FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI"

Transkript

1 FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s p c(t jt jt p t p ae ae b e L t b e b e p t G(j G(j e jφ

2 c(t R G(j si( t Φ c(t Csi( t Φ r R si t r C si(tφ R o C t φ

3 C(j R(j G(j G(j C(j R(j C(j G(j R(j çıkışı si geliği girişi si geliği çıkışı si eğrisi -girişi si BODE (LOGARİMİK DİYAGRAMLARIN ÇİZİMİ GH(j (j N ( K( j a [ ] (ζ / j (/ (j j ( j eğrisi Lm GH(j logk log j log j GH(j a log Arcta N9 Arcta a log j ζ j Arcta ζ/ Arcta / (j Nlog j

4 (i Kazaç K (ii İtegral veya türev çarpaı (j± N (iii Birici derecede gecikme çarpaı (j± r (iv İkici derecede gecikme çarpaı db İtegral ve ürev Çarpaları: (jw± Lm( j log j db ζ j log [ db] (j ± p 4 - Eğim - db/dek GH(j j 4 - GH(j j Eğim - db/dek φ φ (a (b

5 Birici Derecede Çarpalar: (jw± Lm( j log j log [ db] Alçak frekas bölgeside, w<< içi çok küçük w değerleride, Lm( j log [ db] w>> gibi w'ı çok büyük değerleri içi, Lm( j log log log [ db] db - - Asimptot Gerçek eğri Kırılma frekası Asimptot db 4 Asimptot Gerçek eğri Asimptot φ -45 φ

6 İkici Derecede Çarpalar ζ j (j ζ j (j Lm ζ j (j log ζ w<<w gibi çok düşük frekaslar içi log-modül deklemi; -log db halii alır / >> gibi çok yüksek frekaslarda, log-modül deklemi aşağıdaki biçimi alır. Lm ζ j (j log 4log db

7 Modul eğrileri Lm db ζ j (j Boyutsuz frekas değerleri log φ ξ. ξ. ξ.3 ξ.5 ξ.7 ξ ζ ζ / j (j / ζ Arcta ( mod ül log ζ Faz eğrileri φ ξ ξ.7 Boyutsuz frekas değerleri ξ. ξ. ξ.3 ξ.5 / r M r ζ ζ ζ

8 Logaritmik (Bode Diyagramları Çizimide İzleecek Yol Logaritmik eğrileri çizimide aşağıda verile işlem sırası uygulaacak olursa sistematik bir şekilde çözüm kolayca elde edilir. (i İlköce, eğer trasfer foksiyou GH(s olarak verilmiş ise s yerie jw koarak frekas trasfer foksiyou GH(jw elde edilir. Daha sora GH(jw temel çarpalarıa ayrılarak yazılır. (ii Herbir çarpaı kırılma frekası ayrı ayrı buluur. Daha sora bu çarpalara ait asimptod deklemleri elde edilir. (iii Çarpalara ait asimptodlar çizilir ve eğer gerekli ise tam eğriler çizilir. E büyük hata kırılma frekasıda ortaya çıktığıa göre bu değer hesaplaır ve tam eğri çizimde e bde asimptodlara teğet çizilir. (iv Her bir log-modül eğrisi şekil üzeride toplaarak bileşke logmodül eğrisi elde edilir. Buu içi çeşitli kırılma frekasları arasıda toplamalar yapılarak iki oktada bir düz çizgi geçirmek suretiyle bileşke asimtodik eğri buluur. Uygu ilave düzeltmeleri yapılarak daha sora tam eğri elde edilir. (v GH(jw ı faz açısı eğrisi herbir çarpaa ait faz açısı eğrisii toplamak suretiyle elde edilir. (vi Elde edile tüm değerler bir tablo da toplaırsa çizimde kolaylık sağlar.

9 s j Bode Eğrisi Çizimie Örek Uygulama Açık dögü trasfer foksiyou ola sistemi Bode eğrisii çiziiz. ÇÖZÜM: 5(s GH(s s s(.5s 6 s ( 6 5(j GH(jH j j koyarsak j (.5j ( 6 6 elde edilir. Log-modül eğrilerii elde etmek içi yukarıdaki deklemi aşağıdaki şekilde çarpalara ayırabiliriz. LmGH(j Lm5 Lm(j Lm(j Lm(.5j Lm veya / log GH(j log5 log( log j 6 j ( 6 [ ] log (.5 / log (- ( 6 ( 6 /

10 GH(jH 5(j j j j (.5j ( ( 6 6 İfadesii Log-modül ve Faz Açısı Karakteristikleri Çarpa Kırılma frekası kr >> kr içi yaklaşık modül deklemi Log-modül özellikleri Faz açısı özellikleri ablo Yok Yok Sabit ve -4dBlik yatay çızgi Sabit (j- Yok Yok -db/dek eğimde Sabit -9 (.5j-.4 -log.5 << de db >> de-db/dek ile 9 arasıda değişir (j log << de db >> de db/dek ile -9 arasıda değişir de log/6 << 3 de db >> 3 de-4db/dek ile -8 arasıda değişir 3 de -9

11 Modül [db] - -4 Bileşke modül eğrisi log5 -log((.5 / log( / / - log (- ( ( (a Log-Modül eğrileri 9 Φ [ ] -9 ((.5j (j 5 j j ( ( ( Bileşke faz açısı eğrisi -7. (b Faz açısı eğrileri

12 KUUPSAL EĞRİLER GH(j frekas trasfer foksiyou kutupsal eğrisi, kutupsal ekse takımı üzeride, 'ı sıfırda sosuza kadar değişimie bağlı olarak G(j büyüklüğüü faz açısıa karşı çizile eğrisidir. Diğer bir deyişle kutupsal eğri 'ı değişimie bağlı olarak vektörü ucuu çizdiği eğridir [GH(j] GH(j GH(j 3 GH(j GH(j [GH(j]

13 GH(j j Birici Derecede Çarpa: (jw ± Arcta içi GH(j, / içi GH(j/ ve içi GH(j 9, GH(j.5 GH(j

14 GH(j İkici Derecede Çarpa: [z(jw/w(jw/w]±: (<z< ζ(j (j ( (ζ φ ζ Arcta lim GH(j ve lim GH(j -8 (ξ: büyük (ξ: küçük

15 GH(j lim w Kutupsal Eğrileri Geel Biçimleri K( j (j m a ( j ( j ( j GH(j (w ip 3 b L( j m u9 w L( j u - K ip ip ip

16 NYQUIS KARARLILIK ÖLÇÜÜ C(s R(s G(s G(sH(s GH Düzlemi GH Düzlemi - * G(jH(j G(jH(j G(jH(j (a (b G(jH(jı GH düzlemi ve GH düzlemideki kutupsal eğrileri

17 ZNP ZÖzyapısal deklemi, G(sH(s sağ yarı s-düzlemideki sıfırlarıı (dolayısıyla sistemi kutupları sayısı NNyquist eğrisii, G(jwH(jw -j oktası etrafıdaki çevreleme sayısı R - - (a (b

18 BAĞIL KARARLILIK: FAZ VE KAZANÇ PAYLARI Faz payı, g ve kazaç geçiş frekası, w: Faz payı g; w kazaç geçiş frekasıda, sistemi kararsızlık eşiğie getirmek içi gerekli ilave faz gecikmesidir. Kazaç geçiş frekası w, açık dögü trasfer foksiyou şiddetii G(jwH(jw birim değere eşit olduğu yerdeki frekas değeridir. Faz payı, g matematiksel olarak 8 artı kazaç geçiş frekasıdaki faz açısı, G(jwH(jwf olarak taımlaır ve aşağıdaki şekilde formülüze edilir. γ8 G(j wh(jw LmKP Kazaç payı, KP ve faz geçiş frekası, wp: KP kazaç payı, faz açısıı - 8 ye eşit olduğu yerdeki modül değerii tersie eşittir. Faz geçiş frekası, wp ise faz açısıı, G(jwH(jw, -8 'ye eşit olduğu yerdeki frekas değeridir. Bua göre kazaç payı aşağıdaki şekilde ifade edilir. logkp -log G(j π H(j π KP G(j π H(j π

19 Pozitif kazaç payı G düzlemi Negatif faz payı G düzlemi K p γ - Pozitif faz payı G(j γ φ G(j - K p φ Negatif kazaç payı Kararlı sistem (a Karasız sistem G(j (db Pozitif kazaç payı G(j (db Negatif kazaç payı log log - _ G(j G(j Pozitif faz payı log -8-7 Negatif faz payı log Kararlı sistem Kararsız sistem (b

20 Açık dögü frekas trasfer foksiyou UYGULAMA ÖRNEKLERİ GH(j j( j.( j.5 a GH(j ı modül ve faz açısı deklemlerii aşağıdaki şekilde gösterebiliriz. GH(j (. GH(j -9 - Arcta. Arcta.5 (.5 trigoometrik özdeşliğii kullaabiliriz. Sıır değerleri, içi modül sosuz ve faz açısı -9 ve sosuz içi modül faz açısı-7 olur.5 9 -Arcta -. GH(j (.. ArctaAArctaBArcta π A B AB π rad/s olarak buluur (.5..4

21 KP GH(j π KP.4.5 (. (.5 Bu örekte 6 rad/s olarak hesaplamıştır GH(j -9 - Arcta. Arcta.5 GH(j -9 - Arcta. 6 Arcta GH(j (.. π ( G(j π rad/s olarak buluur

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kotrol Sistemleri Tasarımı Frekas Yaıtı Prof. Dr. Bület E. Plati 3 Ağustos 0 Eylül 06 Taım Kararlı bir sistemi siüs girdisie sürekli rejim yaıtı Bu taımda 3 temel boyut bulumaktadır:. Kararlı bir sistem

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi- (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-. Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı bölgei

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Yukarıdaki şekilde, birim geribeslemeli bir kontrol sisteminin ileri yol transfer fonksiyonuna ait, sistemin orijinal çevrim kazancı K = 1 için deneysel olarak elde edilmiş Bode eğrisi verilmiştir. Aşağıdaki

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever

Ders # Otomatik Kontrol. Kök Yer Eğrileri. Prof.Dr.Galip Cansever. Otomatik Kontrol. Prof.Dr.Galip Cansever Ders #-3 Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performasını tahmin etmek ister.

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

KONTROL SİSTEMLERİ. Prof. Dr. İlhan KOCAARSLAN

KONTROL SİSTEMLERİ. Prof. Dr. İlhan KOCAARSLAN KONTROL SİSTEMLERİ Prof. Dr. İlhan KOCAARSLAN 1 Otomatik Kontrol Sistemleri- Benjamin C. Kuo Otomatik Kontrol- İbrahim Yüksel Çözümlü Kontrol Problemleri İbrahim Yüksel Moderne Regelungstechnik- Richard

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini KIRILMALAR Gülük hayatta çok sık rastladığımız ve gözlemlediğimiz bir olaydır kırılma. Bir su kuyusua baktığımız zama kuyuu dibii daha yakıda görürüz. Çay bardağıdaki kaşığı bardak içideyke kırık gibi

Detaylı

ş şşş ş ç ş şş ş ş çş Ç Ğ Ü Ü ş ç ç Ü ç ç ç Ü ç Ş Ü ş ç ş Ü Ş Ü ç ç ş Ş ş Ş Ü ş ş ş ş ş ş ş ş ş ç Ç Ş ş Ş ş ş Ü Ş ş ş ş Ü Ü ş ş Ü ş ş Ö ş ç ş ç Ç ç ç ş ş ç Ğ Ğ ş ç ş Ğ ş ş Ş Ğ ş ş ş ş ş ş ş ç Ç ç Ü ş ç

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz GAMA FONKSİYONU H. Turgay Kaptaoğlu A. Taım Gama foksiyou, < < değerleri içi Euler itegrali dediğimiz Γ( = t e t dt itegrali ile taımlaır. Öce bu ifadei e demek olduğuu alamaya çalışalım. bir gerçel sayı

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Kontrol Sistemlerinin Tasarımı

Kontrol Sistemlerinin Tasarımı Kontrol Sistemlerinin Tasarımı Kök Yer Eğrileri ile Tasarım II PD Denetleyici ve Faz İlerletici Dengeleyici 1 Ardarda (Kaskat) bağlantı kullanılarak geri beslemeli sistemin geçici rejim cevabının iyileştirilmesi

Detaylı

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ 1 ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ Fazör: Zamanla değişen gerilim ve akımın gösterildiği vektörlerdir. Vektör büyüklüğü maksimum değere eşit alınmayıp en çok kullanılan etkin değere eşit alınır.

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

Bağıl hız ve bağıl ivme..

Bağıl hız ve bağıl ivme.. Bağıl hız ve bağıl ivme.. Bağıl hareket, farklı referans sistemlerindeki farklı gözlemciler tarafından hareketlerin nasıl gözlemlendiğini ifade eder. Aynı hızla giden iki otomobilden birisinde bulunan

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

11. SINIF KONU ÖZETLİ SORU BANKASI

11. SINIF KONU ÖZETLİ SORU BANKASI . SINIF MATEMATİK KONU ÖZETLİ SORU BANKASI Mil li Eği tim Ba ka lı ğı Ta lim ve Ter bi ye Ku ru lu Baş ka lı ğı ı 4.8. ta rih ve sa yı lı ka ra rı ile ka bul edi le ve - Öğ re tim Yı lı da iti ba re uy

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi-1 (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-1.1 Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür. 1 TEME DEVEEİN KAMAŞIK SAYIAA ÇÖÜMÜ 1. Direnç Bbin Seri Devresi: (- Seri Devresi Direnç ve bbinin seri bağlı lduğu Şekil 1 deki devreyi alalım. Burada devre gerilimi birbirine dik lan iki bileşene ayrılabilir.

Detaylı

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi

DENEY-4. Transistörlü Yükselteçlerin Frekans Analizi DENEY-4 Transistörlü Yükselteçlerin Frekans Analizi Deneyin Amacı: BJT yapmak. transistörlerle yapılan yükselteçlerin alçak ve yüksek frekans analizlerini Teorinin Özeti: Şimdiye kadar gördüğümüz transistörlü

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh. 129-138 Ocak 2004 CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ (SOLUTION OF HOMEGENEOUS DIFFERANTIAL

Detaylı

İleri leri Kompanzasyon

İleri leri Kompanzasyon İleri leri Kompanzasyon İleri Kompanzasyon (Lead( Compensation) geçici durum tepkisini iyileştirir. Açık k döngd ngü sistemin transfer fonksiyonuna kazanç geçiş frekansında nda (ω( gc ) faz ekler. Kontrol

Detaylı

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 8. Sunum: Değişken Frekanslı Devrelerin Performansı Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Değişken Frekans Tepki Analizi Bu bölümde direnç,

Detaylı

HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisans Tezi Matematik Anabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr.

HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisans Tezi Matematik Anabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr. HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisas Tezi Matematik Aabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr. Arzu AYKUT 2014 Her hakkı saklıdır ATATÜRK ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola

Detaylı

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

SİSTEM ANALİZİ. >> x = [ ; ; ];

SİSTEM ANALİZİ. >> x = [ ; ; ]; SİSTEM ANALİZİ Ders otları yaıda yardımcı referas kayaklar: System Aalysis ad Sigal Processig, 1998, Philip Debigh A Itrductio to Radom Vibratios, Spectral & Wavelet Aalysis, 3 rd ed., 1993 Logma Scietific

Detaylı

u(t) c(t) Kontrol edilen sistem τ! "# $# ξ = 0.2 civarında olacak

u(t) c(t) Kontrol edilen sistem τ! # $# ξ = 0.2 civarında olacak PID Parametrelerii Deeysel Olarak Ayarlaması Edüstriyel uygulamalarda, PID kotrolörler geellikle deeysel olarak ayarlaır. PID kotrolör esek olarak ayarlaabile üç adet parametre orasal kazaç K p, itegral

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_3 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ EĞRİSEL HAREKET: SİLİNDİRİK BİLEŞENLER Bugünün Hedefleri:

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı