ANOVA. CRD (Completely Randomized Design)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ANOVA. CRD (Completely Randomized Design)"

Transkript

1 ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde çalışanlardan tamamen tesadüf olara seçlen altışar personele aynı test verlmş ve test puanları aşağıda şelde rapor edlmş olsun. Burada amacımız H µ = = hpotezn, H : µ µ ; hpotezne arşı test etmetr. : µ µ 0 3 P P P Descrptve Statstcs: P; P; P3 a Varable N N* Mean Var Mnmum Q Medan Q3 Maxmum P 0 79, ,00 74,00 79,00 85,00 85,00 P 0 74,00 0 9,00 70,50 73,50 7,75 8,00 P3 0, ,00,5 5,50 70,50 75,00 D o t p lo t o f P ; P ; P 3 P P P D a ta SSTR = n ( x x) ; SSE = ( ; = x n ) s TotalSS ( x) DF: SSTR çn (-); SSE çn (n- ) ; ve TotalSS çn (n-) n= n

2 Bu problem çn : n=++=8; =3; s 34; s 0; s 3; = = x = 79 x = 74 x 3 = ve x = 73 tür. SSTR= (79-73) +(74-73) + (-73) = (3++49)= 5 3 = SSE= 5(34+0+3)=430 Veya: ve TotalSS= 5+430=94 olur. (79 73) + (74 73) + ( 73) Ortalamalar arası varyansı tahmn çn: S = = 43 X (3 ) σ Hesaplanır ve σ = olduğu çn σ = nσ X n X olur ve buradan Buradan σ nn tahmn değer(43)= 58 bulunur bu da fatörler arası varyansa eşttr. SSTR=(-) σ =(58) = 5 olur Fatörler ç varyans tahmn değer de : s / = = = olur. Buradan da SSE =(n-)(fatörler ç varyans ) =(8-3)(8/3)=430 bulunur. Total SS= SSTR+SSE= 5+430=94 olur. Yuarıda problemn ANOVA çözümlemes MINITAB aracılığı le yapılırsa aşağıda sonuçlar elde edlr. One-way ANOVA: P; P; P3 Source DF SS MS F P Factor 5,0 58,0 9,00 0,003 Error 5 430,0 8,7 Total 7 94,0 S = 5,354 R-Sq = 54,55% R-Sq(ad) = 48,48% Indvdual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev P 79,000 5,83 ( *------) P 74,000 4,47 (------* ) P3,000 5,57 ( * ) ,0 7,0 78,0 84,0 Pooled StDev = 5,354 Yuarıda ANOVA tablosunda F test çn hesaplanmış olan P-değer ço üçü olduğu çn H : µ = µ = µ 0 3 hpotez ret edlp arşıtı olan hpotez abul edlr. Yan bu üç ortalamadan en az s brbrnden farlıdır.

3 Farın hang ortalamalar arasında olduğunu belrleyeblme amacıyla Fsher n LSD (Least Sgnfcant Dfference) yöntem ullanılablr. Fsher LSD Test: H : µ = µ 0 H µ 0 : µ Hpotezlernn testnde ullanılaca test statstğ: X X olara alınır. Eğer X X > LSD se seçlmş α düzeynde yuarıda hpotez ret edlr. Burada LSD = t α / MSE ( + ) dr. Burada ullanılaca tablo t değernn ounuşunda n n df = ( nt ) olara alınmalıdır. Yuarıda örne problemde Ortalamalar: Varable Mean P 79 P 74 P3 MSE=8,7 ve df=5 olduğu çn. α= 0,05 alındığında t α / =, 3 olara ounur. Bu değerler ullanılara =,3 8,7( + ) =,59 LSD olara hesaplanır. X X = 5< LSD ; X X 3 = 3> LSD ; ve X X = 8> LSD 3 Bu sonuçlara göre: µ le µ arasında far olduğu söylenemez. Anca µ le µ 3 arasında far önemldr ve benzer şelde µ 3 sonucuna varırız. µ le arasında far da önemldr Fsher LSD yöntem le ortalamalar arasında farlar çn güven arlıları da oluşturulablr. ( µ µ ) çn Güven Aralığı: ( X X ) ± LSD olara hesaplanır.

4 RBD (Randomzed Bloc Desgn) ANOVA Tablosu: Source oof DF SS MS F Varaton Treatments - SSTR MSTR=SSTR/(-) MSTR/MSE Blocs b- SSB MSB=SSB/(b-) Error (-)(b-) SSE MSE=SSE/(-)((b-) Total n T - Total SS Burada = x TotalSS ( x) ; SSTR= b = ( x. x) ; b SSB= ( x. x) ; SSE= TotalSS-SSTR-SSB olara hesaplanır. Örne Problem: Hava Alanı ontrol merezlernde çalışanların yorgunlu ve stres düzeylern en aza ndrgeyece sstemn hangs olduğunu belrleme amacıyla gelştrlmş olan sstemlerden en ullanılablr olduğuna nanılan üç tanesnn ( Sstem A, B ve C) en y olanı belrlenecetr. Bu amaçla da mevcut çalışanlardan altısı () bu sstemlerde çalıştırılmış ve vardya btmnde her çalışanın stres ve yorgunlu dereceler saptanmıştır. Personel üç sstemde çalışma üzere görevlendrlren, hang sstemde hang sırada görevlendrleceğ yne tesadüf olara belrlenmştr. Bu deneyle lgl test sorları ve ANOVA çn gerel hesaplamalar aşağıda tabloda özetlenmştr. Personel Per Per Blo Per 3 Per 4 Per 5 Treatmants Toplam Blo Sstem A Sstem B Sstem C (Blo) Ortalaması Per Toplam(Treat) Tretamant Ortalaması =Genel Toplam Genel Ortalama= 5/8=4 Bu blgler ullanılara ANOVA tablosunda yer alaca hesaplamalar yapılablr. Total SS= (5-4) +(5-4) + (8-4) + +(3-4) +(3-4) = 70 olur. SSTR= [(3.5-4) + (3-4) +(5.5-4) ]=,

5 SSB= 3[(-4) + (4-4) + (-4) + (4-4) + (5-4) + (3-4) ] = 30, SSE= = 9 olur. n T = 8 Şmd ANOVA Tablosunu oluşturablrz. ANOVA Tablosu: Source oof DF SS MS F Varaton Treatments -= SSTR= MSTR=SSTR/(-)= 0.5 MSTR/MSE=5.53 Blocs b-=5 SSB = 30 MSB=SSB/(b-) = Error (-)(b-)=0 SSE = 9 MSE=SSE/(-)((b-)=.9 Total n T - =7 Total SS =70 ANOVA tablosunda F oranının dağılımı F olup pay ve paydanın serbestl dereceler sırasıyla ve 0 dur. α = 0.05 alınırsa Tablo F değernn 4.0 olduğu görülür. ANOVA tablosunda hesaplanan F oranı Tablo F değernden büyü olduğu çn H µ = = hpotez ret edlr. Yan Bu üç sstemn personel üzernde yarattığı : µ µ 0 3 yorgunlu ve stres sorlarının ortalamaları eşt değldr. Br dğer fade le bu üç sstem bu açıdan brbrnden farlı sonuçlar doğurmatadır. Aynı analz MINITAB aracılığı le de yapılablrd (daha olay br şelde). MINITAB programının verdğ sonuçlar aşağıdadır. (Ver grş aşağıda gb düzenlenmş olmalıdır. Tr sütununda Y gözlem değernn hang sstemden, Blo sütununda da bu gözlem değernn hang personelden alındığı gösterlmştr) Y Tr Blo 5 A 4 A 0 A 3 3 A 4 A 5 3 A 5 B 4 B B 3 B 4 3 B 5 3 B 8 C 4 C 5 C 3 7 C 4 C 5 3 C

6 Two-way ANOVA: Y versus Tr; Bloc Source DF SS MS F P Tr 0,5 5,53 0,04 Bloc 5 30,0 3, 0,057 Error 0 9,9 Total 7 70 S =,378 R-Sq = 7,8% R-Sq(ad) = 53,8% LSD = t α / MSE ( + ) Burada sstemlerde personelle lgl blgler olduğu çn n = n n olacatır. MSE=.9 ve t le lgl df se 9 olduğu çn α = 0,05 alındığında t α / =.093 olara ounur. =,093.9( + ).7 LSD olur. Sstemlern örne ortalamaları arasında farlar hesaplanırsa Sstem A B C A = = -.0 (*) B =-.5 (*) C 0 (*) Đstatstsel olara far önemldr. Çünü X X > LSD sonucu gözlemlenmştr. Yan A le C arasında ve B le C arasında ortalama stres sorları farları önem çımıştır. Stres sorunun büyü olması stenmeyeceğne göre bu üç sstem seçeneğnden C nn ullanılması düşünülmeyecetr. A le B sstemler arasında far önemsenmeyece adar üçü çımıştır. Yan bu sstemden br dğerne, statstsel önem derecesne bağlı olara, terch edlemez. Bel bu notada hang sstemn urulması daha olay ve daha ucuz se o sstemn ullanılması terch edleblr. FACTORIAL EXPERIMENTS CRD ve RBD tasarımları bze sadece br fatörle lgl ortalamaların arşılaştırılmasına olana verr. Brden daha fazla sayıda fatörün ortalamaları bazında arşılaştırılmasının gerel olduğu hallerde Factoral Experments başlığı altında nceleyeceğmz analzlern yapılması gerer. Factoral denmesnn sebeb, deneysel şartların fatörlern tüm olası fatör ombnasyonlarını çermesndendr. Örneğn A fatörünün a farlı alt grubu ve B fatörünün b farlı alt grubu var se, deney tasarımında olası ombnasyonlarının toplam sayısı (a)(b) adardır, ve böyle br analzn yapılablmes çn her br ombnasyonla lgl yeterl ver toplanması gereldr. Factoral Experment le lgl ANOVA tablosu aşağıda verlmştr. ANOVA Tablosu:

7 Source oof DF SS MS F Varaton FActor A a- SSA MSA=SSA/(a-) MSA/MSE Factor B b- SSB MSB=SSB/(b-) MSB/MSE Interacton (a-)(b-) SSAB MSAB=SSAB/(-)((b-) MSAB/MSE Error ab(r-) SSE Total n T - Total SS TotalSS = a b r = = a ( x x) ; SSA= br ( x* x) ; SSB= br ( x* x) ; b = SSAB= r a = olara hesaplanır. b ( x x* x* + x) Bunu br örne problem üzernde görelm ; SSE= TotalSS-SSA-SSB-SSAB FacA 3Saat -gün Factor B Đşl. Müh. FEF x = x = 500 x = x = x 3 = x 3 = 450 Satır Toplamı Factor A Ortalama 90 x * = = x * = = hafta x 3 = x 3 = x 33 = 445 Sütun Toplam Factor B Orta x * = x * = x * 3 = =540 =50 = x 3 * = = (Genel Toplam) 970 x = = 55 (genel Ortalama) 8 Total SS= (500-55) + (580-55) + + (40-55) = 8450 SSA= (3)() [ ) +( ) ) ]=00 SSB= (3)()[540-55) +(50-55) +(445-55) ] = SSAB=[( ) +( ) + +( ) ]=00

8 SSE= =9850 Şmd ANOVA tablosu oluşturulablr. Source oof DF SS MS F Varaton Factor A a-= SSA=00 MSA=SSA/(a-)=3050 MSA/MSE =.38 Factor B b-= SSB=45300 MSB=SSB/(b-)=50 MSB/MSE= 0.7 Interacton (a-)(b-)=4 SSAB=00 MSAB=SSAB/(-)((b-) =800 MSAB/MSE=.7 Error ab(r-)=9 SSE= 9850 MSE=SSE/(ab(r-))=0 Total n T - =7 Total SS=8450 MINITAB aracılığı le yapılan çözümleme: Y A B 500 a b 580 a b 40 a b 540 a b 50 a b3 00 a b3 540 a b 40 a b 50 a b 0 a b 00 a b3 580 a b3 480 a3 b 400 a3 b 40 a3 b 480 a3 b 480 a3 b3 40 a3 b3 Two-way ANOVA: Y versus B; A Source DF SS MS F P B ,0,38 0,99 A ,0 0,7 0,005 Interacton ,0,7 0,350 Error , Total S = 4,9 R-Sq = 75,9% R-Sq(ad) = 54,5%

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Varyans Analizi. Varyans Analizi. Analysis of Variance - ANOVA. (One-Way Anova) Tek Yönlü Varyans Analizi. Varyans Analizi

Varyans Analizi. Varyans Analizi. Analysis of Variance - ANOVA. (One-Way Anova) Tek Yönlü Varyans Analizi. Varyans Analizi Varyans Analizi Analysis of Variane - ANOVA Varyans Analizi ANOVA (Varyans Analizi) çeşitli popülasyonların ortalamaları arasındaki farkları tanımlamak için kullanılan İstatistiksel metottur ANOVA değişik

Detaylı

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 6: Bağımsız Gruplarda İkiden Çok Örneklem Testleri) k ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA k ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr BAĞIMSIZ İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

İSTATİSTİK II MINITAB

İSTATİSTİK II MINITAB İSTATİSTİK II MINITAB 8.5. Veriler k DENEY TASARIMI Treatment Design Factor Combinations A B C Surface Rougness () - - - 9 7 a - - b - - 9 ab - 5 c - - ac - bc - 8 abc 6 Veri Giriş Sayfasının Oluşturulması

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe lar Birdal eno lu ükrü çindekiler 1 2 3 4 5 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri Düşü Hacml Üretmde İstatstsel Proses Kontrolü: Kontrol Grafler A. Sermet Anagün ÖZET İstatstsel Proses Kontrolu (İPK) apsamında, proses(ler)de çeştl nedenlerden aynalanan değşenlğn belrlenere ölçülmes,

Detaylı

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ SAÜ 6. BÖLÜM DEĞİŞKELİK (YAYIKLIK) ÖLÇÜLERİ PROF. DR. MUSTAFA AKAL İÇİDEKİLER 1. DEĞİŞKELİĞİ TAIMI VE ÇEŞİTLERİ. AALATİK OLMAYA DEĞİŞKELİK ÖLÇÜLERİ 3. ORTALAMA MUTLAK SAPMA 3.1. Bast Serde Ortalama Mutla

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI

META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI T.C. MERSİN ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK VE TIBBİ BİLİŞİM ANABİLİM DALI META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a İşret Aış Drmlrı: İşret Aış Drmlrı (İAD), blo drmlrın bstleştrlmş hl olr örüleblr. Ft, İAD fzsel örünüş ve mtemtsel urllr bğlılı ısındn zım urllrı dh serbest oln blo drmlrındn frlıdır. Blo drmlrı, rmşı

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

BÖLÜM CROSS METODU (HARDY CROSS-1932)

BÖLÜM CROSS METODU (HARDY CROSS-1932) Bölüm Cross Yöntem 5.1. CROSS ETODU (HARDY CROSS-193) BÖÜ 5 Hperstat sstemlern çözümünde ullanılan cross yöntem açı yöntemnn özel br hal olup moment dağıtma (terasyon) metodu olara da ullanılmatadır. Açı

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları S Ü Fen Fa Fen Derg Sayı 36 () 83-94, KONYA En Küçü Etl Doz Düzeyn Belrleme Yöntemlernn Karşılaştırmaları Murat HÜSREVOĞLU, Hamza GAMGAM * Gaz Ünverstes, Fen Edebyat Faültes, İstatst Bölümü, Tenoullar,

Detaylı

MAK 212 - TERMODİNAMİK 19.04.2010 (CRN: 22594, 22599, 22603, 22608 ) 2009-2010 BAHAR YARIYILI ARA SINAV-2

MAK 212 - TERMODİNAMİK 19.04.2010 (CRN: 22594, 22599, 22603, 22608 ) 2009-2010 BAHAR YARIYILI ARA SINAV-2 MAK - ERMODİNAMİK 9.04.00 (CRN: 594, 599, 60, 608 ) 009-00 BAAR YARIYII ARA SINAV- Sru -) Br ısı pmpası sstem ışın br evn ısıtılmasında, yazın sğutulmasında ullanılacatır. Evn ç sıcalığının (ışın ve yazın)

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

2.a: (Zorunlu Değil):

2.a: (Zorunlu Değil): Uygulaa 5-7:.7 6 7 Baar Yarıyılı Jeodezk Ağlar e Uygulaaları UYGULAMA FÖYÜ,..7.a: (Zorunlu Değl: Yanına arılaayan br kule yükeklğnn trgonoetrk yükeklk belrlee yönteyle eaplanaı UYGULAMA.b : (Zorunlu C3

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER Uludağ Ünverstes İtsad ve İdar lmler Faültes Dergs lt XXV, ayı, 006, s. 41-70 ÜÇ OYUTLU ÇPRZ TLOLRD LOGRİTMİK DOĞRUL NLİZ: ÇOUK İŞGÜÜ DEĞİŞKENLERİ RINDKİ ETKİLEŞİMLER erpl ÜLÜL * Özet Kategor verlerde

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA

YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA HATİCE YENİAY PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatst Anablm Dalı İçn Öngördüğü

Detaylı

30 %30iskonto oranı bulunur.

30 %30iskonto oranı bulunur. Örne 9: 900 TL re eğerl ve 80 gün vael br senen peşn eğer, ç soo üzernen 8000 TL olara hesaplanığına göre uygulanan soo oranı ner? çözü:.yol: =900 TL n=80 gün P 8000TL t=? P..900 8000 80t 8000( 80t).900

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Çift Katlı Kumaş Dokuma Tekniği

Çift Katlı Kumaş Dokuma Tekniği DKUMA =;';9 ;'; Çft Katlı Kumaş Dokuma Teknğ Double cloth weavng Özet Nhat ÇELK, Yılmaz ERBL Çukurova Ünverstes, Müh Mm Fak Tekstl Mühendslğ Bölümü Bu çalışmada, 'kışlık gys, döşemelkler ve gen et olarak

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2007 ANKARA

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM

GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM Uludağ Ünverstes Mühendslk-Mmarlık Fakültes Dergs, Clt 11, Sayı 2, 2006 GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM Ahmet Emr DİRİK Özet: Grafk tabanlı şfreler, alfanümerk şfrelerden farklı

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ

MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ Erkam Murat BOZKURT Mehmet Turan SÖYLEMEZ Kontrol ve Otomasyon Mühendslğ Bölümü, Elektrk-Elektronk Fakültes, İstanbul

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

Communication Theory

Communication Theory Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Türk Bankacılık Sektöründe Etkinlik Analizi: 2008-2014

Türk Bankacılık Sektöründe Etkinlik Analizi: 2008-2014 Uluslararası Aya İşletme Faültes Dergs Yıl:26, C:8, S:, s.-2 Internatonal Journal of Aya Faulty of Busness Year:26, Vol:8, No: s.-2 Tür Baılı Setöründe Etnl Analz: 28-24 Effeny Analyss n Tursh Bng Setor:

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu TAP Fzk Olmpyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık

Detaylı

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma ERS- Raw Datası çn Dönüşüme Dayalı Sııştırma. Göhan. KASAPOĞLU, İrahm. PAPİLA, Bngül YAZGA, Sedef KET İstanul Ten Ünverstes, Eletr-Eletron Faültes, Eletron ve Haerleşme Mühendslğ, 066, Masla, İstanul Tel:

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Admnstraton Clt/Vol:39, Sayı/No:2,, 310-334 ISSN: 1303-1732 www.fdergs.org Stokastk envanter model kullanılarak

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt:13 Sayı:2 sh.75-87 Mayıs 2012 ÇELİK YAPI SİSTEMLERİNDE İKİNCİ MERTEBE ANALİZ YÖNTEMLERİNİN İNCELENMESİ (INVESTIGATION OF SECOND ORDER ANALYSIS

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

Tek yönlü VA için seçenek bir test yöntemi ve geliştirilen bilgisayar yazılımı

Tek yönlü VA için seçenek bir test yöntemi ve geliştirilen bilgisayar yazılımı www.statstcler.org İstatstçler Dergs (008) 75-8 İstatstçler Dergs Te yönlü VA çn seçene br test yöntem ve gelştrlen blgsayar yazılımı Engn Yıldıztepe Douz Eylül Ünverstes Fen-Edebyat Faültes İstatst Bölümü

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

MAK 744 KÜTLE TRANSFERİ

MAK 744 KÜTLE TRANSFERİ ZKÜ Fen Blmler Ensttüsü Makne Mühendslğ Anablm alı MAK 744 KÜTLE TRANSFERİ TERMOİNAMİK ve TRANSPORT BÜYÜKLÜKLERİNİN HESAPLANMASI İÇİN FORMÜLLER VE TABLOLAR Mustafa EYRİBOYUN ZONGULAK - 007 1. TERMOİNAMİK

Detaylı

Bağımsız örneklem t-testi tablo okuması

Bağımsız örneklem t-testi tablo okuması Bağımsız örneklem t-testi tablo okuması İki bağımsız grubu karşılaştırmada kullanılır; Normal dağılım (her bir grup için n>30) [Uygulamada daha küçük sayılar da kullanılmaktadır] Sürekli bağımlı değişken

Detaylı