Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim."

Transkript

1 FRAKTALLAR 1

2 2

3 * 3

4 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

5 Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru oluştur. Bir araya getirilen doğrular «iki boyutlu» bir düzlemi, bir araya getirilen düzlemler ise «üç boyutlu» bir uzam (bir nesnenin uzayda kapladığı yer) oluşturur.

6 6

7 * Kar tanesi eğrisinin boyutu nedir? Kar tanesinin boyutunu nasıl ölçebiliriz; bir çok boyut tanımından hangisini kullanmamız gerekir? 7

8 Alman matematikçi Felix Hausdorff un fikirleri işte bu noktada yararlı olmuştur. «Hausdorff boyutu» normal şekillerin olağan nomenklaturasıyla (adlar dizgesi, bir bilim dalına ait terimler, terminoloji) örtüşür; böylece doğrunun boyutu 1, karenin boyutu 2, küpün boyutu 3 tür. Böyledir, çünkü Hausdorff boyutu (d) uzunluk ve alanın ölçülmesine dayanır. 8

9 * Fraktal boyut

10 Bir karenin her kenarı 3 kat büyütülecek olursa ortaya çıkan yeni alan önceki değerin 9 katı büyüklüğünde olacaktır. 9=3^2 olduğundan, iki boyutlu bir karenin Hausdorff boyutu kuvvettir, yani d=2 dir. Bu tabii ki kareden beklediğimiz değerdir. Kuvvet, Hausdorff boyutunun anahtarıdır. 10

11 Kar tanesi eğrisini üreten unsur bir doğru parçasıdır; bu doğruyu üç kat büyütüp değişiklik olarak ekleyecek olursak baştakinden dört kat büyük bir doğrumuz olur. 4=3^d olduğunda d nin değerinin ne olduğunu bulmamız gerekir. d nin değerinin 1 ile 2 arasında olması gerekir; çünkü 4, 3^1 ile 3^2 arasında yer alır ve aslında d=1,29224 Bu yeni bir şeydir. Boyutu tam sayı olmayan, kesirli bir boyutu olan bir eğrimiz var. 11

12 12 Koch Eğrisi

13 13

14 Fraktal, Fraktal; 14

15 *..."öyle bir cisim olsun ki hangi noktasını alırsak alalım büyütüp baktığımızda yine başlangıçtaki şekille karşılaşalım ve bu işleme ne kadar devam edersek edelim aynı olay tekrarlansın. İşte fraktal, yani kendine benzerlik kavramının tanımı "...

16 *

17

18 *

19 *

20 *

21 *

22 *

23 23

24

25 *

26 *

27 *

28 *

29 *

30 *

31 *

32 *

33 *

34 *

35 *

36 * kendine benzeme (self similarity) iterasyon

37 *

38 *

39 *

40 *

41 FRAKTAL = ÖRÜNTÜ? 1) Bir şeklin belli bir oranda küçültülmüş veya belli bir oranda büyütülmüş modelleri ile inşa edilen örüntülere FRAKTAL denir. Her örüntü bir fraktal belirtmez. Her fraktal bir örüntüdür. 2) Bir cismin hangi noktasına bakarsak bakalım aynı şekil büyüyerek veya küçülerek tekrarlanıyorsa bu şekillere FRAKTAL denir. Bir örüntünün FRAKTAL belirtmesi için, örüntünün herhangi bir parçasını küçülttüğümüzde veya büyüttüğümüzde bir önceki veya bir sonraki örüntüyü elde etmemiz gerekir. 3) FRAKTALIN kuralı ikinci adıma bakılarak bulunur. Bir örüntünün FRAKTAL olup olmadığını anlamak için 3.adımının da verilmesi gerekir. 41

42 *ÇOKGENLERDE EŞLİK: İki çokgenin karşılıklı açılarının ölçüleri ve karşılıklı kenarlarının uzunlukları eşit ise bu iki çokgen eştir. 42

43 ÇOKGENLERDE BENZERLİK: İki çokgenin karşılıklı açılarının ölçüleri eşit ve karşılıklı kenarlarının uzunlukları orantılı ise bu iki çokgen benzerdir. Benzer iki çokgende karşılıklı kenarların uzunlukları oranına benzerlik oranı denir. k sembolü ile gösterilir. 43

44 ÖRÜNTÜLER (DİZİLER): Uygun geometrik şekillerin aralarında boşluk oluşturmadan bir araya getirilmesi işlemine örüntü, oluşan şekle süsleme denir. Örüntü belirli bir kurala göre diziliştir. Bu diziliş (örüntü), sayı örüntüsü (dizisi) veya şekil örüntüsü (dizisi) şeklinde olabilir. Bir örüntünün oluşması için bir araya getirilecek uygun geometrik şekillerin merkez noktası çevresindeki iç açıların toplamı 360 derece olmalıdır. 44

45 ARİTMETİK DİZİLER: Bir dizideki ardışık terimler arasındaki fark sabit ise bu diziye aritmetik dizi denir. Aritmetik diziler artarak veya azalarak devam eder. Bir dizideki ardışık iki terim arasındaki farka ortak fark denir. Ortak fark r ile gösterilir. 1)Aritmetik dizi artarak devam ediyorsa genel terimi bulmak için aşağıdaki formül kullanılır. 45

46 ÖRNEK-1: İlk terimi 18,ortak farkı 3 olan ve artarak devam eden bir aritmetik dizinin 10.terimi kaçtır? a)76 b)62 c)54 d)45 ÖRNEK-2: İlk terimi 5,ortak farkı 6 olan ve artarak devam eden bir aritmetik dizinin 51.terimi kaçtır? a)305 b)405 c)205 d)505 46

47 ÖRNEK-3: 1,4,7,10,.. sayı örüntüsünün genel terimi kaçtır? a)3.n+1 b)3.n-1 c)3.n+2 d)3.n-2 47

48 ÖRNEK-4: Yandaki örüntü karelerden oluşmuştur.şekil örüntüsünü sayı örüntüsü ne çevirdiğimizde aşağıdaki hangi seçenek olur? a)1,3,7, b)1,4,8, c)1,2,3, d)1,3,5,

49 2)Aritmetik dizi azalarak devam ediyorsa genel terimi bulmak için aşağıdaki formül kullanılır. AÇIKLAMA: Bir sayı örüntüsünde ardışık 2 terim arasındaki ortak fark sabit (aynı) ise bu sayı örüntüsü aritmetik dizidir. ÖRNEK-1: İlk terimi 48,ortak farkı 3 olan ve azalarak devam eden bir aritmetik dizinin 11.terimi kaçtır? a)-16 b)-12 c)-14 d)-15 49

50 ÖRNEK-2:100 sayısından başlayarak geriye doğru 3 er 3 er saydığımızda 21.olarak hangi sayıyı söyleriz? a)30 b)60 c)40 d)50 ÖRNEK-3:200 sayısından başlayarak geriye doğru 4 er 4 er saydığımızda 10.olarak hangi sayıyı söyleriz? a)122 b)136 c)148 d)164 50

51 3) GEOMETRİK DİZİ: Belirli bir sayı seçilir. Bu sayı ile başka bir sayı sürekli çarpılarak veya bölünerek bir sayı örüntüsü oluşturulursa böyle örüntülere geometrik dizi denir. Geometrik dizide ardışık 2 terimin oranına çarpan sayıya eşittir. Bu sayıya ortak çarpan denir. Ortak çarpan r ile gösterilir. AÇIKLAMA: Bir dizide ardışık 2 terim arasındaki ortak çarpan sabit (aynı) ise bu örüntü geometrik dizidir. 51

52 ÖRNEK-1) 4,12,36,108, sayı örüntüsü veriliyor. Bu örüntünün 7.terimi kaçtır? a)1256 b)4328 c)2916 d)729 ÖRNEK-2) 2,8,32,128, sayı örüntüsü veriliyor. Bu örüntünün 6.terimi kaçtır? a)4096 b)2048 c)1024 d)512 52

53 53

54 54

55 *

56 *

57 *

58 *

59 *

60

61

62

63

64

65

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

6. 1. terimi 35, 4. terimi 26 olan aritmetik dizinin. 7. İlk üç teriminin toplamı 27 ve ilk 5 teriminin. 8. İlk terimi a1

6. 1. terimi 35, 4. terimi 26 olan aritmetik dizinin. 7. İlk üç teriminin toplamı 27 ve ilk 5 teriminin. 8. İlk terimi a1 ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Aritmetik ve Geometrik Diziler Dersin Konusu. Birinci terimi, ikinci terimi 7 olan aritmetik dizisinin genel terimi aşağıdakilerden hangisidir?

Detaylı

FRAKTAL GEOMETRİVE UYGULAMALARI

FRAKTAL GEOMETRİVE UYGULAMALARI FRAKTAL GEOMETRİVE UYGULAMALARI 4.1 Vonkoch Eğrisi Şekil 4.1. Von Koch Eğrisi Burada bir doğru parçası ile başlanır. Doğru parçası üç eşit parçaya ayrılır, ortadaki parça alınır ve bir eşkenar üçgen şeklinde

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot FRAKTAL VE TARİHÇESİ Matematiksel gerçeklerin niteliğinde var olan kesinliğin özetinde aksiyomatik yapılar vardır. Öklid geometrisi, matematik tarihinde bunun önde gelen örneğidir. Matematiksel doğruların,

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ * 2,4,6,8,10...

FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ * 2,4,6,8,10... FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ ÖRÜNTÜLER Belirli bir kurala göre devam eden şekil veya sayı dizilimleridir. *,4,6,8,10... Yukarıdaki dizilim ikişer ikişer artarak devam eden bir örüntüdür. 1.adım.adım

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve

Örnek...4 : Özellik 2. w w w. m a t b a z. c o m. Bir (a n) geometrik dizisinin ilk terimi 1/2 ve GEOMETRİK DİZİ Bir () dizisinin ardışık terimleri arasındaki oranı ayni sabit sayi ise, bu di zi ye geom etrik dizi denir. a n N +, n +1 =r ise, () ortak çarpanı r olan geom etrik dizi dir. Örnek...4 :

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

) dizisinin kaçıncı terimi 4 tür?

) dizisinin kaçıncı terimi 4 tür? Soru : Genel terimi Diziler, değer kümelerine göre isimlendirilir. f: N + R ye tanımlı f fonksiyonuna reel sayı dizisi denir. 4n + 1, n 0 (mod ) (a n ) = { n, n 1 (mod ) n 1, n (mod ) olan dizi için a

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA 8. SINIF YARIYIL ÇALIŞMA TESTİ TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA TEST 1 (11-1) 1. I. Geometrik fraktal kendini giderek küçülen veya büyüyen boyutta yineler. II. Fraktalın

Detaylı

8. SINIF ESLiK ve BENZERLiK

8. SINIF ESLiK ve BENZERLiK 0 8. SINI SLiK ve NZRLiK şlik: Karşılıklı açılar ve kenar uzunlukları eşit olmalı. Sembolleri enzerlik: Karşılıklı açılar eşit, karşılıklı kenarlar orantılı olmalı. Sembolleri ~ veya olduğuna göre verilmeyen

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir.

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir. Geometrik Cisimlerin Hacimleri Uzayda yer kaplayan (üç boyutlu) nesnelere cisim denir. Düzgün geometrik cisimlerin hacimleri bağıntılar yardımıyla bulunur. Eğer cisim düzgün değilse cismin hacmi cismin

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI ., x x 0,,4 0,7 eşitliğinde x kaçtır? 4. a b b c 3 olduğuna göre a b c ifadesinin değeri kaçtır? A) 0, B) 0,5 C) 0, D) 0,5 A) 9 B) 8 C) D) 4 3. x.y 64, y.x 6 olduğuna göre, x.y ifadesinin değeri kaçtır?

Detaylı

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI Fraktal geometri, yaklaşık çeyrek asırdır bilim dünyasının gündeminde olan ve doğadaki karmaşık biçim ve süreçleri gittikçe daha iyi anlamamıza yardımcı olan özel bir

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

CK MTP21 AYRINTILAR. 5. Sınıf Matematik. Konu Tarama No

CK MTP21 AYRINTILAR. 5. Sınıf Matematik. Konu Tarama No 5. Sınıf 01 Milyonlar 02 Örüntüler Adı 03 Doğal Sayılarla Toplama ve Çıkarma İşlemleri 04 Doğal Sayılarla Çarpma ve Bölme İşlemleri 05 Zihinden İşlemler, Bölme İşleminde Kalanı Yorumlama, Çarpma ve Bölme

Detaylı

BENZERLİK BOYUTU. 1 = lim log 2. log olduğunu görmüştük.

BENZERLİK BOYUTU. 1 = lim log 2. log olduğunu görmüştük. BENZERLİK BOYUTU Koch Eğrisi, Sierpinski Şapkası gibi kendinebenzer fraktallar için kutu ölçüleri, Koch Eğrisinin ölçek çarpanının kuvvetleri ⅓, şapkanın ise ½ olarak alındığında kutu-sayma boyutlarının

Detaylı

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. Kombinasyon Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. n elemanın tüm r li kombinasyonlarının sayısı; (, ) C n r ( ) r n P n, r n!

Detaylı

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. Kombinasyon Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. n elemanın tüm r li kombinasyonlarının sayısı; (, ) C n r ( ) r n P n, r n!

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez?

C C C C C C CC CC. 8.Sınıf MATEMATİK. Fraktallar Konu Testi. Test Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar Konu Testi MATEMATİK 8.Sınıf Test-01 1. Aşağıdakilerden hangisi fraktallar için söylenemez? Fraktallar, bir şeklin orantılı olarak küçültülmesi ya da büyütülmesiyle elde edilir. Fraktalın, küçük

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

7. SINIF ÖĞRETİM PROGRAMI

7. SINIF ÖĞRETİM PROGRAMI 7. SINIF ÖĞRETİM PROGRAMI Öğrenme Alanları ve Alt Öğrenme Alanları 7.1. Sayılar ve İşlemler 7.1.1. Tam Sayılarla Çarpma ve Bölme İşlemleri 7.1.2. Rasyonel Sayılar 7.1.3. Rasyonel Sayılarla İşlemler 7.1.4.

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır.

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır. 1 TEMEL ZI KVRMLR Nokta: Kalemin kâğıda, tebeşirin tahtaya bıraktığı ize nokta denir. Nokta boyutsuzdur. Yani; noktanın eni, boyu ve yüksekliği yoktur. ütün geometrik şekiller noktalardan oluşur. Noktalar

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

TED KDZ EREĞLİ KOLEJİ VAKFI ÖZEL İLKOKULU 2013/2014 ÖĞRETİM YILI 6.SINIF ÜNİTELENDİRİLMİŞ MATEMATİK YILLIK PLANI

TED KDZ EREĞLİ KOLEJİ VAKFI ÖZEL İLKOKULU 2013/2014 ÖĞRETİM YILI 6.SINIF ÜNİTELENDİRİLMİŞ MATEMATİK YILLIK PLANI EYLÜL (16-20).09. 2013 KÜMELER KÜMELER 1.ÜNİTE KÜMELER EYLÜL (9 13).09.2013 1.ÜNİTE KÜMELE R KÜME LER TED KDZ EREĞLİ KOLEJİ VAKFI ÖZEL İLKOKULU 2013/2014 ÖĞRETİM YILI 6.SINIF ÜNİTELENDİRİLMİŞ MATEMATİK

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

1- Matematik ve Geometri

1- Matematik ve Geometri GEOMETRİ ÖĞRETİMİ 1- Matematik ve Geometri Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

arşılıklı kenar uzunlukları ve açılarının ölçüleri birbirine eşit olan çokgenlere eş çokgenler denir şlik sembolü dir m () m () 3 cm m () m () m(g) m(h) m() m() 4 2 cm GH H 3 cm G 4 2 cm GH H G Yukarıdaki

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

MATEMATİK 2+2 UYGULAMALI ÖĞRENME SETİ. Her Haftaya Bir Bölüm ÇEK KOPAR SINIF

MATEMATİK 2+2 UYGULAMALI ÖĞRENME SETİ. Her Haftaya Bir Bölüm ÇEK KOPAR SINIF MATEMATİK 2 SINIF UYGULAMALI ÖĞRENME SETİ ÇEK KOPAR 10 9 11 12 1 2 3 2+2 Her Haftaya Bir Bölüm 8 4 Copyright Şifre Yayıncılık ve Eğitim Gereçleri Tic. A.Ş. Bu kitabın her hakkı Şifre Yayıncılık ve Eğitim

Detaylı

5. SINIF MATEMATİK YILLIK PLANI

5. SINIF MATEMATİK YILLIK PLANI 5. SINIF MATEMATİK YILLIK PLANI 2018-2019 DOĞAL SAYILAR VE İŞLEMLER 1.hafta 17-23 Eylül Milyonlar 5.1.1.1 5.1.1.2 6 01 1-2 2.hafta 24-30 Eylül Örüntüler 5.1.1.3 11 02 3-4 3.hafta 01-07 Ekim Doğal Sayılarda

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

VI. OLİMPİYAT SINAVI SORULAR

VI. OLİMPİYAT SINAVI SORULAR SORULAR 1. N sayısı 1998 basamaklı ve tüm basamakları 1 olan bir doğal sayıdır. Buna göre N sayısının virgülden sonraki 1000. basamağı kaçtır? A)0 B)1 C)3 D)6 E) Hiçbiri. n Z olmak üzere, n sayısı n sayısına

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «.

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «. UZAY GEOMETRİ BAZI KAVRAM ve TANIMLAR Geometride nokta, doğru, düzlem ve uzay gibi bazı kavramlar tanımsız olarak kabul edilir. Kalemin veya sivri bir şeyin ucunun bıraktığı ize nokta diyebiliriz. Cetvelin

Detaylı

1.1 Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır.

1.1 Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır. FİNANSAL MATEMATİK ALTYAPI. Üslü İfadeler: Üslü ifadelerle ilgili aşağıdaki kuralların hatırlanması faydalıdır. i-) Toplama: Eşit üslü benzer ifadelerin katsayıları toplanır. 3a 5 +,5a 5 =,5a 5 a 3-7a

Detaylı

Ek 6: 6-8 Sınıflar Matematik Öğrenme Alanları ve Alt Öğrenme Alanları

Ek 6: 6-8 Sınıflar Matematik Öğrenme Alanları ve Alt Öğrenme Alanları Ek 6: 6-8 Sınıflar Matematik Öğrenme Alanları ve Alt Öğrenme Alanları SINIFLAR 6. SINIF 7. SINIF 8. SINIF ö ğ r e n m e a l a n l a r ı sayılar geometri ölçme Olasılık ve istatistik a l t ö ğ r e n m e

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

. KENDİNE BENZERLİK VE FRAKTAL BOYUT

. KENDİNE BENZERLİK VE FRAKTAL BOYUT . KEİE BEZERLİK VE FRAKAL BOYU Bu bölüme fraktal geometrinin temel ve birbiriyle ilişkili iki temel kavramı olan Kenine Benzerlik ve Fraktal Boyut incelenecektir. 3. Kenine Benzerlik (Self similarity)

Detaylı

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki

5. SINIF MATEMATİK. Test , 11, 18, 25, 32, sayı örüntüsünde ardışık iki terim arasındaki Test - 3 8.. adım 2. adım Yukarıdaki şekil örüntüsünün. adımında dört kibrit çöpü kullanılırken 2. adımında yedi kibrit çöpü kullanılmıştır. Buna göre. adımdaki şekil için kaç kibrit çöpü kullanılır? 0.,,

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

DİZİLER - SERİLER Test -1

DİZİLER - SERİLER Test -1 DİZİLER - SERİLER Test -. a,,,,, dizisii altıcı terimi. Geel terimi, a ola dizii kaçıcı terimi dir? 6. Geel terimi, a! ola dizii dördücü terimi 8 8 6. Geel terimi, a k k ola dizii dördücü terimi 6 0 6

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı Dar Açı Gönyemizin dik kısmını herhangi bir şeklin köşesine yerleştirdiğimizde, şeklin köşesindeki açı gönyeden küçük olursa o köşedeki açıya dar açı denir. gönye Demek ki ölçmeye çalıştığımız açı dar

Detaylı

İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME Sınavlarına Yönelik İçerik Detayları

İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME Sınavlarına Yönelik İçerik Detayları KUZEY KIBRIS TÜRK CUMHURİYETİ MİLLİ EĞİTİM GENÇLİK VE SPOR BAKANLIĞI TALİM ve TERBİYE DAİRESİ MÜDÜRLÜĞÜ 2012-2013 ÖĞRETİM YILI İlköğretim 5. Sınıfların Matematik Alanı KGS-1, KGS-2 ve KGS -YERLEŞTİRME

Detaylı

Matematik Eğitimi Çalıştayları

Matematik Eğitimi Çalıştayları Okul Öncesi Çalıştayları - 20 Ağustos 2014 Etkinlikleri Sayı Kavramı ve gösterimi Bir bütünü 2 eş parçaya bölme ve yarımı bütüne tamamlama Verilen bir örüntüyü devam ettirme, yeni örüntü kurma ve anlatma

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER KÜMELER Küme, nesnelerin iyi tanımlanmış bir listesidir. Kümeyi oluşturan nesnelerin her birine kümenin elemanı denir. Kümeler genellikle A, B, C,... gibi büyük harflerle gösterilir. x nesnesi A kümesinin

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D)

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D) Ad : Soyad : S n f : Nu. : Okulu : Çokgenler Dörtgenler MATEMAT K TEST 15 1. Afla dakilerden hangisi çokgen de ildir? 4. Afla daki çokgenlerden hangisi düzgün çokgen de ildir? 2. Afla daki çokgenlerden

Detaylı

Geometrik Örüntüler X X X

Geometrik Örüntüler X X X 1. sınıf 2. sınıf 3. sınıf 4. sınıf Geometrik Cisimler ve X X X X 2 GEOMETRİ Uzamsal İlişkiler X X X X Geometrik Örüntüler X X X Geometride Temel Kavramlar X X 1. sınıf 2. sınıf 3. sınıf 4. sınıf M.1.2.1.

Detaylı

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

sunu Erciyes İş Yerleri Sitesi 198 cadde no: 4 Yenimahalle / Ankara Tel: Fax:

sunu Erciyes İş Yerleri Sitesi 198 cadde no: 4 Yenimahalle / Ankara Tel: Fax: Copyright Bu soruların her hakkı ÇANTA Yayıncılık A.Ş. ye aittir. Hangi amaçla olursa olsun, tamamının veya bir kısmının kopya edilmesi, fotoğraflarının çekilmesi, herhangi bir yolla çoğaltılması ya da

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız Ortaöğretim Alanı MF - 0 Matematik Ders Föyü Terim Bir sözcüğün bilim, spor, sanat, meslek vb. içerisinde kazandığı özel anlama terim denir. NOT Küp Matematik Ova Coğrafya Asit Kimya Mercek Fizik Sol taraftaki

Detaylı

2019-AYT/Matematik MATEMATİK TESTİ. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.

2019-AYT/Matematik MATEMATİK TESTİ. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. 1. Karmaşık sayılar kümesinde işleminin sonucu kaçtır? A) 15 B) 12 C)

Detaylı

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI Soru 1: Bir üçgenin iç açılarının ölçüleri aritmetik dizi oluşturmaktadır. Bu üçgenin en kısa kenar uzunluğu 6 cm ve en uzun kenarı 14 cm ise, ortanca kenar uzunluğu kaç cm dir? A) 2 37 B) 39 C) 13 D)

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

2018 / 2019 EĞİTİM - ÖĞRETİM YILI DESTEKLEME VE YETİŞTİRME KURSLARI 7. SINIF MATEMATİK DERSİ YILLIK PLAN ÖRNEĞİ. Konu Adı Kazanımlar Test No Test Adı

2018 / 2019 EĞİTİM - ÖĞRETİM YILI DESTEKLEME VE YETİŞTİRME KURSLARI 7. SINIF MATEMATİK DERSİ YILLIK PLAN ÖRNEĞİ. Konu Adı Kazanımlar Test No Test Adı 2018 / 2019 EĞİTİM - ÖĞRETİM YILI DESTEKLEME VE YETİŞTİRME KURSLARI 7. SINIF MATEMATİK DERSİ YILLIK PLAN ÖRNEĞİ Ay Hafta Ders Saati Konu Adı Kazanımlar Test No Test Adı Tam sayılarla toplama ve çıkarma

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 1) ÇARPANLAR VE KATLAR M.8.1.1.1. Verilen pozitif tam sayıların pozitif tam sayı çarpanlarını bulur, pozitif tam sayıların pozitif tam sayı Çarpanlarını üslü ifadelerin

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ DENEY 1: ISI IÇIN TERS KARE KANUNU 1. DENEYİN AMACI: Bir yüzeydeki ışınım şiddetinin, yüzeyin

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).

Detaylı

OBEB OKEK ÇÖZÜMLÜ SORULAR

OBEB OKEK ÇÖZÜMLÜ SORULAR OBEB OKEK ÇÖZÜMLÜ SORULAR 1) 4, 36 ve 48 sayılarının ortak bölenlerinin en büyüğü kaçtır? A) 1 B)16 C) 18 D) 4 E) 7 1) Sayılarınhepsini aynı anda asal çarpanlarına ayıralım; 4 36 48 1 18 4 6 9 1 3 9 6

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 008 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 7 ( 1).( ) 1 7 1 7 ( ). -7 1. 4,9 0,49 0,1 + işleminin sonucu kaçtır?

Detaylı