Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c."

Transkript

1 Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler ve tılırlr. Bğlçlr yerine u devrelerin kullnılmı trımlrı kolylştırır. Tümdevreler içerdikleri kpı yıın göre çeşitli gruplr yrılırlr. Tümleştirme düzeylerine göre gruplm: Küçük Ölçekli Tümleştirme (Smll-Scle Integrtion SSI): Bu gruptki tümdevreler tneden z lojik kpı içerirler. Örneğin 74 4 det TVE kpıı içerir. rt Ölçekli Tümleştirme (Medium-Scle Integrtion MSI): Bu gruptki tümdevreler ile tne rınd lojik kpı içerirler. Toplyıcı, veri eçici, kod çözücü elemnlr u gru girer. Büyük Ölçekli Tümleştirme (Lrge-Scle Integrtion LSI): Bu gruptki tümdevreler inler merteeinde lojik kpı içerirler. Mikroişlemciler, ellekler u grupt yer lırlr. Çok Büyük Ölçekli Tümleştirme (Veri Lrge-Scle Integrtion VLSI): Bu gruptki tümdevreler yüzinlerce ve dh fzl yıd lojik kpı içerirler. Örnek: Gelişmiş mikroişlemciler ve üyük ellek tümdevreleri. -7 Yrd.Doç.Dr. Fez BUZLUCA 4. Syıl Devreler (Lojik Devreleri) Yrım Toplyıcı (Hlf Adder): İki det irer itlik yıyı toplyn ir devredir. Yrım Toplyıcı c : Birinci Syı c : İkinci Syı : Sonuç c: Elde Çıkışı Doğruluk tloundn devrenin ifdei elde edilir. = ' + ' c= c Bu devre ynd göterildiği gii YA DA (DARVEYA) ğlcı kullnılrk d gerçekleneilir. = c= c -7 Yrd.Doç.Dr. Fez BUZLUCA 4.

2 Syıl Devreler (Lojik Devreleri) Tm Toplyıcı (Full Adder):: İki det irer itlik yıyı eldeli olrk toplyn devredir. Tm Toplyıcı : Birinci Syı c o : İkinci Syı c : Elde Girişi o : Sonuç c o : Elde Çıkışı c o = '' + ' '+ ' '+ = ( ) c o = + + = -7 Yrd.Doç.Dr. Fez BUZLUCA 4. Syıl Devreler (Lojik Devreleri) İki det yrım toplyıcı ve ir det VEYA kpıı kullnrk ir tm toplyıcı gerçekleneilir: Yrım Toplyıcı c Yrım Toplyıcı c c Yrım Toplyıcı c c Yrım Toplyıcı c o = ( ) = c o = ( ) + c o = (' + ') + c o = ' + ' + c o = Yrd.Doç.Dr. Fez BUZLUCA 4.4

3 Syıl Devreler (Lojik Devreleri) n-bitlik İkili Prlel Toplyıcı: İki det n itlik li yıyı toplyn devredir. Toplnmk itenen yılrın mk yıın ğlı olrk ir itlik tm toplyıcılr peş peşe ğlnrk ikili prlel toplyıcılr gerçekleneilir. Aşğıd 4 itlik ir ikili toplyıcı göterilmiştir. B A B A B A B A c o c c c TT TT TT c TT c i c c c o o o c o i c 4 S S S S. Syı: A A A A.Syı: B B B B Sonuç: S S S S Elde Girişi: c Elde Çıkışı: c 4 Örnek:. Syı:.Syı: Sonuç: Elde : 748 tümdevrei 4 itlik ir ikili toplyıcıdır. Bu tümdevre MSI tipindedir. -7 Yrd.Doç.Dr. Fez BUZLUCA 4.5 Syıl Devreler (Lojik Devreleri) Veri Seçiciler (Multiplexer): n det veri girişi, n det eçme (denetim) girişi, det çıkışı vrdır. Seçme girişlerine gelen değere göre, veri girişlerinden irindeki değer çıkış ktrılır. Seçme girişlerindeki n itlik ikili yı hngi veri girişinin eçileceğini elirler. Veri eçiciler giriş yılrın göre m: olrk dlndırılır. Burd m veri girişlerinin yıını göterir. Örnek: : Veri eçici ( İkiye ir veri eçici olrk okunur) I I : VS Z İşlev Tlou: Z I I Lojik ifde: Z = ' I + I Doğruluk Tlou: I I Z -7 Yrd.Doç.Dr. Fez BUZLUCA 4.6

4 Syıl Devreler (Lojik Devreleri) I I I I Diğer Veri Seçici (MUX) Örnekleri: İşlev Tlou: İşlev Tlou: I Z I Z 4: Z I I I I I 8: I I I4 Z I I I5 I Lojik İfdeler: : : Z = ' I + I 4: : Z = ' ' I + ' I + ' I + I 8 8: : Z = ' ' 'I+ ' ' I + ' 'I+ ' I + ' ' I4 + ' I5 + ' I6 + I7 I6 I7 I 4 I 5 I 6 I 7 Genel İfde (k: Mux): Z k = ( mi j j) j= k= n, m j = j. minterim -7 Yrd.Doç.Dr. Fez BUZLUCA 4.7 Syıl Devreler (Lojik Devreleri) Veri Seçiciler lojik ğlçlr kullnılrk şğıdki gii gerçekleneilirler. : I I I I I I 4: I I I I I I -7 Yrd.Doç.Dr. Fez BUZLUCA 4.8

5 Syıl Devreler (Lojik Devreleri) Büyük oyutlrdki veri eçiciler, dh küçüklerin uygun şekilde ğlnmıyl gerçekleneilir. Aşğıd 8: veri eçicinin frklı şekilde gerçeklenmei göterilmiştir.. Yöntem 8:. Yöntem I I I I I4 I5 I6 I7 4: 4: : Burd ve eçme girişleri 4: veri eçicileri için ortktır. İki veri eçicinin de ynı girişi eçilir. Hngi veri eçicinin çıkışının eçileceğini ie elirler. Z I I I I I4 I5 I6 I7 : : : : 8: 4: Z -7 Yrd.Doç.Dr. Fez BUZLUCA 4.9 Syıl Devreler (Lojik Devreleri) Veri eçicilerin kullnımın ir örnek: Bir toplyıcının girişine iteğe ğlı olrk frklı yılr uygulnilir. X Y W Z S MUX MUX A B S S S Sonuç X+W X+Z Y+W Y+Z Toplyıcı Sonuç -7 Yrd.Doç.Dr. Fez BUZLUCA 4.

6 Syıl Devreler (Lojik Devreleri) Veri Seçiciler ile Genel Amçlı Lojik Devre Trımı : n : oyutlu ir det veri eçici kullnılrk n girişli herhngi ir lojik devre şk ir ğlç kullnmdn gerçekleneilir. Yöntem: Trlnck oln fonkiyonun değişkenleri (devrenin girişleri) veri eçicinin eçme uçlrın ğlnır. Her eçme değeri ir giriş kominezonun krşı düştüğüne göre, trlnmk itenen fonkiyonun doğruluk tloun göre veri eçicinin veri girişlerine lojik "" vey "" itleri ğlnır. Örnek: F(A,B,C) = m + m + m6 + m7 = Σ (,,6,7) No. A B C F A -7 Yrd.Doç.Dr. Fez BUZLUCA 4. S 8: MUX S B S C F Syıl Devreler (Lojik Devreleri) Veri Seçiciler ile Genel Amçlı Lojik Devre Trımı : n- : oyutlu ir det veri eçici kullnılrk n girişli herhngi ir lojik devre ek olrk dece ir det tümleme ğlcı kullnılrk gerçekleneilir. Yöntem: Trlnck oln fonkiyonun değişkenlerinden n- tnei veri eçicinin eçme uçlrın ğlnır. Art kln değişkenin kendii y d tümleyeni, doğruluk tloun göre veri eçicinin veri girişlerine ğlnır. Örnek: F(A,B,C) = m + m + m6 + m7 = Σ (,,6,7) Htırltm: 8: VS ile Çözüm: Bir önceki yöntem 4 8: MUX S S S F A B C F C' C' C' C' 4: VS ile Çözüm: 4: MUX S S Burd her iki c değeri de ynı tümleme kpıındn A B C elde edileilir. -7 Yrd.Doç.Dr. Fez BUZLUCA 4. A B F

7 Syıl Devreler (Lojik Devreleri) Yyıcı Mk (Demultiplexer): det veri girişi, n det eçme (denetim) girişi, n det çıkışı vrdır. Seçme girişlerine gelen değere göre, veri girişindeki değer çıkışlrdn irine ktrılır. Diğer çıkışlr "" değerini lır. Seçme girişlerindeki n itlik ikili yı girişteki değerin hngi çıkış ktrılcğını elirler. Yyıcılr çıkış yılrın göre :m olrk dlndırılır. Burd m çıkış yıını göterir. Örnek: : Yyıcı Mk ( Bire iki yyıcı olrk okunur) G : Yyıcı G S İşlev Tlou: G G Doğruluk Tlou: G -7 Yrd.Doç.Dr. Fez BUZLUCA 4. Syıl Devreler (Lojik Devreleri) Kod Çözücüler (Decoder): n det eçme (denetim) girişi, n det çıkışı vrdır. Seçme girişlerine gelen değere göre, çıkışlrdn ir tnei "" değerini diğerleri "" değerini lır. Seçme girişlerindeki n itlik ikili yı hngi çıkın "" değerini lcğını elirler. Kod çözücü, girişine ş it "" değeri verilmiş ş ir r yyc yyıcı mk gii düşünüleilir. l Kod çözücüler eçme girişi ve çıkış yılrın göre n: n olrk dlndırılır. Burd n eçme girişi yıı, n çıkış yııdır. Örnek: :8 Kod Çözücü S S S :8 DEC S S S Yrd.Doç.Dr. Fez BUZLUCA 4.4

8 Syıl Devreler (Lojik Devreleri) :8 Kod Çözücünün İç Ypıı -7 Yrd.Doç.Dr. Fez BUZLUCA 4.5 Syıl Devreler (Lojik Devreleri) Kod Çözücüler ile Genel Amçlı Lojik Devre Trımı: n: n oyutlu ir kod çözücü kullnılrk n girişli m çıkışlı herhngi ir genel fonkiyon ek olrk VEYA ğlçlrı kullnılrk gerçekleneilir. Yöntem: Trlnck oln fonkiyonun değişkenleri (devrenin girişleri) kod çözücünün eçme uçlrın ğlnır. Kod çözücünün her çıkışı ir minterime krşı düşer. Gerçeklenecek oln fonkiyonu oluşturn minterimlere ilişkin çıkışlr VEYA kpılrı ile toplnır. Örnek: F(A,B,C) = m + m + m6 + m7 = Σ (,,6,7) :8 DEC S S S A'B'C' A'B'C A'BC' ABC A'BC AB'C' AB'C ABC' ABC F A B C -7 Yrd.Doç.Dr. Fez BUZLUCA 4.6

9 Syıl Devreler (Lojik Devreleri) Örnek: 4 girişli çıkışlı genel fonkiyon trımı F(A,B,C,D) = A' B C' D + A' B' C D + A B C D F (A,B,C,D) = A B C' D + A B C F (A,B,C,D) = (A' + B' + C' + D') 4:6 DEC A'B'C'D' A'B'C'D A'B'CD' A'B'CD 4 A'BC'D' 5 A'BC'D 6 A'BCD' 7 A'BCD 8 AB'C'D' 9 AB'C'D AB'CD' AB'CD ABC'D' ABC'D 4 ABCD' 5 ABCD F F F A B CD -7 Yrd.Doç.Dr. Fez BUZLUCA 4.7 Syıl Devreler (Lojik Devreleri) İzin Girişli (EN) Kod Çözücü: Kod çözücülerde izin girişi (Enle EN) olilir. EN girişi lojik olduğund kod çözücü norml işlevini görür. EN girişi lojik olduğund kod çözücünün tüm çıkışlrı olur. Aşğıd izin girişli ir :4 kod çözücü göterilmiştir: : 4 Kod çözücü -7 Yrd.Doç.Dr. Fez BUZLUCA 4.8

10 Syıl Devreler (Lojik Devreleri) Progrmlnilir Lojik Elemnlr (Progrmmle Logic Device- PLD) Lojik devre gerçeklemenin prtik yollrındn iri de progrmlnilir lojik elemnlr kullnmktır. Bu elemnlr, içinde çok yıd TÜMLEME, VE, VEYA ğlcı ulundurn tümdevrelerdir. Trımcı ir "progrmlm" cihzı kullnrk u ğlçlrın rınd elli ınırlr içinde itediği ğlntılrı gerçekleştireilir. Böylece dece tek ir tümdevre kullnılrk krmşık lojik devreler gerçekleştirileilir. girişler VE dizii çrpım terimleri VEYA diii dizii çıkışlr -7 Yrd.Doç.Dr. Fez BUZLUCA 4.9 Syıl Devreler (Lojik Devreleri) PLD ler iki gru yrılırlr:. Progrmmle Logic Arry - PLA,. Progrmmle Arry Logic - PAL Progrmlnilir Lojik Dizi (Progrmmle Logic Arry - PLA) PLA lr VE, VEYA gruplrının enek olrk progrmlnildiği elemnlrdır. I I I Bu elemnlrın l ınırlrını elirleyen prmetreleri şunlrdır: Giriş yıı: n Çıkış yıı: m VE kpıı yıı:p Bu tür ir elemn, p çrpımlı n x m PLA olrk dlndırılır. Yndki şekilde kld 5 çrpımlı x4 ir PLA göterilmiştir. -7 Yrd.Doç.Dr. Fez BUZLUCA 4.

11 Syıl Devreler (Lojik Devreleri) Progrmlm: Bğlçlrın girişlerinde "igortlr" (fue) ulunur. PLA'lrın türlerine göre iki türlü progrmlm ypılır: ) Normlde (progrmlmdn önce) tüm ğlntılr vrdır. İtenmeyen ğlntılrı koprmk için ilgili igortlr devre dışı ırkılır. ) Normlde (progrmlmdn önce) hiç ir ğlntı yoktur. İtenen ğlntılrı gerçekleştirmek için ilgili igortlr devreye okulur. Bu işlemleri gerçekleştirmek için özel yzılımlr ve cihzlr vrdır. A B C Örnek: F = A + B' C' F = A C' + A B F = B' C' + A B F = B' C + A AB B'C AC' B'C' x4pla nın iç ğlntılrı, progrmlmdn onr u şekilde oluşur. F F F F -7 Yrd.Doç.Dr. Fez BUZLUCA 4. A Syıl Devreler (Lojik Devreleri) Bit Göterilim: Çizimleri krmşık hle getirmemek için PLA çizimlerinde tüm htlr göterilmez. nun yerine ilgili kpının girişine hngi htlr ğlnck o httın ütüne X konur. Örnek: F = A B + A' B' F = CD' + C' D A B C D AB A'B' CD' C'D AB+A'B' CD'+C'D D -7 Yrd.Doç.Dr. Fez BUZLUCA 4.

12 Syıl Devreler (Lojik Devreleri) Progrmlnilir Dizi Lojiği (Progrmmle Arry Logic - PAL) VE Bğlçlrının girişleri PLA'lrd olduğu gii enek ir içimde progrmlnilir. Anck VEYA ğlçlrının girişleri enek değildir. Her VEYA ğlcının girişine dece elli VE ğlçlrının çıkışlrı ğlıdır. Örneğin ilk VEYA ğlcının girişine dece ilk iki VE ğlcının çıkışlrı geleilir. PAL'ler dh koly progrmlnilirler, dh ucuzdurlr, dh çok elemn içereilirler. -7 Yrd.Doç.Dr. Fez BUZLUCA 4. Syıl Devreler (Lojik Devreleri) Örnek: Aşğıd PAL 6L8 elemnının ir kımı göterilmiştir: -7 Yrd.Doç.Dr. Fez BUZLUCA 4.4

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK .6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK İki uundn potnsiyel frk uygulnmış metl iletkenlerde, serest elektronlr iletkenin yüksek potnsiyeline doğru çekilirler. Elektrik kımını oluşturn, elektronlrın u

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir. 5. KOMBİNEZONSAL LOJİK DEVRE TASARIMI 5.1. Kombinezonsal Devre Tasarımı 1. Problem sözle tanıtılır, 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır, 3. Probleme ilişkin doğruluk tablosu

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 5. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. Birleşik Mantık Tanımı X{x, x, x, x n,}}

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı T.C. MİLLÎ EĞİTİM BKNLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve çıköğretim Kurumlrı Dire Bşknlığı KİTPÇIK TÜRÜ T.C. SĞLIK BKNLIĞI PERSONELİNİN UNVN DEĞİŞİKLİĞİ SINVI 43. GRUP: ELEKTRİK

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

DENEY 3-1 Kodlayıcı Devreler

DENEY 3-1 Kodlayıcı Devreler DENEY 3-1 Kodlayıcı Devreler DENEYİN AMACI 1. Kodlayıcı devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kodlayıcı, bir ya da daha fazla girişi alıp, belirli bir çıkış kodu üreten kombinasyonel bir

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

SAYISAL DEVRELER. Analog - Sayısal (Dijital) İşaretler:

SAYISAL DEVRELER. Analog - Sayısal (Dijital) İşaretler: SYISL DEVRELER Yrd.Doç.Dr. Feza UZLU İstanbul Teknik Üniversitesi ilgisayar Mühendisliği ölümü www.buzluca.info/sayisal. nalog - Sayısal (Dijital) İşaretler: Gerçek dünyada karşılaştığımız bir çok fiziksel

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. İkili Kodlama ve Mantık Devreleri. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ İkili Kodlama ve Mantık Devreleri Özer Çelik Matematik-Bilgisayar Bölümü Kodlama Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.

Detaylı

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ.

III. 6.ELEKTROMOTOR KUVVET VE DOĞRU AKIM DEVRELERİ. 103. 6.ELEKTOMOTO KUVVET VE DOĞU AKM DEVELEİ..6.0l. ELEKTOMOTO KUVVET VE ELEKTİK DEVESİ. Bir iletkende devmlı olrk kım tutilmek için, iletkenin iki uçun potnsiyel frkı uygulnmsı gerekir. Bu potnsiyel frkı

Detaylı

DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ

DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ DA MOTOR SÜRÜCÜLERİ İÇİN BULANIK MANTIK DENETİMİ Yuuf SÖNMEZ* (*) Gzi Üniveritei, Elektrik Eğitimi Bölümü, 06500, Ankr yonmez@gzi.edu.tr ÖZET Günümüzde DA (doğru kım) motorlr endütriyel lnd geniş bir kullnım

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?...

ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?... ENTEGRELER (Integrated Circuits, IC) Entegre nedir, nerelerde kullanılır?... İçerik Düzeni Entegre Tanımı Entegre Seviyeleri Lojik Aileler Datasheet Okuma ENTEGRE TANIMI Entegreler(IC) chip adı da verilen,

Detaylı

SAYISAL ELEKTRONİK BÖLÜM 6 BİRLEŞİK DEVRELER (COMBİNATIONAL)

SAYISAL ELEKTRONİK BÖLÜM 6 BİRLEŞİK DEVRELER (COMBİNATIONAL) ÖLÜM 6 İRLEŞİK EVRELER (OMİNTIONL) 128 6.1 RİTMETİK ÜNİTELER Toplama, çıkarma,çarpma ve bölme gibi aritmetik işlemleri yapan sayısal devrelere aritmetik devreler adı verilir. Sayısal sistemlerde temel

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Bu derste... BİL 201 Birleşimsel Mantık (Combinational Logic) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Birleşimsel Devreler - Çözümlenmesi - Tasarımı Birleşimsel Devre Örnekleri - Yarım Toplayıcı

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

Profil Raporu. Ella Explorer. 2 Aralık 2008 GİZLİ

Profil Raporu. Ella Explorer. 2 Aralık 2008 GİZLİ Profil Rporu Ell Explorer Arlık GİZLİ Profil Rporu Ell Explorer Giriş Arlık Giriş Bu rpor profesyonel yrgı ile kullnılmlıdır. İçerdiği ifdeler; mülktlr, iyogrfik veriler ve diğer değerlendirme sonuçlrı

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat. Nim Çğmn, ncgmn@gop.edu.tr BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren,

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim JOVO STEFNOVSKİ NUM CELKOSKİ Sekizyıllık İlköğretim Syın Öğrenci! u kitp, ders proğrmınd öngörülen ders mlzemesini öğrenmek için yrdımcı olcktır. Vektörler, öteleme ve dönme hkkınd yeni ilginç bilgiler

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI MAK00 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Dersin Adı: MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYG. Dersin Kodu: MAK00 Dersin Türü: Zorunlu Dersin Seviyesi: Lisns 5 Dersin Verildiği Yıl: 6 Dersin Verildiği

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

Kelime (Text) İşleme Algoritmaları

Kelime (Text) İşleme Algoritmaları Kelime (Text) İşleme Algoritmlrı Doç.Dr.Bnu Diri Trie Ağcı Sonek Ağcı (Suffix Tree) Longest Common String (LCS) Minimum Edit Distnce 1 Ağçlrın Bğlı Ypısı Düğüm (node), çeşitli ilgiler ile ifde edilen ir

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi Algoritm Geliştirme ve Veri Ypılrı 4 Algoritm ve Yzılımın Şekilsel Gösterimi Mustf Keml Üniversitesi Algoritm ve Yzılımın Şekilsel Gösterimi Algoritmik progrm tsrımı, verilen ir prolemin ilgisyr ortmınd

Detaylı

VESTEL TERMOSÝFON TRV65M - TRV80M / TRV65E - TRV80E GARANTÝ 2 YIL

VESTEL TERMOSÝFON TRV65M - TRV80M / TRV65E - TRV80E GARANTÝ 2 YIL VESTEL TERMOSÝFON TRV65M - TRV80M / TRV65E - TRV80E GARANTÝ 2 YIL DANIÞMA MERKEZi: Cihzın TC.Gümrük ve Ticret bknlığı ve bknlıkç tespit ve iln edilen kullnım ömrü (cihzın fonksiyonlrını yerine getirebilmesi

Detaylı

Liderlik ve Yönetim Tarzı Raporu

Liderlik ve Yönetim Tarzı Raporu Liderlik ve Yönetim Trzı Rporu Myıs 15 GİZLİ Liderlik ve Yönetim Trzı Rporu Giriş Myıs 15 Giriş LYTR, yönetii seçimi ve yönetim eerileri geliştirme ile ilgili kişilik konulrın odklnır. Bu rpor, profesyonel

Detaylı

LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI

LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI LOJİSTİK OPERASYONDA SÜREÇ İYİLEŞTİRME VE UYGULAMASI Ömer GÜZELDAL ÖZET Bu ildiride, Arlık 2003 trihinde, lojistik şirket için gerçekleştirilen, lojistik opersyon için süreç tsrımı ve iyileştirme çlışmsı

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

ÇOK KATMANLI HABERLEŞME SİSTEMLERİNDE LİNK YEDEKLEME VE KURTARMA YÖNTEMLERİ

ÇOK KATMANLI HABERLEŞME SİSTEMLERİNDE LİNK YEDEKLEME VE KURTARMA YÖNTEMLERİ ÇOK KTMNLI HRLŞM SİSTMLRİN LİNK YKLM V KURTRM YÖNTMLRİ r. Murt Koyunu tılım Üniversitesi, ilgisyr Mühendisliği ölümü, İnek,Gölbşı, nkr mkoyunu@tilim.edu.tr ÖZT ilişim teknolojilerindeki gelişmeler, hem

Detaylı

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü

Mıknatıs mantığında oluşan N S Kutuplaşması kullanılarak N kutbu tarafına S kutbu gelecek vada S kutbu tarafında N kutbu gelecek şekilde akımın yönü 1. DC MOTORLAR Mntık olrk bobin üzerinden geçen kıın sonucund oluşturduğu ğnetik kçklr syesinde oluşturduğu kutuplşyı ileri ve geri yönlü olrk kullnrk yni zıt kutuplrın çekesi vd ynı kutuplrın birbirini

Detaylı

S_IN UZO_IDAL SIKLIK KEST_IR_IM_INDE ONS UZGE CLEMEN_IN CRAMER-RAO ALT SINIRLARINA ETK_IS_I

S_IN UZO_IDAL SIKLIK KEST_IR_IM_INDE ONS UZGE CLEMEN_IN CRAMER-RAO ALT SINIRLARINA ETK_IS_I S_I UZO_IDAL SIKLIK KEST_IR_IM_IDE OS UZGE CLEME_I CRAMER-RAO ALT SIIRLARIA ETK_IS_I Mustf A. Altnky, Bulent Snkur, Emin Anrm Elektrik-Elektronik Muhendisligi Bolumu, Bogzici Universitesi, 8085 Beek _

Detaylı

Z600 Serisi Renkli Jetprinter

Z600 Serisi Renkli Jetprinter Z600 Serisi Renkli Jetprinter Windows için Kullnıcı Kılvuzu Kurulum sorunlrını giderme Genel kurulum sorunlrın çözüm ulmk için denetim listesi. Yzıcıy genel kış Yzıcı prçlrı ve yzılımı hkkınd ilgi lın.

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN00 BİLGİSAYAR PROGRAMLAMA YİNELEME (RECURSION) Sunu Plnı Yinelemenin nlmı Yinelemeli fonksiyon tnımınd temel ve genel durum Bsit değişken tipleriyle yinelemeli fonksiyon oluşturm Dizi prmetreleriyle

Detaylı

VE DEVRELER LOJİK KAPILAR

VE DEVRELER LOJİK KAPILAR ÖLÜM 3 VE DEVELEI LOJIK KPIL VE DEVELE LOJİK KPIL Sayısal devrelerin tasarımında kullanılan temel devre elemanlarına Lojik kapılar adı verilir. ir lojik kapı bir çıkış, bir veya birden fazla giriş hattına

Detaylı

1 İ.T.Ü. Elektrik Elektronik Fakültesi Elektronik Mühendisliği Programı Devreler ve Sistemler Anabilim Dalı

1 İ.T.Ü. Elektrik Elektronik Fakültesi Elektronik Mühendisliği Programı Devreler ve Sistemler Anabilim Dalı DENEY 1 : TTL ve CMOS KAPI KARAKTERİSTİKLERİ Genel Açıklamalar : Bir lojik kapının temel karakteristikleri, tümdevrelere ait giriş/çıkış seviye0/seviye1 gerilim ve akım değerleri, propagasyon gecikme süreleri,

Detaylı

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır?

Mantık ve Muhakeme Soruları. 1. Bir uçağın rüzgara karşı hızı 2A km/s, rüzgar yönündeki hızı ise B km/s ise rüzgarın hızı kaç km/s'dır? Mntık ve 1. Bir uçğın rüzgr krşı hızı 2A km/s, rüzgr yönündeki hızı ise B km/s ise rüzgrın hızı kç km/s'dır? A) (2A B)/2 B) 2A B C) B 2A D) (B 2A)/2 E) (2A + B)/2 2. Bir tord 8 yeşil, 9 mvi, 10 kırmızı

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

Güç Sistemleri Analizi

Güç Sistemleri Analizi İçindekiler Güç Sistemleri Anlizi GİRİŞ.... GÜÇ SİSTEMLERİ İÇİN GEREKLİ OLAN TEMEL ÇALIŞMALAR...4. NOTASYON...6.3 TEK FAZLI EVREE GÜÇ...7.4 ÜÇ FAZLI ENGELİ EVRELERE GÜÇ...9.5 PER-UNİT (BAĞIL) BÜYÜKLÜKLER...9.6

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı