Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği"

Transkript

1 Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği

2 Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar

3 Temel Kavramlar Algoritma: Bir problemin çözümüne yönelik işlem basamaklarının sıralı olarak ifade edilmesidir. Program: Probleme ilişkin çözümlerin, herhangi bir programlama dili kullanarak, bilgisayarın anlayacağı komutlar dizisi şeklinde yazılmasına program, bilgisayarda kullanılan programların genel adına da yazılım denir. 3

4 Algoritma Analizi Algoritma, sistem kaynaklarının (çalışma süresi, bellek tüketimi vb.) önemli olduğu durumlarda etkili bir şekilde geliştirilmelidir. Bir problemin çözümünde kullanılabilecek algoritmalardan en etkin olanı seçilmelidir. eden Algoritmayı Analiz Ederiz? Algoritmanın performansını ölçmek için Daha iyisi mümkün mü? Farklı algoritmalarla karşılaştırmak için 4

5 Algoritma Analizi Zaman Karmaşıklığı: Problemi çözmek için algoritmanın harcadığı zamanın analizi Belirli bir giriş verisine karşılık yapılan karşılaştırma, atama, toplama, çıkarma vb. işlemlerin sayısı üzerinden hesaplanır. Yer karmaşıklığı: Gerekli belleğin analizi Kullanılan veri yapılarıyla ilgilidir. 5

6 Algoritmaların Analizi Bir algoritmanın çalışma süresini analiz etmek için o programın kaç adımda bittiğini (yürütme süresi) belirleriz. Özyinelemeli algoritmaların analizi farklı yapılır. Eğer analiz edilecek program (ya da fonksiyon) kendi kendini çağırıyorsa bu programa özyinelemeli program denir. 6

7 Örnek I: Dizideki sayıların toplamını bulma int Topla(int A[], int ) { int toplam = 0; Bu fonksiyonun yürütme zamanı ne kadardır? for (i=0; i < ; i++){ toplam += A[i]; } //Bitti-for return toplam; } //Bitti-Topla 7

8 Örnek I: Dizideki sayıların toplamını bulma İşlem int Topla(int A[], int ) { int topla = 0; sayısı 1 for (i=0; i < ; i++){ topla += A[i]; } //Bitti-for return topla; } //Bitti-Topla Toplam: = + Çalışma zamanı: T() = + = O() dizideki eleman sayısı Giriş verisi 8

9 Örnek II: Dizideki bir elemanın aranması int Arama(int A[], int, int sayi) { int i = 0; while (i < ){ if (A[i] == sayi) break; i++; } //bitti-while if (i < ) return i; else return -1; } //bitti-arama İşlem sayısı Toplam: 1+3*+1+1 = 3+3 O() 9

10 Örnek II: Dizideki bir elemanın aranması En iyi çalışma zamanı nedir? Döngü sadece bir kez çalıştı=>t(n) = 6 Ortalama(beklenen) çalışma zamanı nedir? Döngü / kez çalıştı =>T(n)=3*n/+3 = 1.5n+3 En kötü çalışma zamanı nedir? Döngü kez çalıştı =>T(n) = 3n+3 10

11 Algoritmaların en kötü durum analizi Bir algoritmanın sadece E KÖTÜ durumdaki çalışma zamanına bakılır. eden? En kötü durum çalışma zamanında bir üst sınırdır ve o algoritma için verilen durumdan daha uzun sürmeyeceği garantisi verir. Bazı algoritmalar için en kötü durum oldukça sık rastlanır. Arama algoritmasında, aranan öğe genellikle dizide olmaz dolayısıyla döngü kez çalışır. Ortalama çalışma zamanı genellikle en kötü çalışma zamanı kadardır. Arama algoritması için hem ortalama hem de en kötü çalışma zamanı doğrusal fonksiyondur. 11

12 Yürütme Zamanından Big O Hesabı T ( ) An Bn C Algoritmanın karmaşıklığı T() yukarıdaki gibi hesaplanmış olsun. Bu algoritmanın Big-O notasyonuna göre karmaşıklığını hesaplayınız? An n Bn n C n 1

13 Yürütme Zamanından Big O Hesabı T ( ) An Bn C Çözüm: Eşitliğin sağ tarafı n ye bölünür. An n Bn n C n Burada n giderken ikinci ve üçüncü terim sıfıra yaklaşır. İlk terim yani A sabit olarak kalır. A B n C n Öyleyse karmaşıklık: O( ) 13

14 Örnek III: İç içe döngüler for (i=1; i<=; i++){ for (j=1; j<=; j++){ printf( Foo\n ); } //bitti-içteki for } //bitti-dıştaki for Prinf fonksiyonu kaç kez çalıştırıldı? Veya Foo yazısı ekrana kaç kez yazılır? T( ) 1 * i1 j1 i1 14

15 Örnek IV: İç içe döngüler T() nedir? toplam = 0; for(int i =1; i<=; i++) toplam += i*i; for(int k =1; k<=; k++) for(int j =1; j<=; j++) toplam++; T( ) 1 1 * i1 k1 j1 15

16 Örnek V: Matris Çarpımı /* İki boyutlu dizi A, B, C. Hesapla C = A*B */ for (i=0; i<; i++) { for (j=0; j<; j++) { C[i][j] = 0; for (int k=0; k<; k++){ C[i][j] += A[i][k]*B[k][j]; } //bitti-en içteki for } //bitti-içteki for } //bitti-dıştaki for T( ) 1 1 (1 1 1) 3 i0 j0 k0 16

17 Örnek VI: İkili Arama Problem: Sıralı bir dizi veriliyor ve bir sayıyı arıyorsunuz. Doğrusal arama T(n) = 3n+ (En kötü durum) Daha iyisi yapılabilir mi? Ö.g. Aşağıdaki sıralı dizide 55 sayısını arayalım

18 Örnek VI: İkili Arama Dizi sıralanmış olduğundan, dizinin ortasında bulunan sayı ile aranan sayıyı karşılaştırarak arama boyutunu yarıya düşürülür ve bu şekilde devam edilir. Örnek: 55 i arayalım sol orta ( sol sağ) sağ sol orta sağ Elendi 18

19 İkili arama (devam) Elendi sol orta Elendi orta 55 i bulduk Başarılı arama 57 yi aradığımızda, bir sonraki işlemde başarısız bir şekilde sonlanacak. 19

20 İkili Arama (devam) < hedef? > hedef sol sağ Hedefi ararken herhangi bir aşamada, arama alanımızı sağ ile sol arasındaki alana kısıtlamış oluyoruz. sol un solunda kalan alan hedeften küçüktür ve bu alan arama alanından çıkarılır. sağ ın sagında kalan alan hedeften büyüktür ve bu alan arama alanından çıkarılır. 0

21 İkili Arama - Algoritma // Aranan sayının indeksini döndürür aranan sayı bulunamazsa -1 döndürür. int ikiliarama(int A[], int, int sayi){ sol = 0; sag = -1; while (sol <= sag){ int orta = (sol+sag)/; // Test edilecek sayının indeksi if (A[orta] == sayi) return orta; // Aranan sayı bulundu. İndeksi döndür else if (sayi < A[orta]) sag = orta 1; // Sağ tarafı ele else sol = orta+1; // Sol tarafı ele } //bitti-while return 1; // Aranan sayı bulunamadı } //bitti-ikiliarama En kötü çalışma zamanı: T(n) = 3 + 5*log. eden? 1

22 Örnek VII: Logaritma int basamak_sayisi(int ){ int i, sayi = 1; while( > 1){ sayi++; = / ; } } O(log) 1 k k log k

23 Çalışma zamanı Asimptotik otasyon Bir problemi çözmek için A ve B şeklinde iki algoritma verildiğini düşünelim. Giriş boyutu için aşağıda A ve B algoritmalarının çalışma zamanı T A ve T B fonksiyonları verilmiştir. Hangi algoritmayı seçersiniz? Giriş Boyutu () 3

24 Running Time Asimptotik otasyon (devam) büyüdüğü zaman A ve B nin çalışma zamanı: Şimdi hangi algoritmayı seçersiniz? Giriş Boyutu () 4

25 Asimptotik otasyon (devam) Genel olarak, asimptotik notasyon, eleman sayısı n nin sonsuza gitmesi durumunda algoritmanın, benzer işi yapan algoritmalarla karşılaştırmak için kullanılır. Eleman sayısının küçük olduğu durumlar pratikte mümkün olabilir fakat bu birçok uygulama için geçerli değildir. Verilen iki algoritmanın çalışma zamanını T1() ve T() fonksiyonları şeklinde gösteriyoruz. Fakat hangisinin daha iyi olduğunu belirlemek için bir yol belirlememiz gerekiyor. (asimptotik olarak daha küçük gibi) Asimptotik notasyonlar Büyük-O, W, Q notasyonları 5

26 Karşılaşılan Genel Fonksiyonlar İsim Büyük-O Yorum Sabit O(1) Yenilmez! Logaritmik O(log) İyi hazırlanmış arama algoritmalarının tipik zamanı Doğrusal O() Hızlı bir algoritmadır. tane veriyi girmek için gereken zaman. log O(log) Çoğu sıralama algoritması Karesel O( ) Veri miktarı az olduğu zamanlarda uygun (<1000) Kübik O( 3 ) Veri miktarı az olduğu zamanlarda uygun (<1000) Üssel O( ) Veri miktarı çok az olduğunda uygun (n<=0) 6

27 Örnekler Büyük-O O(1) O(log) O() O(log) O( ) O( 3 ) Yorum elemanlı bir dizinin i. Elemanına bir değer atanması Sıralı bir listenin elemanları içinde ikili arama elemanlı bir dizinin tüm elemanlarının ekrana yazdırılması Bazı hızlı sıralama algoritmaları (merge sort) gibi Basit sıralama algoritmaları (selection sort gibi) Üç boyutlu bir tamsayı tablosundaki her elemanın değerini artıran algoritma 7

28 Karşılaşılan Genel Fonksiyonlar (devam) 8

29 Tanım: Verilen bir tamsayı listesi içerisinde/dizisinde elemanları komşu olmak şartıyla hangi (bitişik) alt dizi en yüksek toplamı verir? Örneğin: Örnek: Maksimum Alt Dizi Toplamı { -,11,-4,13,-5, } Cevap=0 { 1,,-5,4,7,- } Cevap=11 { 1,5,-3,4,-,1 } Cevap=7 Bu problemi çözen çok sayıda algoritma vardır. 9

30 Çözüm-1 Kaba Kuvvet Algoritması public static int maxaltdizit( int[] a){ } int maxtop = 0; for(int i=0; i<a.length; i++) for(int j=i; j<a.length; j++){ } int top=0; for(int k=i; k<=j; k++) top += a[k]; if(top > maxtop){ } return maxtop; maxtop = top; int bas = i; int son = j; // alt dizinin başlangıcı // alt dizinin sonu Bu algoritmanın karmaşıklığı nedir? n 3 +6n +n+ O(n 3 ) Daha iyisi yapılabilir mi? 30

31 Çözüm- Geliştirilmiş Algoritma public static int maxaltdizit(int[] a) { } int maxtop = 0; for (int i = 0; i < a.length; i++) { } int top = 0; for (int j = i; j <= a.length; j++) { } top += a[j]; if (top > maxtop) { } return maxtop; maxtop = top; int bas = i; int son = j; // alt dizinin başlangıcı // alt dizinin sonu Bu algoritmanın karmaşıklığı nedir? 6n +n+ O(n ) Daha iyisi yapılabilir mi? 31

32 Çözüm-3 Doğrusal Algoritma public static int maxaltdizit(int[] a) { int maxtop = 0; int top = 0; for (int i=0, j=0; j<=a.length; j++) { } top += a[j]; if (top > maxtop) { maxtop = top; int bas = i; int son = j; } else if (top<0){ } i = j + 1; top = 0; return maxtop; // alt dizinin başlangıcı // alt dizinin sonu 9n+3 O(n) Bu algoritmanın karmaşıklığı nedir? Daha iyisi yapılabilir mi? } 3

33 Maksimum Alt Dizi Toplamı Çalışma Süresi Çeşitli Maksimum Alt Dizi Toplamı algoritmaları için çalışma süreleri aşağıda verilmiştir. (saniye cinsinden) O( 3 ) O( ) O( log ) O() 10 0, , , , , , , , ,3111 0, , , , , , A 13,17 0, , A A 0, ,

34 Özyinelemeli Algoritmaların Analizi Özyinelemeli algoritmaların analizinin farklı yapılmasının nedeni: programın çalışma süresinin sadece yapılan işlemlerle değil aynı zamanda programın kendi çalışma süresinin bir fonksiyonuna bağlı olmasıdır. int faktoriyel(int ){ if( <= 1) return 1; else return * faktoriyel(-1); } 34

35 Özyinelemeli Algoritma Örnek - I int faktoriyel(int ){ if( <= 1) return 1; else return * faktoriyel(-1); } girdisi için çalışma süresi yine faktöriyel 1 girdisi için çalışma süresine bağlıdır. Matematiksel olarak: f (1) 1 f ( ) f ( 1) 1 Eşitliğin sağ tarafı işlem miktarını göstermektedir. 35

36 Özyinelemeli Algoritma Örnek - I Faktöriyel fonksiyonun çalışma zamanını bulabilmek için özyinelemeli denklem sistemini çözmemiz gerekir. f() = f( 1) + 1 f(-1) = f( ) + 1 f(-) = f( 3) + 1 f() = f(1) + 1 Eşitlikleri taraf tarafa toplarsak, f(-1), f(-),, f() sadeleşir ve geriye kalan ifade: f() = f(1) + 1 f() = O() 36

37 Özyinelemeli Algoritma Örnek - II int basamak_sayisi(int ){ if( == 1) return 1; else return 1 + basamak_sayisi( / ); } Bu fonksiyonun çalışma süresi (girdi ) yine bu fonksiyonun (girdi /) çalışma süresine bağlıdır. b(1) 1 b( ) b( / ) 1 Eşitliğin sağ tarafı yapılacak işlemin adedidir. 37

38 Özyinelemeli Algoritma Örnek - II 38 1 ) (... 1 ) ( ) ( 1 ) ( ) ( 1 ) ( ) ( b b b b b b b b k k k k k k İfadeler taraf tarafa toplanır.

39 Özyinelemeli Algoritma Örnek - II Devamı b( k ) b(1) k b( k ) k 1 b( ) log 1O(log ) 39

40 Big O otasyonu Zaman Karmaşıklığı Paul Bechman tarafından tanıtılmıştır. Zaman karmaşıklığında üst sınırı gösterir. Bu notasyon bir çok ifadeyi sadeleştirmemizi sağlar. Big Omega otasyonu W Big O notasyonunun tam tersidir. Zaman karmaşıklığında alt sınırı gösterir. Omega ile ölçülen değerden daha hızlı bir değer elde edilemez. Big Theta otasyonu Q Bu notasyon Big O notasyonu ile Big Omega notasyonu arasında ortalama bir karmaşıklığı ifade eder. 40

41 Sıkça Yapılan Hatalar Karmaşıklığı bulmak için sadece döngüleri saymakla yetinmeyin. içi içe döngünün 1 den kadar döndüğünü düşünürsek karmaşıklık O( 4 ) olur. O( ) veya O( +) gibi ifadeler kullanmayın. Sadece baskın terim kullanılır. Öndeki sabitler kaldırılır. İç içe döngüler karmaşıklığı direk etkilerken art arda gelen döngüler karmaşıklığı etkilemez. 41

42 Dersin Sonu

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 2 Bu bölümde, Algoritma Analizi, Çalışma Zamanı Analizi

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 2 ALGORİTMA ANALİZİ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. ALGORİTMA TANIMI Verilen herhangi bir sorunun çözümüne ulaşmak

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

YMT219 VERİ YAPILARI ÖDEV-1

YMT219 VERİ YAPILARI ÖDEV-1 YMT219 VERİ YAPILARI ÖDEV-1 1. İkiliBul yordamı aşağıda verilmiştir. İkiliBul yordamı A dizisi içerisinde 2 tane eşit sayı bulursa true bulamazsa false döndürmektedir. public boolean ikilibul(int[] A){

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Temel Kavramlar Algoritma: Bir problemin çözümünü belirli bir zamanda çözmek için sonlu sayıdaki adım-adım birbirini takip eden

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan

Algoritma Analizi. Özelliklerinin analizi Algoritmanın çalışma zamanı Hafızada kapladığı alan Karmaşıklık Giriş 1 Algoritma Analizi Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek için Farklı algoritmalarla karşılaştırmak için Daha iyisi mümkün mü? Olabileceklerin en iyisi mi?

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki,

f(x) ve g(x) reel sayılarda tanımlı iki fonksiyon olmak üzere, x > k olacak şekilde bir k vardır öyle ki, Algoritma Karmaşıklığı ve Büyük O Gösterimi (Big O Notation) Yazdığımız bir algoritmanın doğru çalıştığından emin olmakla birlikte bu algoritmayı, daha önce yazılmış ve aynı sonucu veren başka algoritmalarla

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026 O NOTASYONU Abdullah Gazi Emre DAĞLI 0804.01026 Program Çalışma Hızı ve Bellek Gereksinimi Programın çalışma hızı karmaşıklıkla ifade edilir; bu kavram zaman birimiyle ifade edilmeyip doğrudan işlem adedi

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

ALGORİTMA İ VE PROGRAMLAMA

ALGORİTMA İ VE PROGRAMLAMA ALGORİTMA İ VE PROGRAMLAMA II Öğr.Gör.Erdal GÜVENOĞLU Hafta 2 Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ 2 Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜH. FAK. BİLGİSAYAR MÜH. BÖL. ALGORİTMA VE PROGRAMLAMA 1 DERSİ LAB. ÖDEVİ AD SOYAD : TESLİM TARİHİ : OKUL NO : TESLİM SÜRESİ : 2 hafta Ödev No : 7 ****(ilk 3 soru çıktı üzerinde el

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

YMT219 Veri Yapıları. Yrd.Doç.Dr. Erkan TANYILDIZI

YMT219 Veri Yapıları. Yrd.Doç.Dr. Erkan TANYILDIZI YMT219 Veri Yapıları Yrd.Doç.Dr. Erkan TANYILDIZI 1 2 Ders Kitapları ve Yardımcı Kaynaklar Veri Yapıları ve Algoritmalar Dr. Rifat ÇÖLKESEN, Papatya yayıncılık Data Structures and Problem Solving Using

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 1 Algoritmaların Çözümlemesi Araya yerleştirme sıralaması Asimptotik çözümleme Birleştirme sıralaması Yinelemeler Prof. Charles E. Leiserson Dersle ilgili bilgiler

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II

DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER-KATARLAR ALGORİTMA VE PROGRAMLAMA II DİZİLER Dizi, aynı tipteki verilere tek bir isimle erişmek için kullanılan bir kümedir. Bir dizi bildirildikten sonra, dizinin bütün elemanları bellekte peşpeşe

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I Yrd. Doç. Dr. Deniz KILINÇ deniz.kilinc@cbu.edu.tr YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Karakter Dizileri Karakter Dizilerini

Detaylı

BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI

BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI BİR BOYUTLU DİZİLER Amaçlar: 1. 1 BOYUTLU DİZİLERİ TANIMLAMAK 2. 1 BOYUTLU DİZİ UYGULAMALARI YAPMAK Örnek 5-1 Aşağıdaki program öğrenci notlarını bularak en iyi notu hesaplar. Harf notu şu şekilde hesaplanır:

Detaylı

BİL1001 Bilgisayar Bilimlerine Giriş 1

BİL1001 Bilgisayar Bilimlerine Giriş 1 DEÜ Bilgisayar Bilimleri Bölümü BİL1001 Bilgisayar Bilimlerine Giriş 1 Öğr. Gör. Dr. Alper VAHAPLAR 2017 Yaz Okulu Tekrarlı Yapılar Algoritmanın belirli bir kısmının, belirli kere ya da belirli durumlar

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

BPR152-Algoritma ve Programlama II Uygulama -13

BPR152-Algoritma ve Programlama II Uygulama -13 Örnek problemler ve çözümleri /*Klavyeden girilen n ve m aralığındaki (n ve m dahil) 2, 3 ve 5 sayılarına bölünebilen sayıların toplamlarını ve ortalamalarını hesaplayan bir C# programını yazınız. Not-1:

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

YZM 2105 Nesneye Yönelik Programlama

YZM 2105 Nesneye Yönelik Programlama YZM 2105 Nesneye Yönelik Programlama Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği 1 BÖLÜM - 2 C# Programlama Dili Örnekler 2 Örnek1:

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

HSancak Nesne Tabanlı Programlama I Ders Notları

HSancak Nesne Tabanlı Programlama I Ders Notları DİZİLER Bellekte ard arda yer alan aynı türden nesneler kümesine dizi (array) denilir. Bir dizi içerisindeki bütün elemanlara aynı isimle ulaşılır. Yani dizideki bütün elemanların isimleri ortaktır. Elemanlar

Detaylı

1 PROGRAMLAMAYA GİRİŞ

1 PROGRAMLAMAYA GİRİŞ İÇİNDEKİLER IX İÇİNDEKİLER 1 PROGRAMLAMAYA GİRİŞ 1 Problem Çözme 1 Algoritma 1 Algoritmada Olması Gereken Özellikler 2 Programlama Dilleri 6 Programlama Dillerinin Tarihçesi 6 Fortran (Formula Translator)

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf İçindekiler 1. Giriş... 1 1.2. c++ Programı Yapısı... 2 1.3.Using Direktifi... 5 Bölüm 2. Veri türleri, değişken kavramı, sabit ve değişken bildirimleri ve c++ da kullanımı 7 2.1. Temel veri türleri...

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ

Detaylı

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR?????????

PROGRAMINIZI ANĠ SONLANDIRMAK ĠSTEDĠĞĠNĠZ YER BĠR DÖNGÜNÜN ĠÇĠ ĠSE NE OLUR????????? MATLAB 4.DERS return Komutu Yazdığınız MATLAB programını herhangi bir anda (programın normalde sona erdiği noktanın haricinde - early termination) sona erdirmek için return komutunu kullanabilirsiniz.

Detaylı

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU

Diziler. Yrd.Doç.Dr.Bülent ÇOBANOĞLU Diziler Yrd.Doç.Dr.Bülent ÇOBANOĞLU Dizi (Array) Nedir? Bellekte sürekli yer kaplayan artarda sıralanmış aynı türden verilerin oluşturduğu kümeye dizi (array) denir. Dizi, çok fazla miktardaki tek tip

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar BLM-112 PROGRAMLAMA DİLLERİ II Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/

Detaylı

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması

Algoritmalar. DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması Algoritmalar DERS 3 Böl ve Fethet(Divide and Conquer) İkili arama Sayı üstelleri Fibonacci sayıları Matriks çarpımı Strassen in algoritması September 14, 2005 Copyright 2001-5 Erik D. Demaine and Charles

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

EM205 26/9/2014. Programlamaya giriş Algoritmalar. Amaçlar

EM205 26/9/2014. Programlamaya giriş Algoritmalar. Amaçlar EM205 26/9/2014 Programlamaya giriş Algoritmalar Temel kavramlar Algoritmalar Amaçlar Algoritma kavramını öğrenmek, Algoritmaları ifade edebilmek, Temel matematiksel algoritmaları yazabilmek C programlama

Detaylı

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Veri Yapıları Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Hash Tabloları ve Fonksiyonları Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing

Detaylı

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)

Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek) HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan

Detaylı

Ders 4: Diziler (Arrays( Arrays) barisgokce.com

Ders 4: Diziler (Arrays( Arrays) barisgokce.com Ders 4: Diziler (Arrays( Arrays) Hazırlayan : Öğr. Grv.. Barış GÖKÇE Đletişim im : www.barisgokce barisgokce.com Diziler Aynı tipteki bir veri gurubunun bir değişken içinde saklanmasıdır. Veriler Hafızada

Detaylı

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN

BLM111 Programlama Dilleri I. Hafta 10 Diziler. Yrd. Doç. Dr. Caner ÖZCAN BLM111 Programlama Dilleri I Hafta 10 Diziler Yrd. Doç. Dr. Caner ÖZCAN Diziler Bilgisayarlar yardımıyla yapılan işlemlerde, çok sayıda veri girilmesi ve girilen verilerin işlenerek belirli bir sistematiğe

Detaylı

Matlab da Dizi ve Matrisler. Mustafa Coşar

Matlab da Dizi ve Matrisler. Mustafa Coşar Matlab da Dizi ve Matrisler Mustafa Coşar MATLAB Değişkenleri Matlab da değişkenler; skaler, dizi(vektör), matris veya metin (string) türünde olabilirler. Örnek olarak: a=1; b=-3.2e3; c=22/5; metin= mustafa

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

DÖNGÜLER (LOOPS) while(), do-while(), for(), foreach()

DÖNGÜLER (LOOPS) while(), do-while(), for(), foreach() (LOOPS) while(), do-while(), for(), foreach() Döngüler (loops) while do-while for foreach while ( koşul ) işlemler; do işlemler; while (koşul ); for (başlangıç ; koşul ; arttırma) işlemler; foreach ( tip

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ AD SOYAD: TESLİM TARİHİ: OKUL NO: TESLİM SÜRESİ: 1 hafta Ödev No: 2 1- A)

Detaylı

ALGORTMA ve PROGRAMLAMA - II (C# Sürümü) DERS NOTLARI

ALGORTMA ve PROGRAMLAMA - II (C# Sürümü) DERS NOTLARI T.C. EGE ÜNVERSTES MÜHENDSLK FAKÜLTES BLGSAYAR MÜHENDSL BÖLÜMÜ ALGORTMA ve PROGRAMLAMA - II (C# Sürümü) DERS NOTLARI Y. Doç. Dr. Aybars UUR C# PROGRAMLAMA ÖRNEKLER Deiken Tanımlama, Aritmetik lemler, String'ler,

Detaylı

ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER

ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER ÇOK BOYUTLU DİZİLER VE DİNAMİK BELLEK YÖNETİMİ İLE İLGİLİ ÖRNEKLER // 5 adet ogrenci icin 8 adet sinavi // temsil etmesi icin bir ogrenci tablosu // olusturuyoruz. Bunun icin 5x8 bir matris // yaratilmasi

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI.

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI. VERİ YAPILARI HASH TABLOLARI Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ muratgok@gmail.com Hash tabloları Hash tablo veri yapısı ile veri arama, ekleme ve silme işlemleri

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. ALGORİTMA ANALİZİ VE TASARIMI Ders Saati (T+U+L) Kredi AKTS BG-315 3/1 3+0+0 3+0 5 Dersin Dili : TÜRKÇE Dersin

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

C++ Dilinde Bazı Temel Algoritmalar

C++ Dilinde Bazı Temel Algoritmalar C++ Dilinde Bazı Temel Algoritmalar Bazı eşyalar için her eve lazım derler. Az sonra bahsedeceğimiz algoritmalar da her kodcuya lazım cinsten. Sayının tek mi çift mi olduğuna karar veren programdan, çarpım

Detaylı

elemanlarının gezilmesine yönelik bir örnek sunulmuştur, inceleyiniz.

elemanlarının gezilmesine yönelik bir örnek sunulmuştur, inceleyiniz. Ön bilgi: Dizi tanımlayabilmeli. foreach deyimi bilinmeli. Rastgele sayılar (Random) bilinmeli. 1. Aşağıda tamsayı tipinde iki boyutlu bir dizinin nasıl tanımlandığı, bir fonksiyona parametre olarak nasıl

Detaylı

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Sıralı erişimli dosya organizasyonu yöntemleri Sunum planı Sıralı erişimli dosya organizasyonu yöntemleri Basit sıralı

Detaylı

PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK

PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK PROGRAMLAMAYA GİRİŞ VE ALGORİTMA «YTÜROK» EĞİTMEN:REHA ÖZGÜR ŞİMŞEK Giriş-Tanımlamalar Program Nedir? Tanımlanmış bir problemi bilgisayar ortamında çözen ürüne program denir. Programlama Nedir? Tanımlanmış

Detaylı

JAVADA DİZİ İŞLEMLERİ

JAVADA DİZİ İŞLEMLERİ JAVADA DİZİ İŞLEMLERİ Javada diziler nesnedirler, cdeki gibi hafızada yer kaplayan pointer değillerdir. Javada diziler, cye göre daha güvenilirdir. Dizilerin elemanlarına gelişigüzel değerler atayamazsınız.

Detaylı

Veri Yapıları. for(i=1;i=0 && ekle<=d[k] ;k ) D[k+1]=D[k]; /* Geriye kaydırılıyor*/

Veri Yapıları. for(i=1;i<n;i++) { ekle=d[i]; for (k=i 1; k>=0 && ekle<=d[k] ;k ) D[k+1]=D[k]; /* Geriye kaydırılıyor*/ Program çalışma hızı; Belirlenen bir problemin çözümü için tasarlanan program kodunun görevini yerine getirmesi için gerekli zaman bilgisini veren bir ifadededir. Bellek Gereksinimi; Programın yürütülmesi

Detaylı

Diziler. Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler

Diziler. Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler Diziler Diziler Dizi Tanımı Dizi Elemanlarına Değer Atama Diziler ve Göstergeler 2-Boyutlu Diziler Dizi Tanımı Değişkenler aynı anda tek bir değer tutabilen temel değişkenler ve birden fazla değer saklayabilen

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

Nesne Tabanlı Programlama

Nesne Tabanlı Programlama Nesne Tabanlı Programlama Ders Notu - 2 (Denetim Yapıları, Diziler) Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü 1 Denetim Yapıları 1 if else Seçme yapısı, mantıksal

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 5. DERS NOTU Konu: Döngü Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DÖNGÜ YAPILARI Birçok uygulamada bazı işlemlerin tekrar tekrar gerçekleştirilmesi gerekir. Bizlere bu

Detaylı

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 1 Temel Algoritma Kavramları Giriş 1) Algoritma geliştirme üzerine temel kavramlar 2) Veri modelleri 3) Veri yapıları 4) Algoritma veya yazılım şekilsel gösterimi

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

ALGORİTMA VE PROGRAMLAMA I

ALGORİTMA VE PROGRAMLAMA I ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Giriş Fonksiyonlara Genel Bakış C ve Fonksiyonlar Fonksiyon Tanımı 8. BÖLÜM 3 Fonksiyonlar

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir.

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Değişkenler 1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Örnek Kullanım : sayı değer= 3; sayı sayı1; 2- ondalık - Ondalık sayıları ifade etmek için

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

void setup() fonksiyonu: Bu fonksiyon program ilk açıldığında bir kere çalışır ve gerekli kalibrasyon, setup komutlarını buraya yazarız.

void setup() fonksiyonu: Bu fonksiyon program ilk açıldığında bir kere çalışır ve gerekli kalibrasyon, setup komutlarını buraya yazarız. ARDUİNO PROGRAMLAMA fonksiyonu: Bu fonksiyon program ilk açıldığında bir kere çalışır ve gerekli kalibrasyon, setup komutlarını buraya yazarız. fonksiyonu: Diğer programlama dillerinden alışık olduğumuz

Detaylı

Arama Algoritmaları. Doğrusal Arama ve Binary Arama

Arama Algoritmaları. Doğrusal Arama ve Binary Arama Arama Algoritmaları Doğrusal Arama ve Binary Arama Doğrusal Arama-Örnek Dizi (Array) sayilistesiiçerisindeki sayılar aşağıdaki gibidir: 17 23 5 11 2 29 3 11, verilen dizi içerisinde aranacaksa doğrusal

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı