K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır."

Transkript

1 İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin normal dağılıma uyması gerekir. Örneğin, Ki-Kare Testleri normal dağılımı da içeren her hangi bir dağılıma uygulanabilir. Bu bölümde dağılımların normallik testinde kullanılabilecek iki parametrik olmayan test tekniği açıklanmıştır. Bu teknikler Kolmogorov- Smirnov K-S veya Lilliefors testi olarak bilinirler. K-S testi daha kolay uygulanmaktadır. K-S Testi K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. F( X ) P( X x ) Örnek yığılmalı dağılım fonksiyonu S(x), seçilen bir x değerine eşit veya daha küçük olan örnek değerinin oranını tanımlar. S(x) aşağıdaki gibi hesaplanır. Örnek: 10 gözlemli bir çalışmada: olsun Önce gözlem değerleri küçükten büyüğe doğru sıralanır X=80, toplam gözlem değerinin en küçüğü olduğundan bu değere eşit veya daha küçük değerde olan gözlemlerin oranı ; S(80)=1/10 =0.10 olur. Benzer olarak, 10 değerin 2 si 89 a eşit veya daha küçüktür. (80 ve 89) bunların oranı ise; S(89)=2/10=0.20 olur. Kalanları benzer olarak düzenleyelim. X S(x) Bu gözlem değerlerinin ortalaması µ=100 ve standart sapması σ=10 olan ve normal dağılım gösteren bir yığından çekildiği varsayılırsa, H 0 :Veriler µ=100 ve standart sapması σ=10 olan ve normal dağılım gösteren bir yığından çekildiği söylene bilir mi? H 1 : Hayır veriler normal dağılıştan çekilmemiştir.

2 X için yığılımlı F(X) hesaplanması F ( 80) P( x 80) x F( 80) P ( 2) P Z olur Benzer hesaplamalarla xler e karşı gelen ölçümler yapılır. X F(X)=P(X x) 80 P(X 80)=P(Z -2)= P(X 89)=P(Z -1.1)= P(X 93)=P(Z -0.7)= P(X 97)=P(Z -0.3)= P(X 102)=P(Z 0.2)= P(X 103)=P(Z 0.3)= P(X 105)=P(Z 0.5)= P(X 108)=P(Z 0.8)= P(X 110)=P(Z 1.0)= P(X 121)=P(Z 2.1)= Eğer H 0 : Hipotezi doğru ise, bütün x değerleri için F(X) ve S(X) değerleri benzer olmalıdır. Buna karşın, eğer H 0 hipotezi yanlış ise, en azından bazı x değerleri için F(X) ile S(x) arasında büyük farklar olacaktır. F(X) ile S(X) arasındaki farkların en büyüğünün mutlak değeri (D) test istatistiği olarak tanımlanır. Test istatistiği; D=max [F(X)-S(X)] olur D nin hesaplanması için, önce her bir x değeri için F(X) ile S(X) arasındaki fark hesaplanır. Bu farkların en büyük mutlak değere sahip olanı test istatistiği olarak belirlenir. Farklar aşağıda hesaplanmıştır. X F(X) S(X) F(X)-S(X) [F(X)-S(X)] =D Değerler incelendiğinde en büyük mutlak fark değerinin D= olduğu görülür. Eğer, D değeri D >F(X)-S(X) ise H 0 hipotezi ret edilir.

3 Bu farkın büyüklüğüne karar vermek için ilgili tablo Ek çizelge 10 da verilmiştir. Kritik değerler α=0.05, α=0.10, ve α=0.20 önem seviyelerinde n=1 40 a kadar için verilmiştir. Eğer, örnek hacmi n>40 ise, kritik değer Α- α=0.20 için B- α=0.10 için TH TH 1.07, olur. n 1.22, olur n C- α=0.050 için TH 1.36, olur n D- α=0.02 için Ağer, TH 1.52, olur n Sonuç: Yukarıdaki örnek veriler için hesaplanan test istatistiği D= değeri, α=0.05 önem seviyesindeki n=10 değerine karşılık gelen kritik tablo değeri olan değeri ile karşılaştırılır. D= olduğundan Ho hipotezi kabul edilir. Yorum: Verilerin µ=100 ve standart sapması σ=10 olan ve normal dağılım gösteren bir yığından çekildiğini söylemek için yeterli destek bulunmaktadır. II- LİLLİEFORS TESTİ Çoğu uygulamada, normallik testi yapılacak populasyonun ortalaması ve varyansı bilinmemektedir. Oysa K-S Testinde, bu parametrelerin bilindiği kabul edilmektedir. İşte bu Lilliefors Testi K-S testine benzemektedir. Ama, Lilliefors testi Populasyon varyansı ve ortalamasının bilinmediği populasyonların normallik testinin yapılmasına yarar. Aradaki fark nedir diye sorulursa; F(X) in hesaplanmasında (µ ve σ yerine) örnek ortalaması ve standart sapması s nin kullanıldığını bileceğiz. X, S örnek sonuçları istatistiktir. Örnek yığılımlı dağılım fonksiyonu S(X) in hesaplanması ve test istatistiği D nin hesaplanması, K-S testindekilerle aynıdır. Hesaplanan D, test istatistiği Lilliefors test tablo sonuçları ile karşılaştırılır. Eğer D> Tablo değeri ise Ho hipotezi ret edilir. ÖRNEK: Bizim işletmede günlük süt üretimi kakında hipotez testi yapmak üzere rasgele seçilen 15 günlük süt üretim miktarları litre olarak hesaplanmış ve aşağıda verilmiştir Bu bulgulara göre, işletmemizin günlük süt üretiminin normal dağılıp dağılmadığını α=0.05 önem seviyesinde test ediniz.

4 ÇÖZÜM: Populasyon ortalamsı ve varyansı bilinmediğinden, normallik testi Lilliefors testi ile yapılabilir. Verilerin ortalama ve standart sapma değerlerini hesaplayalım. X=96.47, s=4.85 olarak bulunur. Testin uygulanması K_S testindeki işlemlerle aynıdır. Veriler sıraya dizilecek, S(X), F(X) ve mutlak değeleri tabloda verilmiştir. Hesaplamalardan sonra F(X) ve S(X) farkları ve en büyük mutlak fark değeri bulunacak. D istatistiğ tablo değeri ile karşılaştırılacaktır. Örnek ve populayon Yığılmalı Olasılık değerleri X S(X) F(X) 88 1/15=0.067 x P( x 88) P( Z 1.75) /15=0.133 x P( x 91) P( Z 1.13) /15=0.200 x P( x 92) P( Z 0.92) /15=0.267 x P( x 93) P( Z 0.72) /15=0.400 x P( x 94) P( Z 0.51) /15=0.533 x P( x 95) P( Z 0.30) /15=0.600 x P( x 96) P( Z 0.10) /15=0.667 x P( x 98) P( Z 0.32) /15=0.867 x P( x 101) P( Z 0.93) /15=0.933 x P( x 103) P( Z ) /15=1.00 x P( x 105) P( Z 1.76) İlgili Teorik tabloda n=15 ve α=0.01 için kritik değer =0.257 olarak bulunuyor. D= olduğundan, Ho Hipotezi kabul edilir. İşletmemizdeki günlük süt üretiminin verileri NORMAL dağılır diyebiliriz.

5 MUTLAK FARKLAR VE LİLLİEFORS TEST İSTATİSTİĞİ X F(X) S(X) F(X)-S(X) F(X)-S(X) =D Örnekteki verilere birde SPSS Paket programında Normallik testi uygulayalım. Örnek : olsun. H 0 :Veriler µ=100 ve standart sapması σ=10 olan ve normal dağılım gösteren bir yığından çekildiği söylene bilir mi? H 1 : Hayır veriler normal dağılıştan çekilmemiştir. 1. Adım

6 2. Adım

7 3. Adım 4. Adım

8 5. Adım Descriptives Statistic Std. Error Gunluk süt üretimi Mean 100,8000 3, % Confidence Interval for Mean Lower Bound 92,4863 Upper Bound 109,1137 5% Trimmed Mean 100,8333 Median 102,5000 Variance 135,067 Std. Deviation 11,62182 Minimum 80,00 Maximum 121,00 Range 41,00 Interquartile Range 16,50 Skewness -,150,687 Kurtosis,293 1,334 Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. Gunluk süt üretimi,141 10,200 *,989 10,995 a. Lilliefors Significance Correction VERİLERİN NORMAL DAĞILIŞA UYDUĞU GÖRÜLÜYOR *. This is a lower bound of the true significance.

9

10 Örnek: Kız ve Erkek öğrencilerin Biyoistatistik sınav hata puanları dağılımı verilmiştir Tablo Kız ve Erkeklerin Puan dağılımı Hata Puanı fk fe Kız ve Erkek öğrencilein hata puanlarına göre dağılımlarında fark olup olmadığını iki örnek K-S testi ile test ediniz. SPSS te veriler X= Hata PUANI stununa girilir.. Cinsiyet değişkeni için de Y=Cinsiyet stununa girilir. (Cinsiyet E=1, Cinsiyet K=0) olarak kodlanır. Çözüm K-S Testi için Non Parametri test kısmında 2 Independent Sample seçeneği seçilerek veriler ilgili yerlere atanır.

11 Çözüm: SPSS te veri girişi için

12 Çıktılar şöyledir. Two-Sample Kolmogorov-Smirnov Test Frequencies Cinsiyet N Hata Puani, ,00 10 Total 20 Test Statistics a Hata Puani Most Extreme Differences Absolute,700 Positive,000 Negative -,700 Kolmogorov-Smirnov Z 1,565 Asymp. Sig. (2-tailed),015 a. Grouping Variable: Cinsiyet Yorum: ERKEK ve KIZ öğrencilerin hata puanları türdeş değildir. Kızların hata puanları dağılımı, erkeklerin hata puanı dağılımından önemli düzeyde pozitif uçta yer almaktadır. Kızların hata Puanları, Erkeklerin hata puanlarından daha yüksektir.

13 K-S Tek Örnek Testi Örnek çözüm: Hasta kal. Gun Sayısı Birey Sayısı Bireylerin Tifoya yakalanma ve hastanede kalma günlerine göre dağılımlarında veriler normal dağılışa uyuyor mu? K-S testi ile Test ediniz. KAYNAK: AlimIşık Prof.Dr. İstatistik - II BETA BASIM A.Ş. BAYRAMPAŞA /İSTANBUL 2006 Kazım Özdamar. Paket Programlar ile İstatistiksel veri Analizi KAAN KİTAP EVİ 1999

14 Yorum: Tifoya yakalananların hastanede kalış günleri Normal dağılışa uyuyor P=0.953

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

Yoğun Bakım Üniteleri Araştırması

Yoğun Bakım Üniteleri Araştırması Yoğun Bakım Üniteleri Araştırması 22 Temmuz 2015, ANKARA tkhk.istatistik@saglik.gov.tr İstatistik, Analiz ve Raporlama Daire Başkanlığı 1 Hazırlayanlar: H. Erkin SÜLEKLİ (Sağlık Uzman Yardımcısı) Aziz

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI

Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI Yrd.Doç.Dr.Tuncay SEVİNDİK DERS NOTLARI GİRİŞ SPSS paket programı excel vb. paket programlar ile entegre çalışabilen bir analiz programıdır. SPSS programı Sosyal bilimler, sağlık bilimleri ve fen bilimleri

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ Tanı Testlerinin Değerlendirilmesi ROC Analizi Prof.Dr. Rian DİŞÇİ İstanbul Üniversitesi, Onkoloji Enstitüsü Kanser Epidemiyolojisi Ve Biyoistatistik Bilim Dalı Tanı Testleri Klinik çalışmalarda, özellikle

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ

FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ FARKLILIKLARI İNCELEMEYE YÖNELİK ANALİZ TEKNİKLERİ GİRİŞ Önceki bölümlerde saha çalışmlarında toplanan verilerin analize hazır hale getirlmesi ve nicel analiz tekniklerinin sınıflandırılması üzerinde durulmuştu.

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Parametrik Olmayan Testler

Parametrik Olmayan Testler Araştırma Yöntemleri Parametrik Olmayan Testler Parametrik Olmayan Testler Verilerin normal dağılmış olması gerekmiyor Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak Ya da eşit aralıklı

Detaylı

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Doi: 10.17932/IAU.IAUD.m.13091352.2016.8/29.67-77 Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Murat ÇİMEN 1 Özet Veriler normal olarak dağıldığında Tek örnek T- Testi

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ Aslı AŞIK YAVUZ 1 İçindekiler 1. Küresel Cinsiyet Eşitsizliği Endeksi 2. Çalışmanın Amacı 3. Çalışmada

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

Denetim Etkinliğini Artırmada Verinin Analizi

Denetim Etkinliğini Artırmada Verinin Analizi Denetim Etkinliğini Artırmada Verinin Analizi Benford Analizi Uygulama Mayıs, 2016 Antalya 1. Uygulama TANIMLAYICI İSTATİSTİKLER VE ÖRNEKLEM BAĞIMSIZLIK TESTLERİ Örneklemlerin Bağımsızlık Analizleri (Grupların

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

KORELASYON VE REGRESYON UYGULAMASI

KORELASYON VE REGRESYON UYGULAMASI KORELASYON VE REGRESYON UYGULAMASI (BİLGİSAYARDA İSTATİSTİK ÇÖZÜMLEMELER) Yrd.Doç.Dr. İsmail YILDIZ Biyoistatistik AD Öğretim üyesi iyildiz@dicle.edu.tr 1 REGRESYON ve KORELASYON ANALİZİ Bağımlı değişkenin

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI ADAPTATION OF DECISION MAKING COLLABORATION SCALE TO TURKISH

İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI ADAPTATION OF DECISION MAKING COLLABORATION SCALE TO TURKISH İŞBİRLİKLİ KARAR ALMA SÜRECİNE KATILIM İSTEKLİLİĞİ ÖLÇEĞİNİN TÜRKÇEYE UYARLAMA ÇALIŞMASI Derya Kıcı Boğaziçi Üniversitesi derya.kici@boun.edu.tr Özet Bireyler karar verme sürecinde başkaları ile işbirliği

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı