GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME"

Transkript

1 GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

2 DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri

3 HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme veya eşitleme de bir resimdeki renk değerlerinin belli bir yerde kümelenmiş olmasından kaynaklanan, renk dağılımı bozukluğunu gidermek için kullanılan bir yöntemdir

4 HİSTOGRAM Histogram matematiksel olarak aşağıdaki şekilde gösterilebilir. h(r k )=n k r k : k nıncı parlaklık değeri n k : k nıncı parlaklık değerinin görüntüdeki sayısı

5 HİSTOGRAM 8-bit parlaklıklı görüntüde 56 gri seviye vardır. Tüm değerler ilk değerde toplanırsa renkleri fark etmek zorlaşır.

6

7

8 HİSTOGRAM STRETCHING Dönüştürülen ve orijinal histogramlar olasılık yoğunluk fonksiyonları ile ifade edilebilirler.

9 HİSTOGRAM EŞİTLEME

10 HİSTOGRAM EŞİTLEME

11 HİSTOGRAM EŞİTLEME Histogram Eşitleme Örneği Parlaklık ve görüntüdeki sayıları

12 HİSTOGRAM EŞİTLEME r T( r) round 7 p( i) i T() round 7* p() round 7*. T() round 7* p() p() round 7*.6 4 T() round 7* p() p() p() round 7*.84 6 T(3) round 7* p() p() p() p(3) 7 T( r) 7, r 4,5,6,7 Intensity Number of pixels 8

13 HİSTOGRAM EŞİTLEME

14 HİSTOGRAM EŞİTLEME Histogram Eşitleme Örneği Parlaklık ve görüntüdeki sayıları

15 HİSTOGRAM EŞİTLEME

16 HİSTOGRAM EŞLEŞTİRME İşlenecek olan histogramın bazen başka bir görüntünün histogramına benzer olması gerekebilir. Bir histogramın başka bir histograma benzetilmesi işlemine histogram eşleştirme denir.

17 BÖLGESEL HİSTOGRAM İŞLEME İşlenilen histogram işleme algoritmaları tüm görüntüye uygulanıyor. Fakat bölgesel histogram eşitleme sadece bir bölgeye uygulanıyor. Global histogram işleme resmin tümünün iyileştirilmesi için, Local histogram işleme ise bölgesel olarak iyileştirmesi için kullanılır.

18 LİNEER FİLTRELEME TEMELLERİ

19 LİNEER FİLTRELEME TEMELLERİ Diyelim ki MxN boyutundaki bir görüntü mxn boyutundaki bir filtre ile lineer filtreleme işlemine tabii tutuluyor.

20 LİNEER FİLTRELEME TEMELLERİ Bu durumda sonuç aşağıdaki gibi hesaplanır. Lineer filtreleme işlemi convolution işlemi diye adlandırılır.

21 LİNEER FİLTRELEME TEMELLERİ

22 SMOOTHING FILTERS Smoothing filtreler blurlaştırma ve gürültü azaltmak için kullanılırlar. Blurlama görüntüden küçük bir kısmı çıkarmadan önce yapılan bir uygulamadır.

23 SMOOTHING FILTERS

24 SMOOTHING FILTERS

25

26 NON LİNEER FILTERS

27 NON LİNEER FILTERS

28 NON LİNEER FILTERS

29 SHARPENING FILTERS

30 SHARPENING FILTERS

31 SHARPENING FILTERS

32 SHARPENING FILTERS

33 First Derivative (Gradient-Based) Methods Motivation Detect sudden changes in image intensity Gradient: sensitive to intensity changes image Gradient edge Thresholding operator map x(m,n) g(m,n) e(m,n) From Prof. Xin Li edge pixel threshold Gradient: f f x f y T e( m, n) non edge pixel g( m, n) T otherwise

34 What is the gradient? No Change I x I, ( k,) y Change

35 What is the gradient? Change I x I, (, k y ) No Change

36 Gradient-Based Methods Gradient Operators Robert: Prewitt: Sobel: g g ), ( ), ( ), ( n m g m n g m n g ), ( ), ( ), ( m n g m n g m n g Local gradient vector: Gradient magnitude: ), ( ), ( n m g m n g Approximation:

37 Gradient-Based Methods Generalization: Compass Operator maximal magnitude: Thresholding edge image ) }, ( max{ ), ( n m g m n q k k

38 Gradient-Based Methods original image g ( m, n) g ( m, n) g ( m, n) g ( m, n)

39 Example A 9x9 original image is given by ) Use Robert gradient operator to find its edges Use g( m, n) g ( m, n) g ( m, n) to estimate the gradient magnitude, and use T = 5 as the threshold for edge detection ) Use Sobel gradient operator to find its edges Use g( m, n) g ( m, n) g ( m, n) to estimate the gradient magnitude, and use T = as the threshold for edge detection

40 Example ) Use Robert gradient operator g( m, n) g original image g g( m, n) g ( m, n) g ( m, n) g( m, n) 7 thresholding T = 5 e( m, n)

41 Example ) Use Sobel gradient operator g( m, n) g original image g g( m, n) g( m, n) g ( m, n) g ( m, n) thresholding T = edge map e( m, n)

42 ORIGINAL IMAGE

43 ROBERT EDGE

44 PREWITT EDGE

45 LAPLACE EDGE

46 UYGULAMA Görüntünün Histogramını Çıkarma stretchlim komutu Görüntünün Histogramını Eşitleme Stretching komutu Filtreleme Salt and pepper ve median Example Robert,Prewitt ve Laplace İmage Addition İmage Cropping

47 ÖDEV 3 lena5.png görüntüsü için Histogramı çizilecek Histogram stretching uygulanacak Average filter uygulanacak Salt and pepper gürültüsü eklenecek Median filtere uygulanacak Tüm görüntüye 3 parlaklık değeri arttırılacak Görüntünün 3* pixelinden başlayıp e lük bir kısmı kesilecek. Son teslim önümüzdeki hafta

48 ÖNÜMÜZDEKİ HAFTA Frekans domendinde işlemler

49 SORULAR?

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

İmage segmentasyon (Görüntü Bölütleme)

İmage segmentasyon (Görüntü Bölütleme) İmage segmentasyon (Görüntü Bölütleme) Segmantasyon (Bölütleme) Segmentasyon genellikle görüntü analizinin ilk aşamasıdır. Görüntü bölütleme, bir görüntüyü her biri içerisinde farklı özelliklerin tutulduğu

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

Görüntü İşleme Dersi Ders-8 Notları

Görüntü İşleme Dersi Ders-8 Notları Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

Implementing Basic Image Processing Algorithms On FPGA

Implementing Basic Image Processing Algorithms On FPGA İSTANBUL TEKNİK ÜNİVERSİTESİ BİLGİSAYAR VE BİLİŞİM FAKÜLTESİ Implementing Basic Image Processing Algorithms On FPGA Bitirme Ödevi Mevlüt Mert Çil 040070113 Bölüm : Bilgisayar Mühendisliği Anabilim Dalı

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon ogungor@ktu.edu.tr İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi Wavelet Transform and Applications A. Enis Çetin Bilkent Üniversitesi Multiresolution Signal Processing Lincoln idea by Salvador Dali Dali Museum, Figueres, Spain M. Mattera Multi-resolution signal and

Detaylı

GÖRÜNTÜ İŞLEME - (5.Hafta)

GÖRÜNTÜ İŞLEME - (5.Hafta) GÖRÜNTÜ İŞLEME - (5.Hafta) RESİM YUMUŞATMA (BULANIKLAŞTIRMA-BLURRING) FİLTRELERİ Görüntü işlemede, filtreler görüntüyü yumuşatmak yada kenarları belirginleştirmek için dijital filtreler kullanılır. Bu

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi

Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi Hava Lazer Tarama Verilerinden Fourier Dönüşümü Kullanılarak Bina Detaylarının Belirlenmesi F. Karsli 1, * and O. Kahya 2 1 KTU, Mühendislik Fakültesi, Jeodezi ve Fotogrametri Müh. Böl. 61080 Trabzon (fkarsli@ktu.edu.tr)

Detaylı

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1)

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) BLM429 Görüntü İşlemeye Giriş Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) Yrd. Doç. Dr. Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak

Detaylı

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir.

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir. Rasterize işlemi: Type katmanında silgi, fırça, gradient vs. kullanılmaz. Kullanılması için rasterize işlemini yapmak gerekir. Katmana sağ tıklanarak Rasterize type tıklanır ve type katmanı normal katmana

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI NETLEŞTİRME/KESKİNLEŞTİRME FİLTRESİ (Sharpening Filter) Bu algoritma orjinal görüntüden, görüntünü yumuşatılmış halini çıkararak belirgin kenarların

Detaylı

SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA. Elif AYBAR. Anadolu Üniversitesi, Porsuk Meslek Yüksekokulu, 26430, Eskişehir/Türkiye

SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA. Elif AYBAR. Anadolu Üniversitesi, Porsuk Meslek Yüksekokulu, 26430, Eskişehir/Türkiye Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE SOBEL İŞLECİ KULLANILARAK RENKLİ GÖRÜNTÜLERDE KENAR BULMA ÖZET Elif AYBAR Anadolu Üniversitesi, Porsuk

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim

Detaylı

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the

Detaylı

UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI. Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA

UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI. Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA ii UYARLANABİLİR GÖRÜNTÜ FİLTRE TASARIMI Uğur GÜVENÇ DOKTORA TEZİ ELEKTRİK EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2008 ANKARA ii Uğur GÜVENÇ tarafından hazırlanan UYARLANABİLİR GÖRÜNTÜ

Detaylı

KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ IMAGE DE-BLURRING BASED ON EDGE TRANSITIONS

KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ IMAGE DE-BLURRING BASED ON EDGE TRANSITIONS 28 SDU International Journal of Technological Science pp. 28-36 Computational Technologies KENAR GEÇİŞLERİ KULLANILARAK GÖRÜNTÜDEKİ BULANIKLIĞIN GİDERİLMESİ Halime Boztoprak Geliş Tarihi/ Received: 11.02.2016,

Detaylı

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ Emre DANDIL, K.İBRAHİM KAPLAN Akademik Bilişim 2013 İnternet ve bilgisayar teknolojilerinin etkin kullanılmaya başlanması ile birlikte, bazı kişisel bilgilere veya

Detaylı

İclal Çetin Taş 1, Turgay İbrikçi*, 2 Sami Arıca, 2** Çukurova Üniversitesi Çukurova Üniversitesi. Özet. 1. Giriş.

İclal Çetin Taş 1, Turgay İbrikçi*, 2 Sami Arıca, 2** Çukurova Üniversitesi Çukurova Üniversitesi. Özet. 1. Giriş. Fundus Floresan Anjiografi Görüntülerinde Diyabetik Retinopati Nedeniyle Oluşan Kanamaların Kümeleme, Sınıflama ve İyileştirme Yöntemlerini Kullanarak Belirginleştirilmesi Emphasizing Hemorrhage of Regions

Detaylı

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM Cihan ALTUNTAġ a*, ÖzĢen ÇORUMLUOĞLU b a Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Harita Mühendisliği Bölümü, 42075,

Detaylı

BULANIK UYARLAMALI ORTALAMA F

BULANIK UYARLAMALI ORTALAMA F 5 Uluslararası İleri Teknoloiler Sempozyumu (IATS 09), 3-5 Mayıs 2009, Karabük, Türkiye BULANIK UYARLAMALI ORTALAMA FİLTRESİ KULLANARAK MR GÖRÜNTÜLERİNDEKİ DARBE GÜRÜLTÜSÜNÜN BASTIRILMASI IMPULSE NOISE

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması

Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması Cengiz Balta 1 Sıtkı Öztürk 2 Cüneyt Oysu 3 1,2 Elektronik ve Haberleşme Mühendisliği Bölümü, Kocaeli Üniversitesi 3 Mekatronik

Detaylı

Ayrıştırılabilir ve ayrıştırılamaz görüntü filtrelerinin genetik algoritmalar ile eğitiminin karşılaştırmalı bir analizi

Ayrıştırılabilir ve ayrıştırılamaz görüntü filtrelerinin genetik algoritmalar ile eğitiminin karşılaştırmalı bir analizi SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE e-issn: 2147-835X Dergi sayfası: http://dergipark.gov.tr/saufenbilder Geliş/Received 12.12.2016 Kabul/Accepted

Detaylı

Fırat Üniversitesi DENEY NO: 7 GÖRÜNTÜ İŞLEME UYGULAMALARI 1. GİRİŞ

Fırat Üniversitesi DENEY NO: 7 GÖRÜNTÜ İŞLEME UYGULAMALARI 1. GİRİŞ Fırat Üniversitesi Bilgisayar Mühendisliği BMÜ-431 Bilgisayar Sistemleri Laboratuvarı DENEY NO: 7 GÖRÜNTÜ İŞLEME UYGULAMALARI 1. GİRİŞ Elde edilen görüntünün bilgisayara aktarılıp üzerinde herhangi bir

Detaylı

Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi

Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi 6 th nternational Advanced Technologies Symposium (ATS ), 6-8 May 0, Elazığ, Turkey Dalgacık Dönüşümü ve Nötrozofi Yaklaşımı ile Gri Seviye Doku Görüntülerinin Bölütlenmesi K. Hanbay, A. Şengür Bingöl

Detaylı

HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE SAYISAL İŞARET İŞLEME İŞLEMCİLERİ ÜZERİNDE UYGULAMASI

HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE SAYISAL İŞARET İŞLEME İŞLEMCİLERİ ÜZERİNDE UYGULAMASI İstanbul Üniversitesi İstanbul University of Mühendislik Bilimleri Dergisi Engineering Sciences 1, 1-7, 2010 1, 1-7, 2010 HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE

Detaylı

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar BLM429 Görüntü İşlemeye Giriş Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar Yrd. Doç. Dr. Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru

Detaylı

Matematik Mühendisliği Bölümü Görüntü İşleme Ders Notları

Matematik Mühendisliği Bölümü Görüntü İşleme Ders Notları Matematik Mühendisliği Bölümü Görüntü İşleme Ders Notları Ders İçeriği Dijital Görüntü İşleme: Genel Tanımlar BMP Dosya Yapısı Thresholding Histogram Low-High Pass Filtreleme Kenar Belirleme Morfolojik

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB Diziler Vektörler Matrisler Prof. Dr. İrfan KAYMAZ What Diz kavramı is a computer??? Bir değişken içerisinde birden çok veri numaralandırılarak tek bir

Detaylı

GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI

GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI GÖRÜNTÜ DÖNÜŞÜMÜNDE YAPAY SİNİR AĞLARI YAKLAŞIMI Esra HASALTIN 1 Erkan BEŞDOK 2 1 Bilgisayar Mühendisliği Bölümü, Mühendislik Fakültesi, Erciyes Üniversitesi, 3839, Talas, Kayseri 2 Bilgisayar Anabilim

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders

Detaylı

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI Bu konuda bir çok algoritma olmasına rağmen en yaygın kullanılan ve etkili olan Sobel algoritması burada anlatılacaktır. SOBEL FİLTRESİ Görüntüyü

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 618 Trabzon ogungor@ktu.edu.tr 1 İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 10 Sayı: 2 sh. 23-30 Mayıs 2008

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 10 Sayı: 2 sh. 23-30 Mayıs 2008 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 10 Sayı: 2 sh. 23-30 Mayıs 2008 SAFRA KESESİ GÖRÜNTÜLERİNİN AYRIK DALGACIK DÖNÜŞÜMÜ VE DURAĞAN DALGACIK DÖNÜŞÜMÜ KULLANILARAK KARŞILAŞTIRILMALI

Detaylı

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering

Yönbağımsız ve Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Yönbağımsız Yönbağımlı Gauss Süzgeçleme Isotropic and Anisotropic Gaussian Filtering Deniz Yıldırım 1, Bekir Dizdaroğlu 2 1 Harita Mühendisliği Bölümü, 2 Bilgisayar Mühendisliği Bölümü Karadeniz Teknik

Detaylı

Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi. Computer Based Vehicle Plate Recognition System

Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi. Computer Based Vehicle Plate Recognition System BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 3, EYLÜL 2008 1 Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi Okan BİNGÖL 1, Ömer KUŞCU 2 1 Süleyman Demirel Üniversitesi Teknik Eğitim Fakültesi Elektronik-Bilgisayar

Detaylı

Güç Spektral Yoğunluk (PSD) Fonksiyonu

Güç Spektral Yoğunluk (PSD) Fonksiyonu 1 Güç Spektral Yoğunluk (PSD) Fonksiyonu Otokorelasyon fonksiyonunun Fourier dönüşümü j f ( ) FR ((τ) ) = R ( (τ ) ) e j π f τ S f R R e d dτ S ( f ) = F j ( f )e j π f ( ) ( ) f τ R S f e df R (τ ) =

Detaylı

SiberLojikCV Sayısal Görüntü İşleme Platformu

SiberLojikCV Sayısal Görüntü İşleme Platformu SiberLojikCV Sayısal Görüntü İşleme Platformu 1 Sayın Araştırmacı; Dünyada gelişen teknoloji ile hayatın her alanında, kendisini daha iyi hissettiren sayısal görüntü işleme yazılım algoritmaları, yaşantımızı

Detaylı

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

OPTİK GÖRÜNTÜLER İÇİN GERİ-İZLEME ARAMA OPTİMİZASYON ALGORİTMASI (BSA) VE FARK GÖRÜNTÜSÜ KOMBİNASYONU TABANLI YENİ BİR DEĞİŞİM SAPTAMA YAKLAŞIMI

OPTİK GÖRÜNTÜLER İÇİN GERİ-İZLEME ARAMA OPTİMİZASYON ALGORİTMASI (BSA) VE FARK GÖRÜNTÜSÜ KOMBİNASYONU TABANLI YENİ BİR DEĞİŞİM SAPTAMA YAKLAŞIMI OPTİK GÖRÜNTÜLER İÇİN GERİ-İZLEME ARAMA OPTİMİZASYON ALGORİTMASI (BSA) VE FARK GÖRÜNTÜSÜ KOMBİNASYONU TABANLI YENİ BİR DEĞİŞİM SAPTAMA YAKLAŞIMI Ümit Haluk ATASEVER 1, Pınar ÇİVİCİOĞLU 2, Erkan BEŞDOK

Detaylı

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5 Uydu Görüntülerinin Rektifikasyon ve Registrasyonu Hafta - 5 1 Rektifikasyon Uydulardan veya uçaklardan elde edilen ham uzaktan algılama görüntüleri Dünya nın düzensiz yüzeyinin temsilidir. Nispeten dümdüz

Detaylı

ÖNSÖZ... x. ÖZET...xi. ABSTRACT...xii 2. SAYISAL GÖRÜNTÜ VE ÖZELLİKLERİ... 3

ÖNSÖZ... x. ÖZET...xi. ABSTRACT...xii 2. SAYISAL GÖRÜNTÜ VE ÖZELLİKLERİ... 3 İÇİNDEKİLER Sayfa SİMGE LİSTESİ...iv KISALTMA LİSTESİ... v ŞEKİL LİSTESİ...vi ÖNSÖZ... x ÖZET...xi ABSTRACT...xii 1. GİRİŞ... 1 2. SAYISAL GÖRÜNTÜ VE ÖZELLİKLERİ... 3 2.1 Sayısal Görüntünün Tanımı... 3

Detaylı

HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE SAYISAL İŞARET İŞLEME İŞLEMCİLERİ ÜZERİNDE UYGULAMASI

HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE SAYISAL İŞARET İŞLEME İŞLEMCİLERİ ÜZERİNDE UYGULAMASI istanbul Üniversitesi Mühendislik Bilimleri Dergisi 1, 1-7, 2010 istanbul University of Engineering Sciences 1, 1-7, 2010 HAREKETLİ GÖRÜNTÜDE KENAR BELİRLEME ALGORİTMASININ ANALOG HÜCRESEL SİNİR AĞI VE

Detaylı

Kumaş hatalarının online/offline tespit sistemleri ve yöntemleri. Online/offline detection systems of fabric defects and methods

Kumaş hatalarının online/offline tespit sistemleri ve yöntemleri. Online/offline detection systems of fabric defects and methods SAÜ. Fen Bil. Der. 18. Cilt, 1. Sayı, s. 49-69, 2014 SAU J. Sci. Vol 18, No 1, p. 49-69, 2014 Kumaş hatalarının online/offline tespit sistemleri ve Kazım Hanbay 1*, M. Fatih Talu 2 1* Bingöl Üniversitesi,

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 011, Elazığ, Turkey Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Detaylı

YÜKSEK LĐSANS TEZĐ Serkan DĐNÇER (504061127)

YÜKSEK LĐSANS TEZĐ Serkan DĐNÇER (504061127) ĐSTANBUL TEKNĐK ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ DĐJĐTAL GÖRÜNTÜ ĐŞLEME TEKNĐKLERĐ ĐLE MATLAB VE MĐKROKONTROLÖR KULLANILARAK ĐKĐ BOYUTLU GÖRÜNTÜNÜN ÇĐZDĐRĐLMESĐ YÜKSEK LĐSANS TEZĐ Serkan DĐNÇER (504061127)

Detaylı

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab)

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Dersin Adı: Say.İşaret İşleme Tas.&Uyg. Sınıf Eğitmeni: Bilge Günsel Kalyoncu

Detaylı

EM302 - SAYISAL İŞARET İŞLEME DERSİ MATLAB PROJELERİ 2012 BAHAR DÖNEMİ

EM302 - SAYISAL İŞARET İŞLEME DERSİ MATLAB PROJELERİ 2012 BAHAR DÖNEMİ EM302 - SAYISAL İŞARET İŞLEME DERSİ MATLAB PROJELERİ 2012 BAHAR DÖNEMİ 1. SESLİ-SESSİZ AYRIMI : İçerisinde sesli ve sessiz harfler bulunan bir konuşma sinyalini yükleyiniz. Genellikle konuşma işleme stratejilerinde

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2014 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 16 Ekim 2014 Perşembe 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA BAĞLANTILI BİLEŞEN ETİKETLEME (Çift Geçiş Metodu) Bir resim üzerindeki aynı renk koduna sahip bölgelerin ortaya çıkarılması, birbirinden ayrılması

Detaylı

0227130 FOTOGRAMETRİ KAMERA KALİBRASYONU ÖDEV YÖNERGESİ

0227130 FOTOGRAMETRİ KAMERA KALİBRASYONU ÖDEV YÖNERGESİ 0227130 FOTOGRAMETRİ Giriş: KAMERA KALİBRASYONU ÖDEV YÖNERGESİ 0227130 fotogrametri dersini alan öğrencilerin teorik dersleri izlemesinin yanında uygulamalı bir çalışma olan Kamera Kalibrasyonu Ödevi yapması

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ LAZER IŞINI İLE İŞARETLENEN HAREKETLİ CİSİMLERİ HEDEFE KİTLENEREK İZLEYEN SİSTEM EVRİM GÜNER

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ LAZER IŞINI İLE İŞARETLENEN HAREKETLİ CİSİMLERİ HEDEFE KİTLENEREK İZLEYEN SİSTEM EVRİM GÜNER BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ LAZER IŞINI İLE İŞARETLENEN HAREKETLİ CİSİMLERİ HEDEFE KİTLENEREK İZLEYEN SİSTEM EVRİM GÜNER YÜKSEK LİSANS TEZİ 2016 LAZER IŞINI İLE İŞARETLENEN HAREKETLİ CİSİMLERİ

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Maden Tetkik ve Arama Genel Müdürlüğü, Jeofizik Etütleri Dairesi Başkanlığı, 06800 Çankaya, ANKARA

Maden Tetkik ve Arama Genel Müdürlüğü, Jeofizik Etütleri Dairesi Başkanlığı, 06800 Çankaya, ANKARA Yerbilimleri, 35 (2), 175-184 Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University Manyetik Belirti

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

Unlike analytical solutions, numerical methods have an error range. In addition to this

Unlike analytical solutions, numerical methods have an error range. In addition to this ERROR Unlike analytical solutions, numerical methods have an error range. In addition to this input data may have errors. There are 5 basis source of error: The Source of Error 1. Measuring Errors Data

Detaylı

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu İşaret İşleme ve Haberleşmenin Temelleri Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue İşaretler: Bilgi taşıyan işlevler Sistemler: İşaretleri işleyerek yeni işaretler

Detaylı

GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI SEGMENTATION OF IMAGES WITH COLOR SPACE

GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI SEGMENTATION OF IMAGES WITH COLOR SPACE İleri Teknoloji Bilimleri Dergisi Cilt 3, Sayı 1, 1-8, 2014 Journal of Advanced Technology Sciences Vol 3, No 1, 1-8, 2014 GÖRÜNTÜLERİN RENK UZAYI YARDIMIYLA AYRIŞTIRILMASI Recep DEMİRCİ 1 Uğur GÜVENÇ

Detaylı

Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.2, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:2, 2007 Makalenin Geliş Tarihi : 11.12.2006 Makalenin Kabul Tarihi : 27.09.2007

Detaylı

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması URSI-TÜRKİYE 214 VII. Bilimsel Kongresi, 28-3 Ağustos 214, ELAZIĞ Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması Cafer Budak

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı