Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları"

Transkript

1 Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları Ece Akıllı Université de Genève 12 Eylül 2016 CERN TR E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

2 Akış 1 Makine Ogrenimi 2 Yapay Sinir Aglari 3 Araclar 4 Yapay Sinir Aglari ve Yuksek Enerji Fizigi E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

3 Makine Ogrenimi Makine Ogrenimi Tanim: Bilgisayarlarin bir goreve programlanmadan, veri uzerinden gorevini gerceklestirebilmek icin ne yapacagini cesitli algoritmalar kullanarak ogrenmesi ve gorevini yerine getirebilmesi Farkli makine ogrenimi algoritmalari: Yapay sinir aglari Karar agaclari Ornek: Tenis oynamali miyiz?... E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

4 Makine Ogrenimi Makine Ogrenimi Iki temel ogrenme turu: Gozetimli ogrenme: Etiketlenmis gozlemlerden ogrenme Siniflandirma Ornek: Fotografta gordugumuz bulasik makinesi mi zebra mi? Regresyon (deger tahmini) Ornek: Cenevre de ev kiralari gelecek sene ne kadar olacak? Gozetimsiz ogrenme: Algoritmanin kendi kendine kesifler yaptigi ogrenme Kumeleme Boyut azaltimi E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

5 Yapay Sinir Aglari Yapay Sinir Aglari Insan beyninden esinlenerek gelistirilmistir Yapay sinir aglari insan sinir sisteminin basit calisma seklini model olarak alir E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

6 Yapay Sinir Aglari Yapay Sinir Aglari Gerekli sinir aglari elementleri: Noronlar Noronlardan olusan katmanlar: Girdiler katmani, gizli katman(lari), ciktilar katmani Farkli katmanlarin noronlarini birbirine baglayan degerler Her katmanda fazladan bir noron Algoritmaya bagli olarak cesitli ogrenme parametreleri: Ogrenme hizi,... Gerekli veriler: Ogrenme veri kumesi Test veri kumesi E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

7 Yapay Sinir Aglari Makine ogrenimi genel olarak cok hizli gelisen bir alan Son yillarda Yapay Sinir Aglari, ozellikle de cok gelisti Figure: Yapay Sinir Aglari Figure: E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

8 Yapay Sinir Aglari nin bazi alanlarda Yapay Sinir Aglari ndan cok daha basarili oldugu gozlemlendi son yillarda bircok odul/yarisma kazandi daha kompleks verilerden daha cok bilgi lineer olmayan fonksiyonlar ve baglantilar sayesinde elde edebiliyor E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

9 Yapay Sinir Aglari Gorsel: Luke de Oliveira E. Akıllı (UNIGE) Yapay Sinir Ag ları / 18

10 Yapay Sinir Aglari (Derin) Yapay Sinir Aglari Matematigi Yaygin olarak kullanilan algoritmalardan biri: Feedforward NN, Backpropogation Backpropagation: 1 Feedforward step 2 Backpropogation of errors N : Neural Net x: input t: target a (i) : input received at layer i f (i) (): activation function of layer i W i, b i : NN weights and bias applied to input at layer i a (i+1) : final output delivered to layer i+1 Mapping by N : x N t with the Hypothesis: H(x, N ) N : a (i+1) = f (i) (W i a (i) + b i ) Mapping results in error: E(t, H(x, N )), Goal: Minimize ΣE E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

11 Yapay Sinir Aglari (Derin) Yapay Sinir Aglari Matematigi NN weights are represented by θ t = (W t, b t ) with time steps t, To minimize the error ΣE, apply the update θ t+1 = θ t + θ t, θ t is defined by the training hyperparameters and gradient of Φ Training hyperparameters γ: learning rate, µ: momentum Φ: cost function E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

12 Yapay Sinir Aglari Yapay Sinir Aglari ile Cozulebilecek Problemler ve Yapay Sinir Ağlari nin Kullanim Alanlari Saglik: Klinik teshis, gorsel yorumlama, sinyal yorumlamasi... Finans: Sahtecilik, algoritmik ticaret Pazarlama: Netflix onerileri Spotify onerileri Amazon onerileri Google, Facebook,... Link E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

13 Araclar Araclar Yuksek Enerji Fizigi: Toolkit for Multivariate Data Analysis with ROOT (TMVA) hrefhttp://tmva.sourceforge.net Link Keras Link Theano Link Tensorflow (Google) Link XGBoost Link Scikit-learn (Python) Matlab... E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

14 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Yapay Sinir Aglari ve Yuksek Enerji Fizigi Birkac kullanim/arastirma alani: Fizik analizi Parcacik siniflandirmasi Dedektor Data Science at LHC: E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

15 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Yapay Sinir Aglari ve Yuksek Enerji Fizigi Jet Images: Kalorimetredeki bilgiyi, kamera pixelleri gibi kullanarak Yapay Sinir Aglari kullanan bir parcacik siniflandirma yontemi Ariel Schwartzman et al. E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

16 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Yapay Sinir Aglari ve Yuksek Enerji Fizigi Bir baska parcacik siniflandirma yontemi :Eldeki verileri kullanarak Yapay Sinir Aglari ndan maksimum bilgiyi elde etmeyi beklemek E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

17 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Yapay Sinir Aglari ve Yuksek Enerji Fizigi Liquid Argon Time Projection Chamber, LArTPCs DNN Reconstruction: E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

18 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Terminoloji: Emre Aladag E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

19 Yapay Sinir Aglari ve Yuksek Enerji Fizigi Tesekkurler! E. Akıllı (UNIGE) Yapay Sinir Ağları / 18

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D ĠS L ĠK B ĠL ĠM L E R ĠD E R G ĠS

Detaylı

ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ

ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ S.Ü. Müh.-Mim. Fak. Derg., c.21, s.1-2, 2006 J. Fac.Eng.Arch. Selcuk Univ., v.21, n.1-2, 2006 ÇATI DÖŞEMESİNDE MEYDANA GELEN YOĞUŞMA VE BUHARLAŞMA KÜTLELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ Ömer

Detaylı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı

Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı Yapay Sinir Ağlarına Giriş Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Giriş Neden Yapay Sinir Ağları (YSA) Bazı işler insanlar tarafından kolaylıkla yerine getirilirken mevcut bilgisayarlar

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet htakci@gmail.com http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ Levent AKSOY e-posta: levent@ehb.itu.edu.tr Neslihan Serap ŞENGÖR e-posta: neslihan@ehb.itu.edu.tr Elektronik ve

Detaylı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı Çok Katmanlı Algılayıcılar Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Perceptron Sınıflandırması Perceptronlar sadece doğrusal sınıflandırma yapabilir. 2 Yapay Sinir Ağları ve Uygulamaları

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

MATLAB. Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları

MATLAB. Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları MATLAB Y. Doç. Dr. Aybars UĞUR Yapay Sinir Ağları Ders Notları MATLAB Nedir? MATLAB, Mathworks firmasının geliştirdiği teknik bir programlama dilidir. (www.mathworks.com) MATLAB, teknik hesaplamalar ve

Detaylı

İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü

İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 10-3 (006),447-451 İç Basınç Altında İnce Cidarlı Kabukların Yapay Sinir Ağları ile Çözümü Ömer KELEŞOĞLU, Adem FIRAT Fırat Üniversitesi,

Detaylı

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama Eğitmen: Onur AĞIN 2016 Biz Kimiz? Kuruluş 9Eylül 2013 14 Kişilik bir Takım 11 Ar-Ge Mühendisi 2 Ar-Ge Koordinatörü 1 Müdür Yenilik Prototip

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN YÜKSEK LİSANS TEZİ 2011 BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY

Detaylı

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK

THE ANALYSES OF THIN WALLED TUBES BY USING ARTIFICIAL NEURAL NETWORK Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 6 Sayı 1-2, (2002), 45-54 İNCE CİDARLI ÜP SİSEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ Ömer KELEŞOĞLU *, Adem FIRA ÖZE Bu çalışmada, tüp sistemlerin

Detaylı

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI),

Yapay Zeka ya giris. Yapay sinir aglari ve bulanik mantik. Uzay CETIN. Université Pierre Marie Curie (Paris VI), Yapay Zeka ya giris Yapay sinir aglari ve bulanik mantik Uzay CETIN Université Pierre Marie Curie (Paris VI), Master 2 Recherche, Agents Intelligents, Apprentissage et Décision (AIAD) November 11, 2008

Detaylı

Gelişmişlik Göstergesi Olarak Gece Işıkları: İl Bazında GSYH Tahmini

Gelişmişlik Göstergesi Olarak Gece Işıkları: İl Bazında GSYH Tahmini tepav The Economic Policy Research Foundation of Turkey Gelişmişlik Göstergesi Olarak Gece Işıkları: İl Bazında GSYH Tahmini Seda Başıhoş Ankara Kasım 30, 2016 Gece Işıkları Nedir? Slide 2 Slide 3 Temsili

Detaylı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı

Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı BAÜ Fen Bil. Enst. Dergisi Cilt 13(1) 88-101 (2011) Çok Markalı Servis İstasyonları için Yapay Sinir Ağları ile Görüntü Tabanlı Araç Marka ve Modeli Tanıma Yazılımı Gürkan TUNA 1 Trakya Üniversitesi, Edirne

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Boğaziçi Üniversitesi, TETAM, Kandilli, İstanbul Konu ve Kapsam Bu yaz okulunda veri bilim ve yapay öğrenme alanında

Detaylı

BIL684 Nöron Ağları Dönem Projesi

BIL684 Nöron Ağları Dönem Projesi BIL684 Nöron Ağları Dönem Projesi SNNS Uygulama Parametrelerinin bir Örnek Aracılığı ile İncelenmesi Kerem ERZURUMLU A0064552 Bu rapor ile Bil684 Nöron Ağları dersi kapsamında gerçekleştirilmiş olan SNNS

Detaylı

Örüntü Tanıma (EE 448) Ders Detayları

Örüntü Tanıma (EE 448) Ders Detayları Örüntü Tanıma (EE 448) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma EE 448 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI

GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI Esra HASALTIN 1 Erkan BEŞDOK 2 1 Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi, Erciyes Üniversitesi, 3839, Talas, Kayseri 2 Bilgisayar Anabilim

Detaylı

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR Yazılım Tanımlı Ağların Güvenliğinde Yapay Zeka Tabanlı Çözümler: Ön İnceleme Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR İzmir Katip Çelebi Üniversitesi, Muğla Sıtkı Koçman Üniversitesi, Ege

Detaylı

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 211, Elazığ, Turkey Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini S. Yıldız 1, Y. Bölükbaş

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 3 Doç. Dr. Yuriy Mishchenko BÜYÜK VERI ÇERÇEVESI Mevcut, genel biçim ve çeşitli veriler Bir genel veri modelleme yaklaşımı SAKLI İLİŞKİLER İş kararları MAKİNE ÖĞRENME 2 BÜYÜK

Detaylı

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.4, No., January 202 46 Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini Hüseyin Ceylan ve Murat Avan Kırıkkale

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ U. Özveren 2, S. Dinçer 1 1 Yıldız Teknik Üniversitesi, Kimya Müh. Bölümü, Davutpaşa Kampüsü, 34210 Esenler / İstanbul e-posta: dincer@yildiz.edu.tr

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ.

ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ. ROBOTLARIN YAPAY SİNİR AĞLARI KULLANILARAK DENETİMİ Murat ŞEKER 1 Ahmet BERKAY 1 EMurat ESİN 1 ArşGör,Gebze Yüksek Teknoloji Enstitüsü, Bilgisayar MühBöl 41400 Gebze mseker@bilmuhgyteedutr aberkay@bilmuhgyteedutr,

Detaylı

MAKİNE ÖĞRENMESİ NİN EKONOMİ ARAŞTIRMALARINDA KULLANIMI

MAKİNE ÖĞRENMESİ NİN EKONOMİ ARAŞTIRMALARINDA KULLANIMI MAKİNE ÖĞRENMESİ NİN EKONOMİ ARAŞTIRMALARINDA KULLANIMI Bige Küçükefe 1 MACHINE LEARNING STUDIES IN ECONOMICS Öz Günümüzde daha büyük veri setleri, standart doğrusal modele göre daha karmaşık ilişkilerin

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

NETWORK BÖLÜM-5 OSI KATMANLARI. Öğr. Gör. MEHMET CAN HANAYLI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU 1/27

NETWORK BÖLÜM-5 OSI KATMANLARI. Öğr. Gör. MEHMET CAN HANAYLI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU 1/27 NETWORK BÖLÜM- OSI KATMANLARI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU Öğr. Gör. MEHMET CAN HANAYLI / OSI Modeli İletişimin genel modeli OSI referans modeli OSI modeli ile TCP/IP modelinin karşılaştırılması

Detaylı

YAPAY SĠNĠR AĞLARI ĠLE KOCAELĠ ĠLĠNĠN PUANT YÜK TAHMĠNĠ. Oya DEMİRER Demet ÖZDEMİR Melih İNAL

YAPAY SĠNĠR AĞLARI ĠLE KOCAELĠ ĠLĠNĠN PUANT YÜK TAHMĠNĠ. Oya DEMİRER Demet ÖZDEMİR Melih İNAL YAPAY SĠNĠR AĞLARI ĠLE KOCAELĠ ĠLĠNĠN PUANT YÜK TAHMĠNĠ Oya DEMİRER Demet ÖZDEMİR Melih İNAL Kocaeli Ü. Müh.Fak. Elektrik Müh.Bl.MSB İzmit İnşaat BaşkanlığıKocaeli Ü.Tek.Fak.Elektronik Eğ. odemirer@hotmail.com

Detaylı

Yapay Sinir Ağları. YZM 3226 Makine Öğrenmesi

Yapay Sinir Ağları. YZM 3226 Makine Öğrenmesi Yapay Sinir Ağları YZM 3226 Makine Öğrenmesi Outline Yapay Sinir Ağları Tanımı Tarihçe Neden YSA kullanırız? YSA uygulamaları Temel YSA modelleri Paradigms of Machine Learning Rule Induction Neural Network

Detaylı

ISSN : Isparta-Turkey YAPAY SĠNĠR AĞLARI (YSA) YÖNTEMĠ ĠLE GLOBAL RADYASYON TAHMĠNĠ

ISSN : Isparta-Turkey YAPAY SĠNĠR AĞLARI (YSA) YÖNTEMĠ ĠLE GLOBAL RADYASYON TAHMĠNĠ ISSN:1306-3111 e-journal o New World Sciences Academy 2011, Volume: 6, Number: 2, Article Number: 1A0174 Kadir Günoğlu ENGINEERING SCIENCES Betül Mavi Received: November 2010 Ġskender Akkurt Accepted:

Detaylı

İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ

İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ İSTATİKSEL NORMALİZASYON TEKNİKLERİNİN YAPAY SİNİR AĞIN PERFORMANSINA ETKİSİ Selahattin YAVUZ * Muhammet DEVECİ ** ÖZ Son yıllarda, yapay sinir ağları pek çok alanda uygulanan ve üzerinde en çok araştırma

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı HAFTA IV Elbistan Meslek Yüksek Okulu 2016 2017 Güz Yarıyılı Open System Interconnection (OSI) OSI modeli sıradüzensel 7 katmandan oluşur. OSI modeli hala geliştirilmekte olmasına rağmen satıcılar ve standart

Detaylı

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. SINIF 2 Ocak Pazartesi 3 Ocak Salı 4 Ocak Çarşamba 5 Ocak Perşembe 6 Ocak Cuma Bilgisayar Mühendisliğine Giriş Fransızca I Sınıf: 118-222 Kimya I Sınıf: 118-231-314 BİLGİSAYAR

Detaylı

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12

Ali Gülbağ et al / Elec Lett Sci Eng 1 (1) (2005) 07-12 Electronic Letters on Science & Engineering () (2005) Available online at www.e-lse.org A Study on Binary Gas Mixture Ali Gülbağ, Uğur Erkin Kocamaz, Kader Uzun Sakarya University, Department of Computer

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR YAPAY SĐNĐR AĞLARI BĐYOLOJĐK SĐNĐR SĐSTEMĐ Biyolojik sinir sistemi, merkezinde sürekli olarak bilgiyi alan, yorumlayan ve uygun bir karar üreten beynin (merkezi sinir ağı) bulunduğu 3 katmanlı bir sistem

Detaylı

Elbistan Meslek Yüksek Okulu Güz Yarıyılı EKi Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU

Elbistan Meslek Yüksek Okulu Güz Yarıyılı EKi Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU Elbistan Meslek Yüksek Okulu 2015 2016 Güz Yarıyılı 22-23 EKi. 2015 Salı, Perşembe Öğr. Gör. Murat KEÇECĠOĞLU OSI modeli sıradüzensel 7 katmandan oluşur. OSI modeli hala geliştirilmekte olmasına rağmen

Detaylı

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN

BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN 42 BİR TERMİK ELEKTRİK SANTRALİNDE YAPAY SİNİR AĞLARI KONTROLÖRÜN ETKİLERİNİN İNCELENMESİ Murat LÜY 1, İlhan KOCAARSLAN 2, Ertuğrul ÇAM 3 Electrical & Electronics Engineering Department, Kirikkale University,

Detaylı

Derin Öğrenme Yöntemleri ile Bilgisayar Ağlarında Güvenliğe Yönelik Anormallik Tespiti. R. Can AYGÜN Danışman: Doç. Dr. A.

Derin Öğrenme Yöntemleri ile Bilgisayar Ağlarında Güvenliğe Yönelik Anormallik Tespiti. R. Can AYGÜN Danışman: Doç. Dr. A. Derin Öğrenme Yöntemleri ile Bilgisayar Ağlarında Güvenliğe Yönelik Anormallik Tespiti R. Can AYGÜN Danışman: Doç. Dr. A. Gökhan YAVUZ Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü Akıllı Sistemler

Detaylı

DERİN ÖĞRENME SONGÜL TORANOĞLU

DERİN ÖĞRENME SONGÜL TORANOĞLU DERİN ÖĞRENME SONGÜL TORANOĞLU 201420404014 DERİN ÖĞRENME Endüstri ve akademik çevrelerdeki veri bilimciler görüntü sınıflandırma, video analizi, konuşma tanıma ve doğal dil öğrenme süreci dahil olmak

Detaylı

Matematiksel Optimizasyon ve Yapay Öğrenme

Matematiksel Optimizasyon ve Yapay Öğrenme Matematiksel Optimizasyon ve Yapay Öğrenme İlker Birbil Sabancı Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Endüstri Mühendisliği Programı Veri Bilimi İstanbul Buluşma 14 Şubat, 2017 Optimizasyon

Detaylı

ÇOK KATMANLI PERSEPTRON SİNİR AĞLARI İLE DİYABET HASTALIĞININ TEŞHİSİ

ÇOK KATMANLI PERSEPTRON SİNİR AĞLARI İLE DİYABET HASTALIĞININ TEŞHİSİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 21, No 2, 319-326, 26 Vol 21, No 2, 319-326, 26 ÇOK KATMANLI PERSEPTRON SİNİR AĞLARI İLE DİYABET HASTALIĞININ TEŞHİSİ İnan GÜLER ve Elif

Detaylı

Kızılberisi Algılayıcılarla Yapay Sinir Ağlarına Dayalı Hedef Ayırdetme

Kızılberisi Algılayıcılarla Yapay Sinir Ağlarına Dayalı Hedef Ayırdetme Kızılberisi Algılayıcılarla Yapay Sinir Ağlarına Dayalı Hedef Ayırdetme Tayfun Aytaç ve Billur Barshan Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi,, Bilkent, Ankara {taytac,billur}@ee.bilkent.edu.tr

Detaylı

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri Alkın Küçükbayrak alkin@superonline.com Beyin ve Yapay Zeka III - Beyin Simulatörleri Bundan önceki yazımızda Yapay Sinir Ağları konusunu örneklerle incelemiştik. İstatistiksel yöntemler kullanılarak yapılan

Detaylı

İçindekiler: CERN Globe Binası ve Micro Cosmos Müzesi

İçindekiler: CERN Globe Binası ve Micro Cosmos Müzesi Sayı 5 / Ağutos 2017 İSTANBUL AYDIN ÜNİVERSİTESİ İleri Araştırmalar Uygulama ve Araştırma Merkezi İçindekiler: CERN / CMS Deneyi Ziyareti...2 CMS Veri Alımı ve Analiz Çalışmaları... 3 LHCb Yeni Baryon

Detaylı

AKILLI TATIL PLANLAMA SISTEMI

AKILLI TATIL PLANLAMA SISTEMI AKILLI TATIL PLANLAMA SISTEMI Istanbul Teknik Üniversitesi Bilgisayar ve Bilişim Fakültesi Bitirme Ödevi Ali Mert Taşkın taskinal@itu.edu.tr Doç. Dr. Feza Buzluca buzluca@itu.edu.tr Ocak 2017 İçerik Giriş

Detaylı

Isı Transferinde Isı Kayıplarının Yapay Sinir Ağları Yöntemi ile İncelenmesi

Isı Transferinde Isı Kayıplarının Yapay Sinir Ağları Yöntemi ile İncelenmesi Araştırma Makalesi / Research Article Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 7(2): 93-105, 2017 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır University Journal

Detaylı

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve YAPAY SİNİRAĞLARI İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve gizemli harikalarından biridir. İnsan

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI

ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI ZAMAN SERİSİ ANALİZİNDE MLP YAPAY SİNİR AĞLARI VE ARIMA MODELİNİN KARŞILAŞTIRILMASI Oğuz KAYNAR * Serkan TAŞTAN ** ÖZ Bu çalışmada zaman serisi analizinde yaygın olarak kullanılan Box-Jenkis modelleri

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2015 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

DENEYSEL SONUÇLARIN ANALİZİNDE YAPAY SİNİR AĞLARI KULLANIMI VE BETON DAYANIM TESTİ İÇİN BİR UYGULAMA

DENEYSEL SONUÇLARIN ANALİZİNDE YAPAY SİNİR AĞLARI KULLANIMI VE BETON DAYANIM TESTİ İÇİN BİR UYGULAMA DENEYSEL SONUÇLARIN ANALİZİNDE YAPAY SİNİR AĞLARI KULLANIMI VE BETON DAYANIM TESTİ İÇİN BİR UYGULAMA Özlem HASGÜL Balıkesir Üniversitesi A. Sermet ANAGÜN Osmangazi Üniversitesi Özet Üretim sistemlerinde

Detaylı

YAPAY SĠNĠR AĞI GERĠ YAYINIM ALGORĠTMASI KULLANILARAK RÜZGÂR HIZI TAHMĠNĠ

YAPAY SĠNĠR AĞI GERĠ YAYINIM ALGORĠTMASI KULLANILARAK RÜZGÂR HIZI TAHMĠNĠ YAPAY SĠNĠR AĞI GERĠ YAYINIM ALGORĠTMASI KULLANILARAK RÜZGÂR HIZI TAHMĠNĠ Yalçın Kaplan 1 Umut Saray 2 Cem Emeksiz 3 Yakup Osman YeĢilnacar 4 Sadık Önal 5 Volkan Karaca 6 1) Sahil Güvenlik Komutanlığı,

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayar Ağları II BIL306 6 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayar Ağları II BIL306 6 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bilgisayar Ağları II BIL306 6 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ

bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ bitık MOBİL TİCARET UYGULAMASI ABDULLAH ÇİÇEKCİ - 150110046 İÇERİK Uygulama ve uygulamaya ilişkin temel kavramların tanıtımı Uygulamanın yapısı Ön yüz Veritabanı Web Servisler K-Means Algoritması ile kategori

Detaylı

Yazılım Efor Tahmininde Farklı Bir Yaklaşım: Sınır Değerlerine Göre Tahmin

Yazılım Efor Tahmininde Farklı Bir Yaklaşım: Sınır Değerlerine Göre Tahmin Yazılım Efor Tahmininde Farklı Bir Yaklaşım: Sınır Değerlerine Göre Tahmin Ömer Faruk Saraç 1, Nevcihan Duru 2 1 Bank Asya Katılım Bankası, İstanbul 2 Kocaeli Üniversitesi Bilgisayar Mühendisliği, Kocaeli

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ APPROXIMATION AIR TEMPERATURE WITH ARTIFICIAL NEURAL NETWORK

YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ APPROXIMATION AIR TEMPERATURE WITH ARTIFICIAL NEURAL NETWORK YAPAY SİNİR AĞI İLE HAVA SICAKLIĞI TAHMİNİ Hande ERKAYMAZ, Ömer YAŞAR Karabük Üniversitesi / TÜRKĠYE herkaymaz@karabuk.edu.tr ÖZET : Bu çalıģmada Yapay Sinir Ağları (YSA) ile hava sıcaklığının tahmini

Detaylı

Bilgisayar Programcılığı

Bilgisayar Programcılığı Bilgisayar Programcılığı Uzaktan Eğitim Programı e-bġlg 121 AĞ TEKNOLOJĠLERĠNĠN TEMELLERĠ Öğr. Gör. Bekir Güler E-mail: bguler@fatih.edu.tr Hafta 5: Ağ (Network) katmanı I 4. 1 Giriş 4.2 Sanal devre (virtual

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2017 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Temsil Öğrenme için Bongard Problemleri Bongard Problems for Representation Learning

Temsil Öğrenme için Bongard Problemleri Bongard Problems for Representation Learning Temsil Öğrenme için Bongard Problemleri Bongard Problems for Representation Learning Mehmet Fatih Amasyali 1 1 Bilgisayar Mühendisliği Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Türkiye mfatih@ce.yildiz.edu.tr

Detaylı

Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods)

Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods) YBS Ansiklopedi www.ybsansiklopedi.com Cilt 4, Sayı 2,Haziran 2017 Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods) Amine YEŞİLYURT 1 Şadi Evren

Detaylı

İZMİR 60. YIL ANADOLU LİSESİ CERN GEZİSİ

İZMİR 60. YIL ANADOLU LİSESİ CERN GEZİSİ İZMİR 60. YIL ANADOLU LİSESİ CERN GEZİSİ İZMİR 60.YIL ANADOLU LİSESİ olarak 20-26 Kasım 2016 tarihleri arasında Fizik öğretmenlerimiz Ümit OFLAZ, Nihal ŞENYÜZ, Md. Yardımcımız Muzaffer TAYLAN ve Okul

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayar Ağları I BIL305 5 3+2 4 6

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Bilgisayar Ağları I BIL305 5 3+2 4 6 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bilgisayar Ağları I BIL305 5 3+2 4 6 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi

Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi Proje Yöneticisi: Doç.Dr. Cihan KARAKUZU Proje Adı : MATLAB Real-Time Windows Target toolbox kullanımı ve ilişkili bir uygulama geliştirilmesi MATLAB Real-Time Windows Target toolbox kullanımının basit

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK

YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ MODELLING OF THE TRIP GENERATION WITH ARTIFICIAL NEURAL NETWORK YOLCULUK YARATIMININ YAPAY SİNİR AĞLARI İLE MODELLENMESİ * Nuran BAĞIRGAN 1, Muhammet Mahir YENİCE 2 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Kütahya, nbagirgan@dumlupinar.edu.tr

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Bilgisayar Mühendisliği Anabilim Dalı Hüseyin ÖZÇINAR Danışman: Yard.

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2016 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Adjusting Transient Attributes of Outdoor Images using Generative Adversarial Networks Levent Karacan, Aykut Erdem,

Detaylı

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants) BSM-767 MAKİNE ÖĞRENMESİ Doğrusal Ayırıcılar (Linear Discriminants) Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Perceptron Perceptron, bir giriş kümesinin ağırlıklandırılmış

Detaylı

A NEW MODEL FOR DETERMINING THE THERMODYNAMIC PROPERTIES OF LiBr-H 2 O SOLUTION

A NEW MODEL FOR DETERMINING THE THERMODYNAMIC PROPERTIES OF LiBr-H 2 O SOLUTION ISSN 303-9709 G.U. Journal of Science 7():0-0, 2004 A NEW MODEL FOR DETERMINING THE THERMODYNAMIC PROPERTIES OF LiBr-H 2 O SOLUTION Arzu ŞENCAN *, Ali Kemal YAKUT, Erkan DİKMEN Süleyman Demirel Üniversitesi,

Detaylı

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular Önsöz Giriş İçindekiler V VII IX 1.1. Algoritma 1.1.1. Algoritma Nasıl Hazırlanır? 1.1.2. Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular 2.1. Programın Akış Yönü 19 2.2. Başlama

Detaylı

TTP2 (TUOP?) Tartışma, Soru, Cevap

TTP2 (TUOP?) Tartışma, Soru, Cevap (TUOP?) Tartışma, Soru, Cevap Saime GURBUZ Bogazici Universitesi BL4S Teknik Koordinator 1 Icerik - Turkiye'de bilimin gelismeme gerekceleri - Turkiye'de bilim ne durumda? (UNESCO) - Haber arası - Reklamlar!

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

Robotus ile Robotik Eğitimi

Robotus ile Robotik Eğitimi Robotik eğitimlerimizde amaç öğrencilerinizin robotiğe ilgilerini uyandırmak ve bilime yönelik çalışmalarını arttırmaktadır. Robotus ile Robotik Eğitimi www.robotus.net 2013 1 Robotus ile Robotik Eğitimi

Detaylı

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ ELECTRICAL PEAK LOAD FORECASTING IN KÜTAHYA WITH ARTIFICIAL NEURAL NETWORKS. Y. ASLAN * & C. YAŞAR * & A. NALBANT * * Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi Dumlupınar Üniversitesi,

Detaylı

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ

127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ 127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi

Detaylı

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Özlem Özgöbek ozlem.ozgobek@ege.edu.tr Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İZMİR Sunum Planı - Giriş - Benzer

Detaylı