MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir."

Transkript

1 .7. Analitik ve Harmonik Fonksiyonlar Tanım 1. f(z) nin z 0 da f (z 0 ) türevi mevcut ve z 0 ın bir D ε (z 0 ) = {z : z z 0 < ε} komşuluğundaki her noktada türevi varsa bu durumda f ye z 0 da analitiktir ( veya holomorfiktir) denir. Tanım. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir. Tanım 3. Eğer f (z 0 ) mevcut değil fakat z 0 ın komşuluğundaki en az bir noktada f(z) analitik ise z 0 a f nin singüler (tekil) noktasıdır denir. Tanım 4. h : R R fonksiyonu R de bir bölgede sürekli ve h nın birinci ve ikinci mertebeden tüm kısmi türevleri mevcut ve sürekli olsun. Eğer verilen bölgede h xx (x, y) + h yy (x, y) = 0 Laplace denklemi sağlanıyorsa h fonksiyonuna bu bölgede harmoniktir denir. Teorem 1. u(x, y) bir (x 0, y 0 ) noktasının bir ε- komşuluğunda harmonik olsun. Bu durumda f(z) = u(x, y) + iv(x, y) bu komşulukta analitik olacak biçimde bir v(x, y) harmonik eşlenik fonksiyonu vardır. Soru 1. Aşağıdaki fonksiyonların hiçbir yerde analitik olmadığını gösteriniz. a) f(z) = xy + iy b) f(z) = e y (cosx + isinx) Çözüm. a) f(z) = xy + iy fonksiyonu için u(x, y) = xy ve v(x, y) = y dir. Buradan u x = y, u y = x, v x = 0 ve v y = 1 bulunur. u ve v nin birinci mertebeden bütün kısmi türevleri mevcut ve süreklidir. ve u x = v y u y = v x Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 1

2 Cauchy-Riemann denklemlerinin sağlanabilmesi için y = 1 ve x = 0 olmalıdır. Buradan f fonksiyonunun sadece z 0 = i = i noktasında türevinin var olduğu görülür. f nin z 0 noktası komşuluğunda türevi mevcut olmadığından f hiçbir yerde analitik değildir. b) f(z) = e y (cosx + isinx) fonksiyonu için u(x, y) = e y cosx ve v(x, y) = e y sinx dir. Buradan u x = e y sinx, u y = e y cosx, v x = e y cosx ve v y = e y sinx bulunur. u x = v y denkleminin sağlanabilmesi için e y sinx = e y sinx ve her y R için e y > 0 olduğundan sinx = 0 olmalıdır. Buradan x = kπ, k Z bulunur. Benzer şekilde u y = v x denkleminin sağlanabilmesi için x = π + kπ, k Z olmalıdır, dolayısıyla Cauchy-Riemann denklemleri sağlanmadığından f hiçbir yerde analitik değildir. Soru. Aşağıdaki fonksiyonların tam olduklarını gösteriniz. a) f(z) = 3x + y + i(3y x) b) f(z) = sinxcoshy + icosxsinhy Çözüm. a) u(x, y) = 3x + y ve v(x, y) = 3y x dir. Buradan, u x = 3, u y = 1, v x = 1, ve v y = 3 bulunur. u ve v nin birinci mertebeden bütün kısmi türevleri mevcut, sürekli ve Cauchy-Riemann denklemlerini sağladığından f fonksiyonu her (x, y) noktasında türevlenebilirdir. Dolayısıyla tamdır. b) u(x, y) = sinxcoshy ve v(x, y) = cosxsinhy dir. Buradan, u x = cosxcoshy, u y = sinxsinhy, v x = sinxsinhy, ve v y = cosxcoshy bulunur. (a) şıkkındaki gibi f nin tam olduğu görülür. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa

3 Soru 3. Aşağıdaki fonksiyonların R de harmonik olduklarını gösterip harmonik eşleniklerini bulunuz. a) u(x, y) = x xy b) u(x, y) = sinhxsiny Çözüm. a) u(x, y) = x xy olmak üzere u x = y, u xx = 0, u y = x ve u yy = 0 olur ve buradan u xx + u yy = 0 olup ikinci mertebeden türevler her yerde süreklidir, dolayısıyla u fonksiyonu R de harmoniktir. u nun v harmonik eşleniği u x = v y ve u y = v x Cauchy-Riemann denklemlerini sağlar, buradan ve buradan v y = y v(x, y) = y y + ϕ(x) ϕ (x) = v x = u y = x ϕ(x) = x + c (c sabit) bulunur, dolayısıyla u nun v harmonik eşleniği olarak elde edilir. v(x, y) = y y + x + c b) u(x, y) = sinhxsiny olmak üzere u x = coshxsiny, u xx = sinhxsiny, u y = sinhxcosy ve u yy = sinhxsiny olur ve buradan u xx + u yy = 0 olup ikinci mertebeden türevler her yerde süreklidir, dolayısıyla u fonksiyonu R de harmoniktir. u nun v harmonik eşleniği u x = v y ve u y = v x Cauchy-Riemann denklemlerini sağlar, buradan v y = coshxsiny v(x, y) = coshxcosy + ϕ(x) Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 3

4 ve buradan v x = u y = sinhxcosy + ϕ (x) = sinhxcosy bulunur, dolayısıyla ϕ (x) = 0 ϕ(x) = c (c sabit) olmalıdır. Buradan u nun v harmonik eşleniği olarak elde edilir. v(x, y) = coshxcosy + c Soru 4. u(x, y) = x 3 3xy + 3x 3y + 3 fonksiyonundan yararlanarak f(i) = 0 eşitliğini sağlayan analitik bir f fonksiyonu bulunabilir mi, araştırınız. Çözüm. u x = 3x 3y +6x ve u xx = 6x+6 olur. Ayrıca u y = 6xy 6y ve u yy = 6x 6 dır. O halde u xx + u yy = 6x + 6 6x 6 = 0 olur ve böylece u harmoniktir. Cauchy-Riemann denklemlerinin sağlanması için u x = v y ve u y = v x eşitliklerinin sağlanması gerekir. Buradan u x = v y v y = 3x 3y + 6x ve v(x, y) = 3x y y 3 + 6xy + ϕ(x) bulunur. Benzer biçimde u y = v x 6xy 6y = (6xy+6y+ϕ (x)) ϕ (x) = 0 olup ϕ(x) = c (c sabit) bulunur. Buradan v(x, y) = 3x y y 3 + 6xy + c elde edilir. Dolayısıyla f(i) = f(0 + i) = i( 1 + c) = 0 ise burada c = 1 olmalıdır. Soru 5. u ve v fonksiyonları bir D bölgesinde harmonik olsun. f = u+iv fonksiyonu D bölgesinde analitik midir? Araştırınız. Çözüm. f = 1 + ix olsun. Bu durumda u(x, y) = 1 ve v(x, y) = x olur. u xx +u yy = 0 ve v xx +v yy = 0 olduğundan u ve v fonksiyonları tüm kompleks düzlemde harmoniktir. Fakat u y = 0, v x = 1 olup u y v x olduğundan f fonksiyonu hiçbir yerde analitik değildir. Sonuç olarak u ve v fonksiyonlarının harmonik olması f nin analitik olmasını gerektirmez. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 4

5 Soru 6.f, kompleks düzlemde analitik bir fonksiyon olsun. ( ) f(z) = 4 f (z) y olduğunu gösteriniz. Çözüm. f = u + iv diyelim. f = u + v olur. Ayrıca f analitik olduğundan u x = v y ve u y = v x Cauchy-Riemann denklemleri sağlanır ve u ve v harmonik olacağından u xx + u yy = 0, v xx + v yy = 0 eşitlikleri gerçeklenir. ( ) ( ) f(z) = y (u + v ) y elde edilir. = x (u + v ) + y (u + v ) = x (uu x + vv x ) + y (uu y + vv y ) = u x + uu xx + v x + vv xx + u y + uu yy + v y + vv yy = u(u xx + u yy ) + v(v xx + v yy ) + u x + u y + v x + v y = u x + v x + v x + u x = 4(u x + v x) = 4 f (z) Soru 7. f k (z) ( k = 1,,..., n) fonksiyonları bir D bölgesinde analitik olsun. Bu durumda F (x, y) = f k (z) fonksiyonunun D de harmonik olması için gerek ve yeter şart her bir f k fonksiyonunun D de sabit olmasıdır, gösteriniz. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 5

6 Çözüm.f k (z) ( k = 1,,..., n) fonksiyonları D bölgesinde analitik olduğundan ( ) f y k (z) = = ( ) f y k (z) 4 f k(z) yazılabilir. Böylece k = 1,,..., n için F = 0 f k(z) = 0 bulunur. Alıştırmalar f k(z) = 0 f k sabit 1) Aşağıdaki fonksiyonların harmonik olup olmadığını araştırınız. ( ) z a)u(x, y) = Re b)u(x, y) = xy z 3 1 ) f, A kümesi üzerinde analitik olsun ve g fonksiyonu g : A C, g(z) = f(z) olarak tanımlansın. g fonksiyonunun ne zaman analitik olacağını araştırınız. 3) f(z) = x + axy + by fonksiyonunun sadece a = i, b = 1 değerleri için analitik olduğunu gösteriniz. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 6

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 12. 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri., cosx = eix + e ix 2i

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 12. 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri., cosx = eix + e ix 2i MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri e ix = cosx+isinx ve e ix = cosx isinx denklemlerinden yararlanılarak, her x reel sayısı için, sinx

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1 0 RE IDÜ TEOR IS I Tan m. f fonksiyonu z 0 noktas nda ayr k singülerli¼ge sahip olsun. Bu durumda f fonksiyonu 0 < jz z 0 j < " bölgesinde X X f(z) = a n (z z 0 ) n b n + (z z 0 ) n Laurent seri aç l m

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

7 TAYLOR SER I GÖSTER IMLER I

7 TAYLOR SER I GÖSTER IMLER I 7 TAYLOR SER I GÖSTER IMLER I Bir f fonksiyonu analitiklik bölgesi içinde f () X a n ( 0 ) n şeklinde bir kuvvet serisi gösterimine sahiptir. E¼ger a n f (n) ( 0 ) seçilirse bu kuvvet serisi Taylor serisi

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB00 Analiz I 3 Aralık 03 Final Sınavı Öğrenci Numarası: Adı Soyadı: - Taatlar: Sınav süresi 0 dakikadır. İlk 30 dakika sınav salonunu terk etmeyiniz.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü

ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü ü ü İ ü Ç İ İ ü İ İİ İ İ ü ü ü ü ü ü ü Ş ü ü ü ü ü üü ü ü İ İ üü ü ü ü üü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü İ Ç ü ü ü ü ü ü ü ü ü ü ü ü ü İ ü ü ü ü ü ü ü ü Ç üü ü ü ü Ö ü ü ü ü ü ü ü ü ü ü ü ü ü Ç ü

Detaylı

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö

ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö Ş ö Ü ö ö ö ö Ç ö Ç Ö Ö ö ö ÜÜ Ü ö ö ö Ö ö ö ö ö ö Ş Ş Ç ö Ş Ş ö ö ö ö ö Ç ö ö ö ö ö ö ö ö ö ö ö Ş ö Ş Ç Ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö Ç Ç ö ö Ç ö Ö Ç ö ö Ç ö ö ö ö Ü ö ö Ü ö Ş ö Ü ö ö Ş ö ö Ş Ü ö Ş ö

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB1001 Analiz I 6 Aralık 013. Yıliçi Sınavı Öğrenci Numarası: Adı Soyadı: - Talimatlar: Sınav süresi 90 dakikadır. İlk 30 dakika sınav salonunu

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 6 (06) 0330 (576-584) AKU J Sci Eng 6 (06) 0330 (576-584) DOI:

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Kompleks Değişkenli Fonksiyonlar Teorisi

Kompleks Değişkenli Fonksiyonlar Teorisi Kompleks Değişkenli Fonksiyonlar Teorisi Ders Notları Dr. Serkan Aksoy 2016 http://www.gyte.edu.tr/dosya/102/~saksoy/ana.html 1 Gelecek önerileri için, lütfen Dr. Serkan Aksoy (saksoy@gyte.edu.tr) ile

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz.

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine izin verelim.

Detaylı

Ders 05. Çok değişkenli Fonksiyonlar. Kısmi Trevler. 5.1 Çözümler:Alıştırmalar 05. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 05. Çok değişkenli Fonksiyonlar. Kısmi Trevler. 5.1 Çözümler:Alıştırmalar 05. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 48 Bölüm 5 Ders 05 Çok değişkenli Fonksiyonlar. Kısmi Trevler 5.1 Çözümler:Alıştırmalar 05 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıda verilen soru işaretlerinin yerine gelmesi gereken değerleri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1 Kısmi Türevler Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

e e ex α := e α α +1,

e e ex α := e α α +1, s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik - Bilgisayar Bölümü MC 886 ntegral Denklemler... Yßliçi Sßnavß CEVAPLAR Talimatlar: Sßnav süresi 9 dakikadßr. lk dakika sßnav salonunu terk etmeyiniz.

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

Kompleks Analiz (MATH 346) Ders Detayları

Kompleks Analiz (MATH 346) Ders Detayları Kompleks Analiz (MATH 346) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kompleks Analiz MATH 346 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Math 251 Dersin Dili

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Karmaşık Fonksiyonlar ve Uygulamaları MATH274 Bahar 3 0 0

Detaylı