Yaklaşık Düşünme Teorisi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yaklaşık Düşünme Teorisi"

Transkript

1 Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni arasındaki bağlantı bilınemeyebilir ve sadece bazı x değerleri için f fonksiyonunun değerleri bilinebilir. R 1 : If x = x 1 then y = y 1 R 2 : If x = x 2 then y = y 2 : : : : : : R n : If x = x n then y = y n Tanımlanmış olan tüm R kurallarına kural tabanı denilir. Kural tabanı aralığındaki herhangi bir x değeri için y değerinin bulunmasına interpolasyon denilir. Yaklaşık Düşünme Teorisi x büyük ve y küçük gibi dilsel değişkenler olsun. Temel amaç y için belirlenecek üyelik fonksiyonunun veya bulanık kümenin bulunmasıdır. Zadeh aşağıdaki geçiş kurallarını önermiştir: Entailment rule: x = A ise Aysun çok genç A B çok genç genç x = B dir Aysun genç tir Conjunction rule: x = A ise Basınç çok yüksek değil ve x = B ise Basınç çok düşük değil x = A B dir Basınç çok yüksek ve çok düşük değil 1

2 Yaklaşık Düşünme Teorisi Projection rule: (x, y) çok yakın (3,2) x çok yakın 3, y çok yakın 2 dir. Negation rule: not (x = A) x = not A not (x = yüksek) x = not yüksek Mamdani: Bulanık ifade min (ve) operatörüyle ve sonuç max (veya) operatörüyle hesaplanır. Bir kuralın uygulanma seviyesi aşağıdaki gibi alınır: Kural : if x = A 1 ve y = B 1 ise z = C 1 α 2 = A 2 (x 0 ) B 2 (y 0 ) şeklinde olabilir. Herbir kural çıkışı ise C 1 = α 1 *C 1 C 2 = α 2 * C 2 Sistemin komple çıkışı C = C 1 C 2 şeklinde hesaplanır. 2

3 Mamdani (Devam): Tsukamoto: Tüm dilsel ifadeler monotonik üyelik fonksiyonları olarak alınır. Bir kuralın uygulanma seviyesi aşağıdaki gibi alınır: Kural : if x = A 1 ve y = B 1 ise z = C 1 α 2 = A 2 (x 0 ) B 2 (y 0 ) şeklinde olabilir. Herbir kontrol hareketi z 1 ve z 2 şöyle hesaplanır: α 1 = C 1 (z 1 ) α 2 = C 2 (z 2 ) Sistemin komple çıkış hareketi ise z 0 = (α 1 * z 1 + α 2 * z 2 ) / (α 1 + α 2 ) şeklinde hesaplanır. 3

4 Tsukamoto (Devam): z 0 = (0.3 * * 4) / ( ) = 5.3 Sugeno: Bir kuralın uygulanma seviyesi aşağıdaki gibi alınır: Kural : if x = A 1 ve y = B 1 ise z = a 1 x + b 1 y α 2 = A 2 (x 0 ) B 2 (y 0 ) şeklinde olabilir. Herbir kontrol hareketi z 1 ve z 2 şöyle hesaplanır: z 1 = a 1 x 0 + b 1 y 0 z 2 = a 2 x 0 + b 2 y 0 Sistemin komple çıkış hareketi ise z 0 = (α 1 * z 1 + α 2 * z 2 ) / (α 1 + α 2 ) şeklinde hesaplanır. 4

5 Sugeno (Devam): Larsen: Bir kuralın uygulanma seviyesi aşağıdaki gibi alınır: Kural : if x = A 1 ve y = B 1 ise C 1 α 2 = A 2 (x 0 ) B 2 (y 0 ) şeklinde olabilir. Sistemin komple çıkış hareketi ise C(w) = (α 1 * C 1 (w) α 2 * C 2 (w)) şeklinde hesaplanır. 5

6 Larsen (Devam): Yaklaşık Düşünme Teorisi Haftalık Ödev: Bulanık düşünme şemaları kullanılarak yapılmış bir makale bulup elde edilen sonuçları içeren bir rapor hazırlayınız. İncelenen makalede kullanılan bulanık düşünme şemasının kullanılmasının gerekçeleri, uygulamanın sonuçları anlatılacak ve makalenin yazarlarının seçilen şemaya yönelik varsa açıklamaları tartışılacaktır. - İncelenen makale 2000 yılı ve sonrası basım olacaktır. - Makale Türkçe veya İngilizce olabilir. - Hazırlanan rapora makalenin tam metnide eklenecektir. - Hazırlanan rapor ve makalenin tamamı diğer öğrencilerin hepsine e-postayla gönderilecektir. 6

7 Mühendislikte Bulanık Kümelerle Uygulamalar Gelecek Hafta Bulanık Kural Tabanlı Sistemler (Fuzzy Rule Based Systems) 7

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir.

X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. Bulanık İlişkiler X ve Y boş olmayan iki küme olsun. İki küme arasında tanımlanmış olan bir bulanık ilişki R, X x Y nin bir bulanık alt kümesidir. R F(X x Y) Eğer X = Y ise R bir ikilik (binary) bulanık

Detaylı

Bulanık Kural Tabanlı Sistemler

Bulanık Kural Tabanlı Sistemler Üçgen (Triangular) normlar: Üçgen normlar (t-norm) Schweizer ve Sklar tarafından öne sürülmüştür. Herhangi bir a [0,1] aralığı için t-norm T(a, 1) = a şeklinde tanımlanır ve aşağıdaki özellikleri sağlar;

Detaylı

Bulanık Mantık Denetleyiciler

Bulanık Mantık Denetleyiciler Denetim sistemleri genel olarak açık döngülüvekapalı döngülü/geri beslemeli olarak iki tiptir. Açık döngülü denetim sistemlerinde denetim hareketi sistem çıkışından bağımsıdır. Kapalı döngülü sistemlerde

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

DERS 5 : BULANIK MODELLER

DERS 5 : BULANIK MODELLER DERS 5 : BULANIK MODELLER Bulanık girişimli sistem, bulanık küme teorisi, bulanık if-then kuralları ve bulanık mantığına dayalı popüler bir hesaplama yapısıdır. Otomatik kontrol, veri sınıflandırılması,

Detaylı

BULANIK MANTIK DENETLEYİCİLERİ. Bölüm-4 Bulanık Çıkarım

BULANIK MANTIK DENETLEYİCİLERİ. Bölüm-4 Bulanık Çıkarım BULANIK MANTIK DENETLEYİCİLERİ Bölüm-4 Bulanık Çıkarım 1 Bulanık Çıkarım Bölüm 4 : Hedefleri Bulanık kuralların ve bulanık bilgi tabanlarının nasıl oluşturulacağını anlamak. Gerçekte bulanık muhakeme olan

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Bulanık Mantık Denetleyicileri

Bulanık Mantık Denetleyicileri Bulanık Mantık Denetleyicileri Bulanık Çıkarım BULANIK ÇIKARIM İki-değerli mantık Çok-değerli mantık Bulanık mantık Bulanık kurallar Bulanık çıkarım Bulanık anlamlandırma Bulanık Çıkarım İki-değerli mantık

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic)

Bulanık Mantık. Bulanık Mantık (Fuzzy Logic) Bulanık Mantık (Fuzzy Logic) Bulanık mantık, insan düşünmesini ve mantık yürütmesini modellemeye ve karşılaşılan problemlerde ihtiyaç doğrultusunda kullanmayı amaçlar. Bilgisayarlara, insanların özel verileri

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

BLM/COM 436 Bulanık Mantık

BLM/COM 436 Bulanık Mantık BLM/COM 436 Bulanık Mantık Bulanık mantık karar verme problemlerinde kullanılmaktadır. Bu projede ev kredisi çekecek bir kişi için evin özellikleri ve krediyi çekecek kişinin bilgileri kullanılarak bankalar

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

DERS 2 : BULANIK KÜMELER

DERS 2 : BULANIK KÜMELER DERS 2 : BULNIK KÜMELER 2.1 Gİriş Klasik bir küme, kesin sınırlamalarla verilen bir kümedir. Örneğin, klasik bir küme aşağıdaki gibi belirtilebilir: = { x x > 6 }, Kapalı sınır noktası burada 6 dır.burada

Detaylı

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK

MANTIK. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK MANTIK Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ BULANIK MANTIK İÇERİK Temel Kavramlar Bulanık Mantık Bulanık Mantık & Klasik Mantık Bulanık Küme & Klasik Küme Bulanık Sistem Yapısı Öğeleri Uygulama

Detaylı

BULANIK MANTIK MODELİ İLE ZEMİNLERİN SINIFLANDIRILMASI CLASSIFICATION OF THE SOILS USING MAMDANI FUZZY INFERENCE SYSTEM

BULANIK MANTIK MODELİ İLE ZEMİNLERİN SINIFLANDIRILMASI CLASSIFICATION OF THE SOILS USING MAMDANI FUZZY INFERENCE SYSTEM BULANIK MANTIK MODELİ İLE ZEMİNLERİN SINIFLANDIRILMASI CLASSIFICATION OF THE SOILS USING MAMDANI FUZZY INFERENCE SYSTEM Eray Yıldırım 1, Emrah DOĞAN 2, Can Karavul -3, Metin Aşçı -4, Ferhat Özçep -5 Arman

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler ULNIK KÜME ulanık Küme Kavramı Elemanları x olan bir X evrensel (universal küme düșünelim. u elemanların ÌX alt kümesine aitliği, yani bu altkümelerin elemanı olup olmadığı X in {0,1} de olan karakteristik

Detaylı

Enerji İletim Hatlarındaki Kısa Devre Arıza Tiplerinin Bulanık Mantık ile Tespiti

Enerji İletim Hatlarındaki Kısa Devre Arıza Tiplerinin Bulanık Mantık ile Tespiti 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 2011, Elazığ, Turkey Enerji İletim Hatlarındaki Kısa Devre Tiplerinin Bulanık Mantık ile Tespiti M. R. Tür 1, Z. Aydoğmuş 2 1 Mardin

Detaylı

ÖLÇÜLEN ZEMİN PARAMETRELERİNDEN KAYMA DALGA HIZ (V s ) HESABINDA BULANIK MANTIK YAKLAŞIMI

ÖLÇÜLEN ZEMİN PARAMETRELERİNDEN KAYMA DALGA HIZ (V s ) HESABINDA BULANIK MANTIK YAKLAŞIMI ÖZET: ÖLÇÜLEN ZEMİN PARAMETRELERİNDEN KAYMA DALGA HIZ (V s ) HESABINDA BULANIK MANTIK YAKLAŞIMI M. Tün 1 1 Araştırma Görevlisi, Yer ve Uzay Bilimleri Enstitüsü, Anadolu Üniversitesi, Eskişehir Email: mtun@anadolu.edu.tr

Detaylı

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ

DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ DAMITMA KOLONLARININ BULANIK DENETLEYİCİLERLE DENETİMİ Halil Murat Öztürk, H. Levent Akın 2 Sistem ve Kontrol Mühendisliği Bölümü, Boğaziçi Üniversitesi, 885 Bebek, İstanbul 2 Bilgisayar Mühendisliği Bölümü,

Detaylı

SERİ ÇİFT PİMLİ SANDVİÇ KOMPOZİT PLAKALARDAKİ HASAR YÜKÜNÜN YAPAY ZEKÂ TEKNİKLERİ KULLANARAK BULUNMASI

SERİ ÇİFT PİMLİ SANDVİÇ KOMPOZİT PLAKALARDAKİ HASAR YÜKÜNÜN YAPAY ZEKÂ TEKNİKLERİ KULLANARAK BULUNMASI SERİ ÇİFT PİMLİ SANDVİÇ KOMPOZİT PLAKALARDAKİ HASAR YÜKÜNÜN YAPAY ZEKÂ TEKNİKLERİ KULLANARAK BULUNMASI Faruk Şen 1*, Serkan Ballı 2 1, Muğla Sıtkı Koçman Üniversitesi, Teknoloji Fakültesi, Enerji Sistemleri

Detaylı

GÜRÜLTÜ ETKİLERİNİN BULANIK MANTIK TEMELLİ BİR YÖNTEMLE ANALİZİ

GÜRÜLTÜ ETKİLERİNİN BULANIK MANTIK TEMELLİ BİR YÖNTEMLE ANALİZİ Uygulamalı Yerbilimleri Sayı: 2 (Ekim-Kasım 28) 62-75 GÜRÜLTÜ ETKİLERİNİN BULANIK MANTIK TEMELLİ BİR YÖNTEMLE ANALİZİ Analyzing Effects of Noise Level by a Fuzzy Logic Based System Nevcihan DURU 1, Cengiz

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org Electronic Letters on Science & Engineering 3(1) (2007) Available online at www.e-lse.org Fuzzy and Adaptive Neural Fuzzy Control of Compound Pendulum Angle Ahmet Küçüker 1,Mustafa Rüzgar 1 1 Sakarya University,

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4 (2016) 574-580 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Araştırma Makalesi Bulanık Mantık İle Akıllı Fırının Modellenmesi Ebru GÜNDOĞDU a,*, Köksal

Detaylı

GAP (Grup, Algoritma ve Programlama)

GAP (Grup, Algoritma ve Programlama) Orta Doğu Teknik Üniversitesi, Ankara Grup/Temsil Kuramından Kesitler Feza Gürsey Enstitüsü, İstanbul 08 Şubat 2010 GAP ne için kullanılır? Yapılacak ispatların doğruluğunu bazı gruplar üzerinde denemek

Detaylı

Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları

Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları Akıllı Mekatronik Sistemler (MECE 404) Ders Detayları Ders Adı Akıllı Mekatronik Sistemler Ders Kodu MECE 404 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 2 0 2 3 5 Ön Koşul Ders(ler)i

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FM-223 2 / 2.YY 2 2+0+0 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans

Detaylı

Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri

Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri Bulanık Mantık ve DURTES Yönteminde Uygulanması İçin Bir Öneri Rasim TEMUR İstanbul Üniversitesi İnşaat Mühendisliği Bölümü Sunum Programı 1. Giriş 2. Bulanık mantık 3. DURTES yöntemi 4. Uygulama önerileri

Detaylı

Tip-1 Bulanık Sistemlerde Tip-2 Bulanık Girişler

Tip-1 Bulanık Sistemlerde Tip-2 Bulanık Girişler Tip- Bulanık Sistemlerde Tip- Bulanık Girişler Mehmet KARAKÖSE Erhan AKIN Fırat Üniversitesi Bilgisayar Mühendisliği, 39 Elazığ mkarakose@firat.edu.tr eakin@firat.edu.tr Anahtar Sözcükler: Tip- bulanık

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLEMESİ

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLEMESİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2004 : 10 : 3 : 353-358

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ

BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ 1 İpek Nur Erkmen ve 2 Özer Uygun 1 Karabük-Sakarya Ortak Program, Fen Bilimleri Enstitüsü Endüstri Mühendisliği ABD, 2 Sakarya Üniversitesi

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Ders Bilgileri Dersin Hocası: Araş. Gör. Ahmet Ardahanlı E-posta: ahmet.ardahanli@hotmail.com Oda: DZ-33

Detaylı

Bulanık Mantık Kullanarak Hava Savunma Karar Destek Sistemi Tasarımı Air Defence Decision Support System Design Using Fuzzy Logic

Bulanık Mantık Kullanarak Hava Savunma Karar Destek Sistemi Tasarımı Air Defence Decision Support System Design Using Fuzzy Logic Bulanık Mantık Kullanarak Hava Savunma Karar Destek Sistemi Tasarımı Air Defence Decision Support System Design Using Fuzzy Logic Fuat Beser 1, Doğan Adıgüzel 2, Ömür Yıldırım 3, Tülay Yıldırım 4 Elektronik

Detaylı

Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı

Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı Tarım Makinaları Bilimi Dergisi 2005, 1 (1), 63-68 Lastiklerin Çeki Performansı İçin Bulanık Uzman Sistem Tasarımı Kazım ÇARMAN, Ali Yavuz ŞEFLEK S.Ü. Ziraat Fakültesi Tarım Makinaları Bölümü, Konya kcarman@selcuk.edu.tr

Detaylı

Kuantum Fiziği (PHYS 201) Ders Detayları

Kuantum Fiziği (PHYS 201) Ders Detayları Kuantum Fiziği (PHYS 201) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kuantum Fiziği PHYS 201 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i PHYS 102, MATH 158

Detaylı

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ Resul KARA Elektronik ve Bilgisayar Eğitimi Bölümü Teknik Eğitim Fakültesi Abant İzzet Baysal Üniversitesi, 81100,

Detaylı

Yükselen Teknolojiler (SE 426) Ders Detayları

Yükselen Teknolojiler (SE 426) Ders Detayları Yükselen Teknolojiler (SE 426) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yükselen Teknolojiler SE 426 Seçmeli 2 2 0 3 5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ

BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ BOĞAZ KÖPRÜSÜ YOLUNA KATILIM NOKTALARINDA TRAFİK AKIMLARININ BULANIK MANTIK YAKLAŞIMI İLE KONTROLÜ VE BİR UYGULAMA ÖRNEĞİ Vedat TOPUZ 1 Ahmet AKBAŞ 2 Mehmet TEKTAŞ 3 1,2,3 Marmara Üniversitesi, Teknik

Detaylı

Nesne Tabanlı Programlama (COMPE 225) Ders Detayları

Nesne Tabanlı Programlama (COMPE 225) Ders Detayları Nesne Tabanlı Programlama (COMPE 225) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Nesne Tabanlı Programlama COMPE 225 Güz 3 2 0 4 5.5 Ön Koşul Ders(ler)i

Detaylı

BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ

BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ BİR SOĞUTMA GRUBUNDA KOMPRESÖR HIZININ BULANIK MANTIK ALGORİTMA İLE KONTROLÜ Öğr. Gör. Orhan EKREN Ege Üniversitesi Doç. Dr. Serhan KÜÇÜKA Dokuz Eylül Üniversitesi SUNUM İÇERİĞİ ÇALIŞMANIN AMACI DENEY

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 1202

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 1202 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: BİLGİSAYAR PROGRAMLAMA Dersin Orjinal Adı: COMPUTER PROGRAMMING Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: CME

Detaylı

Nesne Tabanlı Programlama (COMPE 225) Ders Detayları

Nesne Tabanlı Programlama (COMPE 225) Ders Detayları Nesne Tabanlı Programlama (COMPE 225) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Nesne Tabanlı Programlama COMPE 225 Güz 3 2 0 4 5.5 Ön Koşul Ders(ler)i

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1 Bölüm 3. Klasik Mantık ve Bulanık Mantık Serhat YILMAZ serhaty@kocaeli.edu.tr 1 Klasik Mantık ve Bulanık Mantık Bulanık kümeler, bulanık mantığa bulanıklık kazandırır. Bulanık kümelerde yürütme işini işleçler

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI),

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI), Yapay Zeka ya giris Yapay sinir aglari ve bulanik mantik Uzay CETIN Université Pierre Marie Curie (Paris VI), Master 2 Recherche, Agents Intelligents, Apprentissage et Décision (AIAD) November 11, 2008

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS MATEMATİK-2 FM-121 1/ 2.YY 5 5+0+0 6 Dersin Dili : Türkçe Dersin Seviyesi : Lisans Dersin

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik II BIL

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik II BIL DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matematik II BIL132 2. 4+0 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Yüz Yüze / Seçmeli Dersin Koordinatörü

Detaylı

FİZ 181 03 FİZ 181 04 FİZ 181 0301 FİZ 181 0401 İNG 111 İNG 112 03 İNG 111 İNG 112 03 FİZ 184 04 FİZ 184 03 BİL 134 03 MZ-4 FİZ 184 04 KİM 151 03

FİZ 181 03 FİZ 181 04 FİZ 181 0301 FİZ 181 0401 İNG 111 İNG 112 03 İNG 111 İNG 112 03 FİZ 184 04 FİZ 184 03 BİL 134 03 MZ-4 FİZ 184 04 KİM 151 03 YAZILIM MÜHENDİSLİĞİ TÜRKÇE BÖLÜMÜ HAFTALIK DERS PROGRAMI 1.SINIF Pazartesi Salı Çarşamba Perşembe Cuma BİL 133 01 BİL 134 01 MAT 181 03 MAT 182 03 MAT 181 04 MAT 182 04 FİZ 181 03 FİZ 181 04 FİZ 181 03

Detaylı

6.Bulanık Sistemler. Kural Tabanı (Bulanık Kurallar) Sayısal Girişler. Sayısal Çıkışlar. Bulanık Sonuç Çıkarma. Serhat YILMAZ

6.Bulanık Sistemler. Kural Tabanı (Bulanık Kurallar) Sayısal Girişler. Sayısal Çıkışlar. Bulanık Sonuç Çıkarma. Serhat YILMAZ 6.Bulanık Sistemler Serhat YILMAZ KOÜ, Mühendislik Fak. Elektronik ve Haberleşme Bölümü Şimdiye kadar gördüğümüz bilgileri birer başlık altında toplayarak bulanık karar verme sürecini gerçekleştirebilecek

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOĞRUSAL VE DOĞRUSAL OLMAYAN SİSTEMLERİN HİYERARŞİK BULANIK KONTROLÜ Serhat SOYLU YÜKSEK LİSANS TEZİ Elektrik-Elektronik Mühendisliği Anabilim Dalı Temmuz-23

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Yrd. Doç. Dr. Mustafa NİL

Yrd. Doç. Dr. Mustafa NİL Yrd. Doç. Dr. Mustafa NİL ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Fırat Üniversitesi Elektrik-Elektronik Mühendisliği Y. Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: STATISTICS. Dersin Kodu: STA 1302

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: STATISTICS. Dersin Kodu: STA 1302 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: İSTATİSTİK Dersin Orjinal Adı: STATISTICS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: STA 0 Dersin Öğretim

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

Termal Sistem Tasarımı (ME 408) Ders Detayları

Termal Sistem Tasarımı (ME 408) Ders Detayları Termal Sistem (ME 408) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Termal Sistem ME 408 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i ME 303, ME 301 Dersin Dili

Detaylı

BİLG Dr. Mustafa T. Babagil 1

BİLG Dr. Mustafa T. Babagil 1 BİLG214 20.10.2009 Dr. Mustafa T. Babagil 1 Yapısal bilgi türlerinin tanımlanması. (C++ daki struct yapısı. ) Daha önce öğrenmiş olduğumuz bilgi tipleri char, int ve float v.b. değişkenler ile dizi (array)

Detaylı

Nesneye Yönelik Programlamaya Giriş (MATH247) Ders Detayları

Nesneye Yönelik Programlamaya Giriş (MATH247) Ders Detayları Nesneye Yönelik Programlamaya Giriş (MATH247) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Nesneye Yönelik Programlamaya Giriş MATH247 Güz 2 2 0 3 6 Ön

Detaylı

İktisada Giriş (TOUR 122) Ders Detayları

İktisada Giriş (TOUR 122) Ders Detayları İktisada Giriş (TOUR 122) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İktisada Giriş TOUR 122 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org Electronic Letters on Science & Engineering 4(2) (2008) Available online at www.e-lse.org Maksimum Doğrultucu Moment Kolu Analizinin Bulanık Mantık ve Sinirsel Bulanık Mantık Kullanılarak Yapılması Ahmet

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: IND 3907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: MATEMATİKSEL MODELLEME ve UYGULAMALARI Dersin Orjinal Adı: MATHEMATICAL MODELING AND APPLICATIONS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans,

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA DİLLERİ BG-324 3/2 3+0+0 3+0 4 Dersin Dili : TÜRKÇE Dersin Seviyesi

Detaylı

FARKLI YÖNLERDEN ALINAN BETON KAROT NUMUNELERİN BASINÇ DAYANIMLARININ ALTERNATİF BİR YÖNTEMLE TAHMİNİ

FARKLI YÖNLERDEN ALINAN BETON KAROT NUMUNELERİN BASINÇ DAYANIMLARININ ALTERNATİF BİR YÖNTEMLE TAHMİNİ 5. Uluslararası İleri Teknolojiler Sempozyumu (İATS 09), 13-15 Mayıs 2009, Karabük, Türkiye FARKLI YÖNLERDEN ALINAN BETON KAROT NUMUNELERİN BASINÇ DAYANIMLARININ ALTERNATİF BİR YÖNTEMLE TAHMİNİ PREDICTION

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Deney 7: Fonksiyon Tanımlama ve Parametre Aktarım Yöntemleri

Deney 7: Fonksiyon Tanımlama ve Parametre Aktarım Yöntemleri Deney 7: Fonksiyon Tanımlama ve Parametre Aktarım Yöntemleri 7.0. Amaç Ve Kapsam Deneyde C dilinde kullanılan fonksiyon tanımlama ve parametre aktarım yöntemleri hakkında bilgi verilecektir. 7.1. Deneyden

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLENMESİ

KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLENMESİ T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLENMESİ Mahmut SİNECEN Yüksek Lisans Tezi DENİZLİ-2002 KLİMA SİSTEM KONTROLÜNÜN BULANIK MANTIK İLE MODELLENMESİ

Detaylı

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI

DEPREM KONUMLARININ BELİRLENMESİNDE BULANIK MANTIK YAKLAŞIMI DEPREM KONUMLRININ BELİRLENMESİNDE BULNIK MNTIK YKLŞIMI Koray BODUR 1 ve Hüseyin GÖKLP 2 ÖZET: 1 Yüksek lisans öğrencisi, Jeofizik Müh. Bölümü, Karadeniz Teknik Üniversitesi, Trabzon 2 Yrd. Doç. Dr., Jeofizik

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

ANTALYA BÖLGESİ DENİZ KAZASI RİSKİNİN BULANIK MANTIK YÖNTEMİ İLE TAHMİNLENMESİ

ANTALYA BÖLGESİ DENİZ KAZASI RİSKİNİN BULANIK MANTIK YÖNTEMİ İLE TAHMİNLENMESİ ANTALYA BÖLGESİ DENİZ KAZASI RİSKİNİN BULANIK MANTIK YÖNTEMİ İLE TAHMİNLENMESİ Yrd.Doç.Dr. Alp KÜÇÜKOSMANOĞLU, Mehmet Akif Ersoy Üniversitesi, Mühendislik-Mimarlık Fakültesi, İnşaat Mühendisliği Bölümü,

Detaylı

DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ

DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DEVLET VEYA ÖZEL OKUL SEÇİMİNDE KARAR VERME SÜRECİ VE MATEMATİKSEL KARAR YÖNETİMİ ÖĞRENCİLER: CİHAN ATLİNAR KAAN YURTTAŞ DANIŞMAN: SERHAT GÖKALP MEV KOLEJİ

Detaylı

k ise bir gerçek sayı olsun. Buna göre aşağıdaki işlemler Matlab da yapılabilir.

k ise bir gerçek sayı olsun. Buna göre aşağıdaki işlemler Matlab da yapılabilir. MATRİS TRANSPOZU: Bir matrisin satırlarını sütun, sütunlarınıda satır yaparak elde edilen matrise transpoz matris denilir. Diğer bir değişle, eğer A matrisi aşağıdaki gibi tanımlandıysa bu matrisin transpoz

Detaylı

Büyük Veri Analitiği (Big Data Analytics)

Büyük Veri Analitiği (Big Data Analytics) Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BULANIK MANTIK İLE GRUP ASANSÖR KONTROL SİSTEMİNİN TASARIMI VE SİMÜLASYONU Zinab N. ALI YÜKSEK LİSANS Bilgisayar Mühendisliği Anabilim Dalı EYLÜL-2011 KONYA

Detaylı

Ders 9 İşlem tanımları. Ders Sorumlusu: Dr. Saadettin Erhan KESEN

Ders 9 İşlem tanımları. Ders Sorumlusu: Dr. Saadettin Erhan KESEN Ders 9 İşlem tanımları Ders Sorumlusu: Dr. Saadettin Erhan KESEN GİRİŞ Önceki derslerde iki önemli sistem bileşeni olan veri akışları ve veri yapıları tanımlandı. Bu derste üçüncü sistem bileşeni olan

Detaylı

HACETTEPE ÜNİVERSİTESİ BİLGİSAYAR ve ÖĞRETİM TEKNOLOJİLERİ EĞİTİMİ BTÖ201- Programlama Dilleri 1 Hazırlayanın; Adı Soyadı Çağdaş KARADEMİR Numarası 20742248 Ders Sorumlusu Hakan Tüzün İçindekiler Problem

Detaylı

Selçuk Üniversitesi, Mühendislik-Mimarlık Fakültesi, Makina Mühendisliği Bölümü* Alaaddin Keykubad Kampüsü, KONYA

Selçuk Üniversitesi, Mühendislik-Mimarlık Fakültesi, Makina Mühendisliği Bölümü* Alaaddin Keykubad Kampüsü, KONYA TAVUK KULUÇKA MAKİNESİNİN BULANIK-PID KONTROLÜ Mustafa TINKIR*, Serkan DOĞANALP**, Mete KALYONCU*, Ümit ÖNEN* Selçuk Üniversitesi, Mühendislik-Mimarlık Fakültesi, Makina Mühendisliği Bölümü* 42079 Alaaddin

Detaylı

Fizik I (Tek ve ki Boyutta Hareket) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

Fizik I (Tek ve ki Boyutta Hareket) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 1 2 3 4 Otomatik Kontrol (Transfer Fonksiyonlar ) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 5 6 Otomatik Kontrol (Transfer Fonksiyonlar ) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu 7 Otomatik Kontrol (Transfer

Detaylı

Veri Yapıları ve Algoritmalar

Veri Yapıları ve Algoritmalar 1 Ders Not Sistemi Vize : % 40 Final : % 60 Kaynaklar Kitap : Veri Yapıları ve Algoritma Temelleri Yazar: Dr. Sefer KURNAZ Internet Konularla ilgili web siteleri 2 Algoritma : «Belirli bir problemin çözümünde

Detaylı

BEDEN EĞİTİMİ I: Haftalık ders 1 saattir (T-0 ) (U-l) (K-0).

BEDEN EĞİTİMİ I: Haftalık ders 1 saattir (T-0 ) (U-l) (K-0). I.SINIF-1.YARIYIL TÜRK DİLİ I : Haftalık ders 2 saattir (T-2 ) (U-0) (K-2). Ders İçeriği; % 10 Dil, Diller ve Türk Dili, % 15 Dil Bilgisi, Sözcük ve Cümle % 25 Kelime Türleri % 25 Anlatım Öğeleri ve Anlatım

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı