H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören"

Transkript

1 H09 Doğrual kontrol itemlerinin kararlılık analizi

2 MAK Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04 Aktüatörler ve ölçme elemanları H05 Kontrol elemanları ve kontrol elemanlarının dinamik özellikleri H06 Örnek kontrol devreleri H07 1. Ara Sınav H08 Sınav oru çözümleri H09 Doğrual kontrol itemlerinin kararlılık analizi (Michailow ve Routh Hurwitz) H10 Doğrual Kontrol itemlerinin kararlılık analizi (yer eğrii) H11 Bode diyagramları ile faz ve genlik marjı kavramları H1.Ara Sınav H13 Sınav Soru çözümleri H14 Durum Değişkenleri ile kontrol

3 Stabilite Sitemin dinamik davranışı, geçici durum davranışından bulunur. Geçici durum davranışı ie itemin tranfer fonkiyonu ile incelenebilir. Bir itemin kararlı, hızlı cevap veren ve haa olmaı beklenir. Bir kontrol iteminin en önemli özelliği kararlı olup olmadığıdır. Sitem, limitli bir referan girdiye ve bozucu girdiye karşılık limitli bir cevap veriyora, kararlıdır (tabildir). Ref:

4

5 Stabilite Şekildeki bilyalara ağa ya da ola doğru verilecek hareket, bilyaların eki konumuna geri gelip gelmemeine göre kararlı olup olmadığı belirlenebilir. Dinamik bir itemin kararlılığı da benzer şekilde gözlemlenebilir. Sitemin ani darbe cevabı, item onuza giderken artıyora veya büyüyen genlikli titreşim şeklinde ie, item kararızdır. Kararız bir itemde genlik devamlı artar, ancak onuza kadar artamayacağından belirli bir yerde abit kalır. Durdurulmaza, tahrip olabilir. Kararlı bir itemin cevabı ie düzgün veya küçülen genlikli titreşim şeklinde azalır. Ref:

6 Karmaşık Düzlemde Stabilite Çözümlemei Bir itemin kutupları, tranfer fonkiyonunun paydaı olan özyapıal denkleminin kökleridir. Kapalı çevrim bir kontrol iteminin tabil olmaı için gerek ve yeter şart, item tranfer fonkiyonunun kutuplarının negatif gerçek kıımlara ahip olmaıdır. Kutupların karmaşık düzlemdeki yeri, itemin dinamik davranışı hakkında fikir de verir. Denklemin genel hali; Özyapıal denklemde kökler, =0, =-σk veya = α n ± jω n karmaşık kök çifti olur. N=0 durumunda itemin birim impul (anidarbe) giriş cevabı aşağıdaki gibidir. Bir itemin mutlak olarak kararlı olabilmei için tüm kutuplarının ol yarı düzlemde olmaı gerekir.

7 Karmaşık Düzlemde Stabilite Çözümlemei Sitemin karmaşık düzlemdeki yeri incelenire, kutuplardan bir tanei dahi ağ yarı düzlemde yer alıra, item kararız (intabil) olur. Im-Re eken takımından ola doğru uzaklaşıldığına tabilite bağıl olarak artar. Gerçek eken üzerinde yer alan kökler itemin kararlılık ınırını işaret eder.sanal ekenüzerindeki eşlenik kök çifti, önümüz abit genlikli titreşim cevabını göterir.

8 Routh Hurwitz Stabilite Kriteri Routh-Hurwitz kriteri, bir polinom denklemini çözmeden pozitif gerçel kıımlı kökleri bulunup bulunmadığını belirlemek için kullanılır. Aşağıdaki özyapıal denklemin normalize edildiğini, dolayııyla da a n > 0 olduğunu varayarak, itemin kararlı olduğunu tepit için iki şart aranır. (i) Gereklilik şartı: Denklemin tüm katayılarının, a i > 0 (i=0,1,,3,,n) olmaı gerekir. Aki durumda, item ya kararız ya da ınırlı kararlıdır. Örn: +1=0 denkleminde teriminin katayıı 0 olduğundan = ±j anal kökleri vardır. Bu durum ınırlı kararlılığı ifade eder =0 denkleminde ie negatif katayılar olduğundan kararız itemleri ifade eder.

9 Routh Hurwitz Stabilite Kriteri (ii) Yeterlilik Şartı: Routh tablou aşağıdaki şekilde oluşturulur.

10 Routh Hurwitz Stabilite Kriteri (ii) Yeterlilik Şartı: Routh tablou aşağıdaki şekilde oluşturulur.

11 Routh Hurwitz Stabilite Kriteri (ii) Yeterlilik Şartı: Tablonun birinci ütunundaki katayılar boyunca hiçbir işaret değişikliği olmuyora bütün kökler ol yarı düzlemdedir ve bu nedenle itemimiz kararlıdır. Yukarıdan aşağıya doğru ilk ütundaki katayılar kaç kere işaret değiştirmiş ie ağ yarı düzlemde o kadar ayıda kök vardır. Dolayııyla item kararızdır. İşaret değiştirmenin ınırına kadar gelinmiş ie yani ilk ütundaki katayılardan biri ıfır olmuş ama daha ileri gidilmemiş yani hiç işaret değişikliği olmamışa item ınırda kararlıdır. Ancak ilk ütunda birden fazla ıfır var ie bu durumda item yine kararızdır.

12 Routh Hurwitz Stabilite Kriteri Örnek: Özyapıal denklemi aşağıdaki gibi olan itemin kararlılığını Routh- Hurwitz Kriteri ne göre araştırınız =0 Çözüm: Denklemin tüm katayıları aynı işaretli (ya da normalize edilmiş halindeki katayıların hepi pozitif )olduğuna göre item için gereklilik şartı ağlanır. Yeterlilik şartı için: Birinci ütunda biri + den -1 e geçerken ve diğeri de -1 den +8 e geçerken iki işaret değişimi vardır. Buna göre itemin ağ yarı düzlemde iki adet kökü vardır. Dolayııyla, item kararızdır.

13 Routh Hurwitz Stabilite Kriteri Örnek: Özyapıal denklemi aşağıdaki gibi olan itemin kararlılığını Routh- Hurwitz Kriteri ne göre kararlılık koşulunu bulunuz. a 3 3 +a +a 1 +a 0 =0 Çözüm: Denklemin tüm katayıları aynı işaretli (ya da normalize edilmiş halindeki katayıların hepi pozitif )olduğuna göre item için gereklilik şartı için a 3 >0, a >0, a 1 >0, a 0 >0 dır Yeterlilik şartı için: a3 a ( a1a a3a0)/ a a a1 a0 0 Birinci ütunda hiçbir işaret değişimi olmamaı için a 1 a -a 0 a 3 >0 olmalıdır.

14 Routh Hurwitz Stabilite Kriteri Özel Durumlar 1. Sütunda yalnızca bir elemanın ıfır olmaı: Bu durumda ıfır yerine onlu küçük bir pozitif ε değeri konulur ve tablo buna göre oluşturulur. Tablo tamamlandıktan onra ε yerine ıfır koyulur. Bu duruma göre, birinci ütunda ıfırın altındaki ve ütündeki elemanlarda bir işaret değişimi olup olmadığı incelenir. İşaret değişimi yoka, itemin bir anal kök çifti vardır. Eğer işaret değişimi vara, ağ yarı düzlemde işaret değişimi ayıı kadar kök vardır. Örnek: =0 denkleminin köklerini araştırınız.

15 Routh Hurwitz Stabilite Kriteri Çözüm E 1 0 ~ E / E 1 0 0~E yaparak, bunun altında + olduğu görülür. Buna göre ağ yarı düzlemde kök yoktur ve bir anal kök çifti mevcuttur.

16 Routh Hurwitz Stabilite Kriteri. Routh tablounda aradaki bir atırın tüm elemanlarının ıfır olmaı: Bu durumda item ya kararız ya da ınırlı kararlı olur. Tüm elemanları ıfır olan bir atır, orijine göre imetrik olarak yerleşmiş köklerin varlığını ifade eder. Bu kökler aynı büyüklükte fakat zıt işaretli gerçel kökler, (± p), anal kök çifti (± jw) veya iki adet karmaşık kök çifti (a ± jb, -a ± jb)şeklinde olabilir. Bu durumda tüm elemanları ıfır olan atırın ütündeki atır elemanlarından bir yardımcı polinom elde edilir. Bu polinom orijin etrafında imetrik yerleşen kökleri içerir. Yardımcı polinomun türevi alınarak, bu türevin katayıları ıfırlı atırın ıfırları yerine konulur. Daha onra Routh tablounun geri kalan kımı tamamlanır. Eğer yardımcı polinom tek değerli ve m nci derecen ie m adet eşit ve zıt işaretli kök mevcut demektir. Yardımcı polinomun köklerinin bilinmei halinde entetik bölme yolu ile özyapıal denklemin tüm kökleri bulunabilir.

17 Bağıl Kararlılık Kararlı bir itemin kararızlık durumuna ne oranda yakın olduğunun bilinmei önemlidir. Routh Hurwitz kriterinde itemin özyapıal denkleminin katayıları değer olarak heaplanmadığından yapılan işlemlerde kararlı çıkan item, gerçekte kararız olabilir. Köklerin anal ekene yakınlığının bir ölçüü olan bağıl kararlılığın bilinmei bu noktada önem arz eder. Karmaşık düzlemde aynı düşey çizgi üzerinde bulunan kökler aynı zaman abitlerine ahiptir. Düşey çizginin ağında yer alan herhangi bir kökün zaman abiti çizgi üzerindeki köke göre daha büyük olacak ve bu kökün kararızlığa yatkınlığı, düşey çizginin olunda yer alan köklere göre daha fazla olacaktır. Sitemin en büyük zaman abiti bağıl kararlılığın ölçüüdür ve bakın köke ait zaman abitidir.

18 Bağıl Kararlılık Sanal ekeni ola kaydırılarak yeni bir polinom elde edilip yeni anal ekenin ağında kaç tane kökün olduğu Routh Hurwitz Stabilite Kriteri ne göre incelenebilir. =-σ kökünün ağında yer alan kökleri incelemek için itemin özyapıal denkleminde(alttaki denkleme bakınız) yerine =p- σ konularak Routh Hurwitz SK uygulanabilir. Örn: Bir item özyapıal denklemi K=0 olarak verildiğine ve bakın zaman abitinin 0.5 ten az olmaı itendiğine göre, K abiti bulunuz.

19 Bağıl Kararlılık Çözüm: En büyük zaman abiti 0.5 ie, =- kökünün ağında herhangi bir kökün bulunmamaı gerekir. Buna göre, σ= olup, verilen denklemde =p- σ yerine konulura, denklem (p-) 3 +9(p-) +6(p-)+K=0 p 3 +3p +p+k-4=0 halini alır. olur. Gereklilik şartı için, K>4 tür. Yeterlilik şartı için: K 1 3 K 4 /3 K 4 1.Sütunda değişim olmamaı için 4 < K 30 olur.

20 Bağıl Kararlılık K=4 olura, on atır ıfır olur ve p eken takımının orijininde veya =- de bir kök ortaya çıkar. Eğer K=30 ie, p eken takımı (=- ekeni), üzerinde anal kök çifti ortaya çıkar. Buna göre K=30 için, =- ± bj olup, b bilinmemektedir. Bu durumda K=30 değeri, bakın zaman ınırlamaı içinde titreşimli dinamik davranış göteren tek değerdir. B ve önüm oranını heaplamak için; p 3 +3p +p+k-4=(p+a)(p +b ) = p 3 +ap +b p+ab Her iki tarafın eşitliğinden, a=3, b =, ab =6 veya a=3, b= çıkar. cininden yazarak, =p-=-a-, ±ib- veya =-5, =- ± j bulunur.buradan anal kökler için önüm oranı, ξ = (1/)(a/ (a +b ))=0,57 çıkar.

21 Denetim Sitemlerinde Uygulanmaı RHSK nin kontrol itemlerine uygulamaı ınırlıdır. Çünkü, bu kriter, bağlı kararlı bir itemin kararlılığının ne şekilde iyileştirebileceğini yada kararız bir itemin ne şekilde kararlı hale getirilebil eceğini hakkında pek fazla bir fikir ileri ürmez. Ancak, kararızlığa neden olan bir iki parametre değerleri değişim etkilerini belirlemek mümkündür. Özellikle item kazancı K nın kararlı bir itemde hangi ınırlar içeriinde kalmaının belirlenmeinde yararlı olmaktadır. Örn:

22 Denetim Sitemlerinde Uygulanmaı

23 Denetim Sitemlerinde Uygulanmaı

24 Mikhailov Leonhard - Cremer Stabilite Kriteri Kapalı devre item karakteritik polinomu (özyapıal denklemi) A n n +A n-1 n-1 +A n- n- + + A +A 1 1 +A 0 =M() olduğu hatırlanıra, M(jw)=U(jw)+j V(jw) şeklinde göterilen Michailow Eğrii nin komplek koordinat iteminde (karmaşık düzlemde) w=0 dan başlayarak, w= a kadar verilen değerlerine karşılık, pozitif reel eken üzerinden başlayarak aat ibrelerinin ter yönünde piral şeklinde açılıp tüm koordinat çeyreklerini ıra ile geçip karakteritik polinomun dereceine eşit olan çeyrekte + a gitmei halinde item kararlıdır(tabildir).. çeyrek 1. çeyrek 3. çeyrek 4. çeyrek

25 Mikhailov Leonhard Cremer Stabilite Kriteri Örn: Karakteritik polinomu 3. dereceden olan doğrual bir itemin tabil olmaı için katayıları araındaki ilişkiyi bulunuz. Çözüm: Sitemin karakteritik polinomu A 3 3 +A +A 1 +A 0 dır. Mikhailov polinomunu A 3 (jw) 3 +A (jw) +A 1 (jw)+a 0 = M(jw) olarak yazılır. M(jw)=(A 0 -A w )+jw(a 1- A 3 w ) çıkar. Bu polinomun eğriinin tabilite şartlarını ağlamaı için 1.çeyrekten.çeyreğe geçerken anal ekeni pozitif kolunda kemei gerekir. Bu noktadaki frekan w 1 ile göterilire, anal ekeni keen noktada ReM(jw)=0 olacaktır. Bu durumda, ReM(jw 1 ) > 0 ; (A 0 -A w 1 )= 0 w 1 = (A 0 /A ) olarak bulunur. Bu frekanta ImM(jw 1 ) > 0 olmaı gerekliliğinden, Jw1(A 1 -A 3 w 1 )> 0; w1>0 ; A 1 -A 3 (A 0 /A )=0 A 1 A >A 3 A 0

26 Mikhailov Leonhard Cremer Stabilite Kriteri Örn: Özyapıal denklemi (karakteritik polinomu) K olarak verilen bir kontrol iteminin tabil (kararlı) olmaı için K ne olmalıdır? Çözüm: M(jw)=(K-9w )+jw (6-w ); ReM (jw)=0 ; w 1 = (K/9) ImM (jw 1 ) = w 1 (6-w 1 )>0; w 1 = (K/9) >0 K>0 6 (K/9) >0 K<34 0<K<34 olmalıdır.

27 8

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ

EGE ÜNİVERSİTESİ-MÜHENDİSLİK FAKÜLTESİ-MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 1 MK371 ISI TRANSFERİ (2+2) DERSİ EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ-MAKİNA MÜHENDİSİĞİ BÖÜMÜ 1 MK371 ISI RANSFERİ (+) DERSİ-ÖZE BİGİER: (8.6) EGE ÜNİVERSİESİ-MÜHENDİSİK FAKÜESİ MAKİNA MÜHENDİSİĞİ BÖÜMÜ MK371 ISI RANSFERİ (+) DERSİ.BÖÜM

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s

H(s) B(s) V (s) Yer Kök Eğrileri. Şekil13. V s R s = K H s. B s =1için. 1 K H s Yer Kök Eğrileri R(s) K H(s) V (s) V s R s = K H s 1 K H s B s =1için B(s) Şekil13 Kapalı çevrim sistemin kutupları 1+KH(s)=0 özyapısal denkleminden elde edilir. b s H s = a s a s K b s =0 a s K b s =0

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

DİELEKTRİK ÖZELLİKLER

DİELEKTRİK ÖZELLİKLER 0700 ENEJİ HATLAINDA ÇAPAZLAMA! zun meafeli enerji taşıma hatlarında iletkenler belirli meafelerde (L/) çarazlanarak direğe monte edilirler! Çarazlama yaılmadığı durumlarda: Fazların reaktan ve kaaiteleri

Detaylı

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören H04 Mekatronik Sistemler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04 Aktüatörler ve ölçme

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören

H1 - Otomatik Kontrol Kavramı ve Örnek Devreler. Yrd. Doç. Dr. Aytaç Gören H1 - Otomatik Kontrol Kavramı ve Örnek Devreler MAK 3026 - Ders Kapsamı H01 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri beslemenin önemi H04

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar

Temel Yasa. Kartezyen koordinatlar (düz duvar) Silindirik koordinatlar (silindirik duvar) Küresel koordinatlar Temel Yaa Fourier ıı iletim yaaı İLETİMLE ISI TRANSFERİ Ek bağıntı/açıklamalar k: ıı iletim katayıı A: ıı tranfer yüzey alanı : x yönünde ıcaklık gradyanı Kartezyen koordinatlar (düz duvar Genel ıı iletimi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

YAĞLAMA VE KAYMALI YATAKLAR

YAĞLAMA VE KAYMALI YATAKLAR YAĞLAMA TĐPLERĐ YAĞLAMA VE KAYMALI YATAKLAR Yağlamanın beş farklı şekli tanımlanabilir. 1) Hidrodinamik ) Hidrotatik 3) Elatohidrodinamik 4) Sınır 5) Katı-film VĐSKOZĐTE τ F du = = A µ dy du U = dy h τ

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

CİVATA BAĞLANTILARI_II

CİVATA BAĞLANTILARI_II CİVATA BAĞLANTILARI_II 11. Civata Bağlantılarının Heabı 11.1. Statik kuvvet ve gerilmeler Cıvata, gerilme kuvveti ile çekmeye ve ıkma momenti ile burulmaya dolayııyla bileşik gerilmeye maruzdur. kuvveti

Detaylı

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer

Bellek. t H t L. Çıkış Q. Veri. Q(t + )= f( Q(t), I 0, I 1,., I n-1 ) Q(t): Şimdiki değer Q(t + ): Sonraki değer ayıal evreler (Lojik evreleri) AIŞIL VL (equential ircuit) erin ilk bölümünde kombinezonal (combinational) devreleri inceledik. Bu tür devrelerde çıkışın değeri o andaki girişlerin değerlerine bağlıdır.

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlei m=.kg olan bir taş, yükekliği h=5m olan bir kaleden yatay yönde v =5m/ hızı ile atılıyor. Cimin kinetik ve potaniyel enerjiini zamanın fonkiyonu olarak

Detaylı

Devreler II Ders Notları

Devreler II Ders Notları Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ

5. MODEL DENEYLERİ İLE GEMİ DİRENCİNİ BELİRLEME YÖNTEMLERİ 5. MODEL DENEYLEİ İLE GEMİ DİENİNİ BELİLEME YÖNTEMLEİ Gei projeinin değişik erelerinde iteatik odel deneylerine dayalı yaklaşık yöntelerle gei topla direnci e dolayııyla gei ana akine gücü belirlenektedir.

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ 825 LPG DEPOLAMA TAKLARII GAZ VERME KAPASİTELERİİ İCELEMESİ Fehmi AKGÜ 1. ÖZET Sunulan çalışmada, LPG depolama tanklarının gaz verme kapaitelerinin belirlenmei amacına yönelik zamana bağlı ve ürekli rejim

Detaylı

SĐGORTA ŞĐRKETLERĐNĐN SATIŞ PERFORMANSLARININ VERĐ ZARFLAMA ANALĐZĐ YÖNTEMĐYLE BELĐRLENMESĐ ÖZET

SĐGORTA ŞĐRKETLERĐNĐN SATIŞ PERFORMANSLARININ VERĐ ZARFLAMA ANALĐZĐ YÖNTEMĐYLE BELĐRLENMESĐ ÖZET Muğla Üniveritei Soyal Bilimler Entitüü Dergii (ĐLKE) Güz 2005 Sayı 15 SĐGORTA ŞĐRKETLERĐNĐN SATIŞ PERFORMANSLARININ VERĐ ZARFLAMA ANALĐZĐ YÖNTEMĐYLE BELĐRLENMESĐ ÖZET Zehra BAŞKAYA * Cüneyt AKAR ** Bu

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi

Haberleşme Gecikmeli Hibrid Enerji Üretim Sisteminin Kararlılık Analizi EEB 06 Elektrik-Elektronik ve Bilgiayar Sempozyumu, -3 Mayı 06, Tokat TÜRKİYE Haberleşme Gecikmeli Hibrid Enerji Üretim Siteminin Kararlılık Analizi Hakan GÜNDÜZ Şahin SÖNMEZ Saffet AYASUN Niğde Üniveritei,

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

Kontrol Sistemleri (EE 326) Ders Detayları

Kontrol Sistemleri (EE 326) Ders Detayları Kontrol Sistemleri (EE 326) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kontrol Sistemleri EE 326 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i MATH 275, MATH 276

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

MALZEMELERİN MEKANİK ÖZELİKLERİ

MALZEMELERİN MEKANİK ÖZELİKLERİ MALZEMELERİN MEKANİK ÖZELİKLERİ MALZEMELERİN MEKANİK ÖZELİKLERİ Mekanik Özellikler, malzemenin yük ve deformayon etkiindeki davranışını belirleyen özelliklerdir (ör: dayanım, E,...) Malzemelerin yük altındaki

Detaylı

AĞAÇTA ARTIM VE BÜYÜME

AĞAÇTA ARTIM VE BÜYÜME AĞAÇTA ARTIM VE BÜYÜME Ağaç ve ağaçlar topluluğu olan meşcere, canlı varlıklardır. Sürekli gelişerek, değişirler. Bu gün belirlenen meşcere hacmi, ilk vejetayon döneminde değişir. Yıllar geçtikten onra

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Dinamik sistemlerin Kontrolü ve Modellemesi MK-413 4/Güz (3+0+0) 3 5 Dersin Dili :

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

( ) BSIM MOSFET Model Parametrelerinin Ölçüm Yoluyla Belirlenmesine Yönelik Algoritmalar. Şuayb YENER 1 Hakan KUNTMAN 2. Özetçe. 2 BSIM MOSFET Modeli

( ) BSIM MOSFET Model Parametrelerinin Ölçüm Yoluyla Belirlenmesine Yönelik Algoritmalar. Şuayb YENER 1 Hakan KUNTMAN 2. Özetçe. 2 BSIM MOSFET Modeli BSIM MOSFE Model lerinin Ölçüm Yoluyla Belirlenmeine Yönelik Algoritmalar Şuayb YENER 1 Hakan UNMAN 1 Elektrik ve Elektronik Mühendiliği Bölümü, Sakarya Üniveritei, 545, Eentepe, Sakarya Elektronik ve

Detaylı

1. MATEMATİKSEL MODELLEME

1. MATEMATİKSEL MODELLEME . MATEMATİKSEL MODELLEME İşletmeler çabuk ve iabetli kararlar alabilmeleri büyük ölçüde itematik yaklaşıma gerekinim duyarlar. İter ayıal analizler, iter yöneylem araştırmaı adı altında olun uygulanmakta

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ Tanel YÜCELEN 1 Özgür KAYMAKÇI 2 Salman KURTULAN 3. 1,2,3 Elektrik Mühendiliği Bölümü Elektrik-Elektronik Fakültei İtanbul Teknik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

2009 Ceb ır Soruları

2009 Ceb ır Soruları Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu

Genetik Algoritma ile Kuru bir Trafonun Maliyet Optimizasyonu enetik Algoritma ile Kuru bir Trafonun Maliyet Optimizayonu Mehmed Çelebi 1 1 El-Elektronik Mühendiliği Bölümü Celal Bayar Üniveritei mehmed.celebi@bayar.edu.tr Özet Bu çalışmada daha önce analitik yöntemle

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı