilliler MÖ 3.5 = 3 /8 Mısırlılar MÖ 3.65 Çinliler MÖ 3 Bible (kutsal Kitap) 55 MÖ 3 Archimedes 5 MÖ Hon Han Shu Ptolemy Chung Hing 5? 3.67 Wang Fau 5? Liu Hui Siddhanta Tsu Ch'ung Chi 8? Aryabhata Brahmagupta 6? Al-Khowarizmi Fibonacci Al-Kashi 9 Otho Viete Romanus Van Ceulen 596 Van Ceulen Newton Sharp Seki 7? Kamata 73? 5 Machin 76 De Lagny 79 7 Takebe 73 Tarih

8 Matsunaga Vega 79 Rutherford 8 8 Strassnitzky and Dase 8 Clausen 87 8 Lehmann Rutherford 853 Shanks Tarihi gelişim.yy Ferguson 96 6 Ferguson 97 7 Ferguson and Wrench Smith and Wrench 99, Reitwiesner et al. (ENIAC) 99,37 Nicholson and Jeenel 95 3,9 Felton 957 7,8 Genuys 958, Felton 958, Guilloud 959 6,67 Shanks and Wrench 96,65 Guilloud and Filliatre 966 5, Guilloud and Dichampt 967 5, Guilloud and Bouyer 973,,5 Miyoshi and Kanada 98,,36 Guilloud 98,,5 Tamura 98,97, Tamura and Kanada 98,9,88 Tamura and Kanada 98 8,388,576 Kanada, Yoshino and Tamura 98 6,777,6 Ushiro and Kanada 983,3,395 Gosper 985 7,56, Bailey 986 9,36, Kanada and Tamura ,55, Kanada and Tamura ,8,839 Kanada, Tamura, Kubo et al 987 3,7,7 Kanada and Tamura 988,36,55 Chudnovskys 989 8,, Chudnovskys ,9,7 Kanada and Tamura ,87,898 Kanada and Tamura 989,73,7,799 Chudnovskys 989,,96,69 Chudnovskys 99,6,, Chudnovskys 99,,, Takahashi and Kanada 995 3,,5,66 Takahashi and Kanada 995,9,967,86 Takahashi and Kanada 995 6,,5,938 Kanada 997 5,539,6,

9 Kanada 999 6,58,3, Kaynak :

10 Ek Basic programlama dilinde yapılmış bazı programlar '*********************************************************** * 'pi nin değişik yöntemler kullanılarak hesaplanması 'Levent Özbek 9.3. '*********************************************************** CLS RANDOMIZE TIMER DEFDBL A-Z s3 = INPUT "n=", n '****************************** 'Euler Yöntemi s = FOR i = TO n s = s / i ^ NEXT i s = s * 6 PRINT "Euler =", SQR(s) '********************************* 'Monte Carlo İntegrasyon Yöntemi '********************************* s = FOR i = TO n s = s SQR( - RND ^ ) NEXT i PRINT "Monte Carlo hesabı=", (s / n) * '********************************* 'Roy Nort Yöntemi '********************************* s = FOR i = TO n s = s (-) ^ (i - ) / ( * i - ) NEXT i PRINT "Roy Nort Hesabı=", s * '********************************** 'Madhava, Gregory, Leibnitz Yöntemi '********************************** ss = s3 = FOR i = TO n ss = ss * - s3 = s3 ss * / ( * i ) NEXT i PRINT "Madhava, Gregory, Leibnitz =", s3 * '*********************************** 'Archimedes Yöntemi '*********************************** a = * SQR(3) b = 3 FOR i = TO n an = * a * b / (a b) bn = SQR(an * b) a = an b = bn NEXT i PRINT "Archimedes =", bn Kaynakça []- S. Sertöz, Matematiğin Aydınlık Dünyası, Tübitak Yay.,996. []- M. Boll, Matematik Tarihi, İletişim Yay., 99. [3]- G. Gamov, --3 Sonsuz, Evrim Yay., 995. []- T. Pappas, Yaşayan Matematik, Sarmal Yay., 993. [5]- G. H. Hardy, Bir matematikçinin Savunması, Tübitak Yay., 99. [6]- J. P. King, Matematik Sanatı, Tübitak Yay., 997. [7]- A. Dönmez, Matematik Tarihi, V Yay., 986. [8]- H. R. Pagels, Kozmik Kod, Doğanın Dili/Kuantum Fiziği, Sarmal Yay., 99. [9]- A. Erdil, Aşkın Sayılar Üzerine, Matematik Dünyası Sayı, 998. []- B.J.T. Morgan, Elements of Simulation, Chapman and Hall, 99

11 []- H.C. Tuckwell, Elementary Applications of Probability Theory, Chapman and Hall, 998 []- F.Öztürk, Matematiksel İstatistik, A.Ü.F.F. Yay. No:, 993. [3]- P. Bremaud, An Introduction to Probabilistic Modeling, Springer-Verlag, 988 []- I. Deak, Random Number Generators and Simulation, Akademiai Kiado, Budapest 99. [5]- Y. Dodge, A Natural Random Number Generator, International Statistical Review, 996, [6]- T. Jaditz, Are the Digits of π an Independent and Identically Distributed Sequence?, The American Statistician, Vol.5, No., -6, February. [7]- L. Özbek, Rasgele dizi ve π, Matematik Dünyası,, Cilt9., Sayı, 6-8. [8]- D.H. Bailey, J.M.Borwein and S.Ploufle, The Quest for pi, The Mathematical Intelligencer, June 996. [9]- L.J.Lange, An elegant Continued Fraction for π, The American Mathematical Mountly, May 999, Vol.6, N.5, []- T.J. Osler, The Union of Vieta s and Wallis s Product for Pi, The American Mathematical Mountly, October 999, Vol.6, N.8, []- P. Borwein, The amazing number π, September, NAW 5/, nr.3, -6. []- P.Borwein, Ocak,

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

Editörden... Başkent Üniversitesi İktisadi ve İdari Bilimler Fakültesi ELYAD - DAL Araştırma Laboratuvarları YIL 2 SAYI 5 03 / 2003. www.elyadal.

Editörden... Başkent Üniversitesi İktisadi ve İdari Bilimler Fakültesi ELYAD - DAL Araştırma Laboratuvarları YIL 2 SAYI 5 03 / 2003. www.elyadal. Başkent Üniversitesi İktisadi ve İdari Bilimler Fakültesi ELYAD - DAL Araştırma Laboratuvarları P I V O L K A YIL SAYI 5 03 / 003 Editörden... Bahar Muratoğlu baharmuratoglu@hotmail.com ELYAD DAL Araştırma

Detaylı

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3 Genel Bakış Giriş Rastgele Sayı Rastgele Sayı Üreteci rand Fonksiyonunun İşlevi srand Fonksiyonunun İşlevi Monte Carlo Yöntemi Uygulama 1: Yazı-Tura

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I Geçen Ders Sürekli Dağılımlar Uniform dağılımlar Üssel dağılım ve hafızasızlık özelliği (memoryless property) Gamma Dağılımı

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t)

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t) TÜRKİYE NİN NÜFUSU Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı Nüfus sayımının yapılmadığı son on yıldan bu yana nüfus ve buna bağlı demografik verilerde çelişkili rakamların

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Gültekin YEĞİN Fizik Bölümü Celal Bayar Üniversitesi Manisa 10 Mayıs 2012 Doç.Dr.Gultekin Yeğin (C.B.Ü. Fizik) Rasgele Sayılar (Random Numbers) NUPAMC-2012

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Đst101 Olasılık ve Đstatistiğe Giriş

Đst101 Olasılık ve Đstatistiğe Giriş Đst0 Olasılık ve Đstatistiğe Giriş DERSĐN TÜRÜ Zorunlu DERSĐN DÖNEMĐ Güz DERSĐN KREDĐSĐ Ulusal Kredi: (, 0, 0 ) AKTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatistik 007/008 Öğretim Yılı Yardımcı Kitaplar Larson,

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU Mesleki Terminoloji DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK Sayısal Analiz MEHMET EMRE ÖNDER - 12011061 DOĞAÇ CEM İŞOĞLU - 11011074 Sayısal Analiz Nedir? Sayısal analiz, yada diğer adıyla numerik analiz,

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Uygulamalı Matematiğin Özel Fonksiyonları (MATH 483) Ders Detayları

Uygulamalı Matematiğin Özel Fonksiyonları (MATH 483) Ders Detayları Uygulamalı Matematiğin Özel Fonksiyonları (MATH 483) Ders Detayları Ders Adı Uygulamalı Matematiğin Özel Fonksiyonları Ders Kodu MATH 483 Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Güz

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FM-223 2 / 2.YY 2 2+0+0 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans

Detaylı

Rasgele Sayıların Özellikleri

Rasgele Sayıların Özellikleri Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

Levent Özbek Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü

Levent Özbek Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Bilim ve Bilimsel Felsefe Çevresi Etkinliği Bilimsel Felsefe ve Bilimler Hans Reichenbach ın Ölümünün 50.yılı Anısına 12 Aralık 2003 Ankara Üniversitesi Fen Fakültesi Levent Özbek Ankara Üniversitesi Fen

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

Son yıllarda bilgisayar teknolojisinin ilerlemesiyle ön plana çıktı.

Son yıllarda bilgisayar teknolojisinin ilerlemesiyle ön plana çıktı. MONTE CARLO YÖNTEMİ Birçok problemde analitik çözüm zor! Son yıllarda bilgisayar teknolojisinin ilerlemesiyle ön plana çıktı. Yüksek enerji fizigi Katıhal fiziği Biyofizikte atmosfer çalışmaları nükleer

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

ALP OĞUZ ANADOLU LİSESİ EĞİTİM ÖĞRETİM YILI BİLGİSAYAR BİLİMİ DERSİ 2.DÖNEM 2.SINAV ÖNCESİ ÇALIŞMA SORULARI VE YANITLARI

ALP OĞUZ ANADOLU LİSESİ EĞİTİM ÖĞRETİM YILI BİLGİSAYAR BİLİMİ DERSİ 2.DÖNEM 2.SINAV ÖNCESİ ÇALIŞMA SORULARI VE YANITLARI ALP OĞUZ ANADOLU LİSESİ 2017-2018 EĞİTİM ÖĞRETİM YILI BİLGİSAYAR BİLİMİ DERSİ 2.DÖNEM 2.SINAV ÖNCESİ ÇALIŞMA SORULARI VE YANITLARI Doğru yanıtlar kırmızı renkte verilmiştir. 1. Problemlerin her zaman sıradan

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

Doç. Dr. Metin Özdemir Çukurova Üniversitesi

Doç. Dr. Metin Özdemir Çukurova Üniversitesi FİZİKTE SAYISAL YÖNTEMLER Doç. Dr. Metin Özdemir Çukurova Üniversitesi Fizik Bölümü 2 ÖNSÖZ Bu ders notları Fizik Bölümünde zaman zaman seçmeli olarak vermekte olduǧum sayısal analiz dersinin hazırlanması

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo AST416 Astronomide Sayısal Çözümleme - II 6. Monte Carlo Bu derste neler öğreneceksiniz? Monte Carlo Yöntemleri Markov Zinciri (Markov Chain) Rastgele Yürüyüş (Random Walk) Markov Chain Monte Carlo, MCMC

Detaylı

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

MatLab. Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar MatLab Mustafa Coşar mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Sunum Planı MatLab Hakkında Ekran Yapısı Programlama Yapısı Matlab da Programlamaya Giriş Sorular MatLab Hakkında MatLab;

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

7. SINIF ÖĞRETİM PROGRAMI

7. SINIF ÖĞRETİM PROGRAMI 7. SINIF ÖĞRETİM PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 7.1. Sayılar ve İşlemler 7.1.1. Tam Sayılarla Çarpma ve Bölme İşlemleri 7.1.2. Rasyonel Sayılar 7.1.3. Rasyonel Sayılarla İşlemler 7.1.4.

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Fen ve Mühendislik Bilimleri için Fizik

Fen ve Mühendislik Bilimleri için Fizik Fen ve Mühendislik Bilimleri için Fizik Giriş Fizik Temel Bilimlerin Amacı Doğanın işleyişinde görev alan temel kanunları anlamak. Diğer fen ve mühendislik bilimleri için temel hazırlamaktır. Temelde gerekli

Detaylı

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri IST 108 Olasılık ve İstatistik Bahar 2016 Yrd. Doç. Dr. Ferhat Dikbıyık Bu sunumun bir kısmı Utah Üniversitesi nden Bilgisayar Bilimleri

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar BLM-112 PROGRAMLAMA DİLLERİ II Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/

Detaylı

SAYISAL YÖNTEMLERDE PROBLEM ÇÖZÜMLERİ VE BİLGİSAYAR DESTEKLİ UYGULAMALAR

SAYISAL YÖNTEMLERDE PROBLEM ÇÖZÜMLERİ VE BİLGİSAYAR DESTEKLİ UYGULAMALAR SAYISAL YÖNTEMLERDE PROBLEM ÇÖZÜMLERİ VE BİLGİSAYAR DESTEKLİ UYGULAMALAR Prof. Dr. Hülya H. Tütek Prof. Dr. Şevkinaz Gümüşoğlu Doç. Dr. Ali Özdemir Dr. Aslı Yüksek Özdemir II Yayın No : 2371 İşletme-Ekonomi

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

önce biz sorduk KPSS Soruda 92 soru GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ SORU BANKASI TAMAMI ÇÖZÜMLÜ Eğitimde

önce biz sorduk KPSS Soruda 92 soru GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ SORU BANKASI TAMAMI ÇÖZÜMLÜ Eğitimde KPSS 2017 önce biz sorduk 120 Soruda 92 soru GENEL YETENEK - GENEL KÜLTÜR MATEMATİK GEOMETRİ SORU BANKASI TAMAMI ÇÖZÜMLÜ Eğitimde 30. yıl Editör Kenan Osmanoğlu - Kerem Köker Yazar Komisyon KPSS Matematik-Geometri

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJENİN AMACI: Polinom fonksiyon yardımıyla özdeş nesnelerin farklı kutulara istenilen koşullardaki dağılım sayısının hesaplanması

Detaylı

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ I. YARIYIL Adı Teori Uygulama KSU MT101 Analiz I 6 4 2 5 7 MT107 Soyut Matematik I 4 4 0 4 5 MT109 Analitik Geometri I 4 4 0 4 5 FZ173 Fizik I 4 4 0 4 4 OZ101 Türk Dili I 2 2 0 2 2 OZ121 Ingilizce I 2

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu

Detaylı

MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (1-8. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER

MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (1-8. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER MİLLÎ EĞİTİM BAKANLIĞI Talim ve Terbiye Kurulu Başkanlığı İLKÖĞRETİM MATEMATİK DERSİ (18. SINIFLAR) ÖĞRETİM PROGRAMINDA YAPILAN DEĞİŞİKLİKLER ARALIK2008 1 İLKÖĞRETİM MATEMATİK DERSİ (18. SINIFLAR) ÖĞRETİM

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

EME 3117 SİSTEM SİMÜLASYONU. Rassal Sayı ve Rassal Değer. Üretimi. Rassal Sayı Üretimi

EME 3117 SİSTEM SİMÜLASYONU. Rassal Sayı ve Rassal Değer. Üretimi. Rassal Sayı Üretimi ..4 EME 7 Rassal Sayı ve Rassal Değer Üretimi SİSTEM SİMÜLASYONU Rassal Sayı ve Rassal Değer Üretimi Ders Girdi Analizi bölümünde gözlemlerden elde edilen verilere en uygun dağılımı uydurmuştuk. Bu günkü

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler

Detaylı

Algoritmalar ve Programlama. Algoritma

Algoritmalar ve Programlama. Algoritma Algoritmalar ve Programlama Algoritma Algoritma Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

SİMÜLASYON Hazırlayan: Özlem AYDIN

SİMÜLASYON Hazırlayan: Özlem AYDIN SİMÜLASYON Hazırlayan: Özlem AYDIN Not: Bu sunumda Yrd. Doç. Dr. Yılmaz YÜCEL in Modelleme ve Benzetim dersi notlarından faydalanılmıştır. SİMÜLASYONUN ORTAYA ÇIKIŞI Simülasyonun modern anlamda kullanılışı

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FEB-311 3/ 1.YY 2+0+0 2 3 Dersin Dili Dersin Seviyesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

İSTATİSTİKSEL PROSES KONTROLÜ

İSTATİSTİKSEL PROSES KONTROLÜ İSTATİSTİKSEL PROSES KONTROLÜ ZTM 433 KALİTE KONTROL VE STANDARDİZASYON PROF: DR: AHMET ÇOLAK İstatistiksel işlem kontrolü (İPK), işlemle çeşitli istatistiksel metotların ve analiz sapmalarının kullanımını

Detaylı

Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları

Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Olasılık Teorisi ve İstatistik MATH392 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ

BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ BİR MONTAJ HATTI ÜRETİM SİSTEMİNDE OPTİMAL İŞGÜCÜ DAĞILIMININ ARENA PROCESS ANALYZER (PAN) VE OPTQUEST KULLANILARAK BELİRLENMESİ Özgür ARMANERİ Dokuz Eylül Üniversitesi Özet Bu çalışmada, bir montaj hattı

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS ENDÜSTRİ MÜH. İÇİN SAYISAL YÖNTEMLER FEB-321 3/ 2.YY 3+0+0 3 3 Dersin Dili

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ REKTÖRLÜĞÜ

T.C. SELÇUK ÜNİVERSİTESİ REKTÖRLÜĞÜ T.C. SELÇUK ÜNİVERSİTESİ REKTÖRLÜĞÜ Fen Fakültesi Dekanlığı İstatistik Bölümü 017-018 Eğitim-Öğretim Yılı Normal Öğretim Güz Ve Bahar Yarıyıllarda Okutulacak Dersler 1. SINIF I.YARIYIL AKTS Adı 7011 Matematik

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI Ders içerik bilgisi TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI 1. İç değişken kavramı 2. Uç değişken kavramı MEKANİK SİSTEMLERİN MODELLENMESİ ELEKTRİKSEL SİSTEMLERİN

Detaylı

MODELLEME VE BENZETİM

MODELLEME VE BENZETİM MODELLEME VE BENZETİM Hazırlayan: Özlem AYDIN Not: Bu sunumda Yrd. Doç. Dr. Yılmaz YÜCEL in Modelleme ve Benzetim dersi notlarından faydalanılmıştır. DERSE İLİŞKİN GENEL BİLGİLER Dersi veren: Özlem AYDIN

Detaylı