Yarıiletken Optoelektronik Devre Elemanları HSarı 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yarıiletken Optoelektronik Devre Elemanları. 2008 HSarı 1"

Transkript

1 Yarıiletken Otoelektronik Devre Elemanları 2008 HSarı 1

2 Otoelektronik Devre Elemanları -n Eklemlerinin Otoelektronik Uygulamaları Işık Üreteçler» Işık Yayan Diyotlar (LED)» Lazerler Işık Dönüştürücüler» Işık Dedektörleri» Güneş Pilleri Işık İleticiler: Dalga Kılavuzları» Otik Fiberler» Yarıiletken Dalga Kılavuzları Işık Modülatörleri 2008 HSarı 2

3 Yarıiletken Eklemler: I-V Eğrileri n V I Aydınlatma Yok qv kt I( V ) = I ( e 1) k I k =karanlık akım D Dn Ik = qa( n + n ) L L n n I n V-V o V+V o E F V b I k V E F n n V b +V o E F çığ bölgesi V o E F V b =Kırılma gerilimi (breakdown voltage) 2008 HSarı 3

4 Işık Altında -n Eklemi -n eklemi hv > E g enerjili düzgün bir ışıkla aydınlatılırsa (g o ) eklemin tüketim bölgesinde elektron ve deşik çiftleri oluşur. I g o n E A g o =0 V g 1 g2 L d L n g 3 g o = otik güç (EHP/cm 3 -s) E = yaısal elektrik alan L = deşik difüzyon uzunluğu L n = elektron difüzyon uzunluğu g 3 > g 2 > g 1 > g o =0 I = I I qv / kt k ( e 1) o g o = 0 I = I e qv / kt k ( 1) I = qag ( d + L + L ) o o n 2008 HSarı 4

5 Yarıiletken Eklemlerin Otoelektronik Uygulamaları Yarıiletkenlerin otoelektronikte kullanılması farklı katkılanma ve eklemler yaılarak mümkündür I I. Bölge (V>0, I >0 ): LED ve Lazerler -V V<0, I <0 V>0, I >0 III. Bölge (V<0, I <0 ): Dedektörler Akım gerilimden bağımsız, otik şiddet ile orantılı -I g o 0 V>0, I <0 +V - n + V IV. Bölge (V>0, I <0 ): Güneş Pilleri - + n A A + -V n HSarı A 5

6 Yarıiletken Eklemlerin Otoelektronik Uygulamaları Yarıiletkenlerin otoelektronikte kullanılması farklı katkılanma ve eklemler yaılarak mümkündür Eklemlerde kullanılan malzemenin bant yaısı-direk-indirek (ışık algılayıcı-ışık yayıcı) Malzemenin yasak bant aralığı (yayılan veya algılanan ışığın frekansı) Katkılama oranı (tüketim bölgesinin genişliği-d) Boyut kuantalanması (verimli otoelektronik devre elemanları) I Direk bant aralığı Aşırı katkılama d n -V Bant aralığı katkılama V<0, I <0 V>0, I >0 Geniş eklem yüzeyi V>0, I <0 +V 2008 HSarı -I 6

7 Işık Yayan Otoelektronik Elemanlar LED LAZER 2008 HSarı 7

8 Işık Yayan Otoelektronik Elemanlar Uygun bir -n eklemi I-V eğrisinin I. bölgesinde çalıştırılırsa eklemin tüketim bölgesinde elektron ve deşikler belli bir eşik gerilimin üstünde eklem bölgesinde birleşerek dalgaboyu bant aralığına eşit ışık yayabilir I -V V>0, I >0 +V - n + A V -I Elektron ve deşikleri en düşük gerilimle ve en verimli şekilde birleştirecek tasarım Bu amaç için: Direk bant aralığına Aşırı katkılanmış n ve tii eklemler kullanılmalıdır 2008 HSarı 8

9 Işık Yayan Otoelektronik Elemanlar-Genel Özellikler Uygun bir -n eklemi I-V eğrisinin I. bölgesinde çalıştırılırsa eklemin tüketim bölgesinde elektron ve deşikler belli bir eşik gerilimin üstünde eklem bölgesinde birleşerek dalgaboyu bant aralığına eşit ışık yayabilir I V>0, I >0 -V +V -I - Kuantum Verimlilik - Eşik Akım - Frekans Bantgenişliği 2008 HSarı 9

10 Işık Yayan Diyotlar (LED) Aşırı katkılanmış n + ve + tii eklemlerde Fermi enerji seviyesi bant aralığından ziyade bant içinde bulunur Tüketim bölgesinin genişliği katkılanmanın yoğunluğuna bağlıdır. (a) Ayrık n ve tii yarıiletkenler ve enerji seviyeleri (b) Sıfır gerilim altında -n eklemi n + -GaAs + -GaAs n + -GaAs + -GaAs E c E F E C E f E v E V E F d (c) İleri besleme durumu n hv = E g 2εVo 1 1 d = ( + ) q Na Nd 1/ 2 (d) Oluşacak olan ışığın frekans aralığı V E F n E C E c E V E F E v hv = E g 2008 HSarı 10 E C -E V < hv < E n F -E F

11 E F n E C LED Işığının Özelliği hν = E g E V E F E C -E V < hν < E F n -E F şiddet ν v o Frekans Bant Aralığı hν Eşik değerin altındaki durum (uyumsuz (koherent olmayan) ışıma) E C E V yön Faz yüzeyleri Işık: Uyumlu (koherent) değildir Tek renkli (monokromatik) değildir Yönlü değildir Kutulu değildir 2008 HSarı 11

12 Lazerler-Genel Kavramlar LASER: Light Amlification by Stimulated Emission of Radiation Türkçesi LAZER Lazerler ışığının özelliği Uyumlu (Koherent) Tek renkli (Monokromatik) Yönlü Kutulu Lazerlerin çalışma rensibini anlamak için enerjileri E 2 ve E 1 olan iki enerji seviyesini göz önüne alalım E 2 E=E 2 -E 1 E 1 hv=e 2 -E HSarı 12

13 Otik Geçişler Kendiliğinden Geçiş (Işıma) (sontaneous emission) A 21 N 2 N 2 A 21 N 1 N 2 > N 1 kendiliğinden geçiş τ k Soğurma (absortion) B 12 N 1 ρ(hv) B 12 N 2 N 1 Uyarılmış Geçiş (Işıma) (stimulated emission) N 2 B 21 N 2 ρ(hv) Uyarılmış geçiş B 21 τ u 10-8 s << τ k N HSarı 13

14 Lazer Ortamı Kazanç ortamı I o N 2 > N 1 I = I e +α o z Kayılı ortam I o N 2 < N 1 I = I e α o z 2008 HSarı 14

15 Lazerler-Genel Kavramlar ρ(hv) foton alanının varlığında uyarılmış geçişin yanı sıra soğurma ve kendiliğinden geçiş oluşur B 21 N 2 ρ(hv) = Uyarılmış geçiş oranı B 12 N 1 ρ(hv) = Soğurma oranı A 21 N 2 = Kendiliğinden geçiş oranı ρ(hv) N 2 E 2 B 21 N 2 ρ(hv) A 21 N 2 B 12 N 1 ρ(hv) N 1 E 1 Foton alanı durumunda Uyarılmış geçiş oranı B 21 N 2 ρ(hv) B 21 = = ρ(hv) Kendiliğinden geçiş oranı A 21 N 2 A Uyarılmış geçişi soğurmadan fazla yamak için N 2 > N 1 Uyarılmış geçiş oranı B 21 N 2 ρ(hv) B 21 N 2 = =...2 Soğurma oranı B 12 N 1 ρ(hv) B 12 N HSarı 15

16 Lazerler-Genel Kavramlar B 21 N 2 ρ(hv) = Uyarılmış geçiş oranı B 12 N 1 ρ(hv) = Soğurma oranı A 21 N 2 = Kendiliğinden geçiş oranı Denge durumunda B 12 N 1 ρ(hv)=a 21 N 2 + B 21 N 2 ρ(hv) B 12, A 21, B 21 : Einstein katsayıları Isıl dengede durumunda ve siyah cisim ışıma denklemini kullanarak B = B A21 8πhν 8πh = = 3 3 B21 c λ Ödev: Einstein katsayılarının B A B = B 8πhν = 3 c 2008 HSarı olduğunu gösteriniz 16 3

17 Lazerler-Genel Kavramlar 3 A21 8πhν 8πh = = 3 3 B21 c λ Lazer olayı için A 21 /B 21 oranını küçük tutmak gerekir. Bu oran dalgaboyunun küü ile ters orantılı (frekans ile doğru) olduğu için yüksek frekanslarda (gama-ışınlarında) lazer yamak teknik olarak daha zordur 2008 HSarı 17

18 Sektral Dağılım (Lineshae) E F n E F E g E C E V E C -E V < hv < E F n -E F ν ο ± ν ν = o E h g Ν Kazanç eğrisi ν ο - ν ν ο ν ν ο + ν ν 2008 HSarı 18

19 Kayılar R 1 R α R = α R + α ln( ) 1 R = 2 2L R R α = α + α L + α 1 2 r s R R 1 2 α r =tolam kayı katsayısı (birim uzunluk başına) α r =saçılma ve soğurma kayıları α R =aynalardaki yansımalardan kaynaklanan kayı Ν Kazanç eğrisi e 2 α r L = 2 sl R1 R2e α kayı ν 2008 HSarı 19

20 Lazer Şartı Nüfus terslemesi N 2 > N 1 (Pomalama) I = I e +α o Osilasyon olabilmesi için kazancın kayılardan daha büyük olması gerekmektedir z I I δi 2 L e α o 1 δ 2α L << 1 2αL δ I o N 2 > N 1 I = I e α o z kayı 2008 HSarı 20 L

21 Otik Rezonans Oyuğu (Otical Resonant Cavity) Bunun için rezonans oyuğu (resonant cavity) kullanılır. Bu rezonans oyuğu sayesinde foton alanı ρ(hv) sürekli artırılır. Bu oyuk fotonu yansıtacak bir ayna olabilir. L m=1 Rezonatör frekansları v c ν = = 2L 2Ln m=3 m=2 ν ν L ν m-1 ν m-1 ν m ν m+1 ν m+2 2L 2Ln m = = λ λ o m=1, 2, 3... λ = rezonatör ortamında dalgaboyu λ o = boşluktaki dalgaboyu 2008 HSarı 21

22 Otik Rezonans Oyuğu (Otical Resonant Cavity) E F n E g E F E C E V Ν Kazanç eğrisi kayı ν m=1 m=3 m=2 ν L Kazanç eğrisi kayı 2008 HSarı ν 22

23 Lazer %100 yansıtıcı ayna % 98 yansıtıcı ayna Kazanç ortamı Lazer ışığı N 2 > N 1 Basitleştirilmiş tiik bir lazer şeması 2008 HSarı 23

24 Pomalama Lazer olayının gerçekleşmesi için gerekli olan 2. şart, yani N 2 > N 1 şartı, alt seviyedeki elektronları üst seviyeye uyararak gerçekleştirilir. Bu işleme nüfus terslenmesi (oulation inversion) denir. Uyarılmış geçişi soğurmadan fazla yamak için N 2 > N 1 Uyarılmış geçiş oranı B 21 N 2 ρ(hv) B 21 N 2 = = Soğurma oranı B 12 N 1 ρ(hv) B 12 N 1 N 2 > N 1 koşulu omalanma işlemi ile yaılır. Lazerlerde bu otik veya elektrik akımı ile yaılır. Yarıiletken lazerlerde omalama işlemi aşırı katkılanma sayesinde eklem üzerinden akım geçirerek sağlanır Akımın belli bir değerinde (eşik akım (I eşik ) (threshold) N 2 > N 1 şartı sağlandığında lazer özelliği gösteren ışık elde edilmiş olur - V + otik güç n + -GaAs + -GaAs I I E f E c E v I th 2008 HSarı d 24

25 Lazer Işığının Özelliği Işık: Uyumlu (koherent) Tek renkli (monokromatik) Yönlü Kutulu E n F E C hν o = E g şiddet Lazer E V E F LED ν Tek renkli v o E C E V yönlü 2008 HSarı 25 Uyumlu (Koherent)

26 Lazer Işığının Özelliği-Modlar - Enlemesine (Transverse) mod - Boylamasına (Longitudinal) mod E( x, y, z; t) = Eo ( x, y ) e i( ωt kz) Enlemesine mod Boylamasına mod TransverseElectroMagnetic wave-tem (l,m,q) Enlemesine mod (indis) Boylamasına Mod (frekans-hz) 2008 HSarı 26

27 Boylamasına Mod - Boylamasına mod (ışığın elektrik alanının zaman içersindeki salınımı) E( x, y, z; t) = E ( x, y) e i ω t kz o ( ) E F n şiddet E C hν o = E g E V E F v o hv 2008 HSarı 27

28 Enlemesine Mod - Enlemesine mod (ışığın yayılma doğrultusuna dik düzlemdeki elektrik alan dağılımı) E ( x, y, z; t) = E (, ) o x y e i( ωt kz ) TransverseElectroMagnetic (TEM l,m ) Küresel ayna Küresel ayna TEM 0,0 TEM 1,0 TEM 0,1 TEM 1,1 x y z x y TEM 0,0 TEM 1,0 Gaussiyen Dağılım Hermite-Gaussiyen Dağılım (l,m) =>(0,0) (l,m) =>(l,m) 2008 HSarı 28

29 Yarıiletken Lazerler Aşırı katkılanmış n ve tii direk bant aralığına sahi yarıiletkenlerle oluşturulan eklemler lazerlerin yaımında kullanılabilirler Yarıiletken lazerler, rezonans oyuğu içine konmuş LED lerden farklı değildir Rezonans oyuğu, yarıiletkenlerin kenarlarından yaılan kesme (cleave) işlemi ile oluşturulur Yarıiletken lazerler diğer lazer türlerinden farklılık gösterirler. Bunların en başlıcası boyutlarının oldukça küçük oluşudur (tiik boyutları 0,1 x 0,1 x 0,3 mm) Yüksek verimlidir Lazer çıkışı eklemlere uygulanan akım ile kolaylıkla kontrol edilebilir Yarıiletken lazerler, otoelektronik tümleşik devreleri ile kolaylıkla bütünleştirilebilir Yarıiletken lazerler fiber otik iletişimde oldukça kullanışlıdır 2008 HSarı 29

30 Yarıiletken Lazerler Kesme doğrultuları (ayna oluşturmak için) n V n E c E f E v Ayna R=1 Ayna R=0,9 Ayna R=1 Ayna R=0, HSarı 30

31 Yarıiletken Lazerler Aşırı katkılanmış yarıiletken eklemin ileri besleme durumunda elektronlarla deşikler aynı bölgede birleşmeye hazır duruma gelirler Böylece lazerin oluşması için gereken n 2 > n 1 şartı sağlanmış olur. şiddet Frekans Bant Aralığı şiddet şiddet hv hv hv w o Eşik değerin altındaki durum (Koherent olmayan ışıma) (a) Eşik değerin hemen altındaki durum (b) Eşik değerin üstünde lazer ışınımı (a) LED ışımasına karşı gelmektedir. Tek renkli ışık elde edilmesine rağmen frekans bant aralığı oldukça geniştir ve elde edilen ışıkta lazerler için gerekli olan 1. şart sağlanmadığı için koherentlik yoktur (b) Akım eşik değerin hemen altında birçok rezonans oyuğuna karşı gelen dalgaboyunda ışık elde edilir Bunlardan birinin başat olması için gereken n 2 >n 1 şartı henüz sağlanmış değildir (c) Akım eşik değerin üstünde olduğunda rezonans oyuğundaki bir frekans diğerlerini bastırarak başat hale gelir. Bu frekansta band aralığı oldukça küçüktür ve ışık koherentdir 2008 HSarı 31 w o (c)

32 Düşük Boyutlu Yarıiletken Lazerler Düşük boyutlu yaılar kullanılarak lazerlerin erformansı arttırılabilir Işığın frekansı ayarlanabilir Enerji seviyeleri kuantalı olduğu için (bant değil!) frekans bant genişliği daha dardır Elektronlar ve deşikler uzayın belli bir bölgesine hasedildiği için birleşme verimliliği yüksektir (düşük eşik akım-i eşik ) Otik sınırlamadan dolayı foton alanı ρ(hν) yüksek (yüksek verimlilik) -AlGaAs GaAs d λ d µm n-algaas n-gaas Alttaş Aktif katman E g (AlGaAs) E g (GaAs) E C 2 E C 1 E V 1 E V 2 E g (AlGaAs) şiddet v o ν hetero ν homo ν d Å 2008 HSarı Aktif katman 32

33 Heteroeklemli Yarıiletken Lazerler Farklı türden yarıiletken malzemeler kullanılarak yarıiletken lazerlerin verimliliği arttırılabilir. Bant aralıkları farklı yarıiletkenlerle oluşturulan eklemlerde elektron ve fotonlar eklem bölgeside tutularak eşik akım değerinin düşürülmesi sağlanır -AlGaAs -GaAs < 1 µm n-gaas Alttaş V -AlGaAs -GaAs n-gaas Alttaş < 1 µm n-gaas -GaAs -AlGaAs n-gaas -GaAs -AlGaAs E g (AlGaAs) =2 ev E f E f E g (GaAs) =1,4 ev E f Kullanılan geniş bant aralıklı AlGaAs sayesinde Elektronların tümüyle -GaAs de kalması sağlanır E f (a) Sıfır beslenme durumu (b) İleri beslenme durumu 2008 HSarı 33

34 Çift Heteroeklemli Yarıiletken Lazerler Çift Heteroyaılı lazerler (Double Heterostructures): Daha verimli lazer yaılar oluşturulabilir Aktif Katman -GaAs -AlGaAs -GaAs n-algaas n-gaas Alttaş < 1 µm n-gaas n-algaas -GaAs -AlGaAs E (AlGaAs) g =2 ev E f E g (AlGaAs) =2 ev E g (GaAs) =1,4 ev 2008 HSarı 34

35 Kuantum Çukurlu Yarıiletken Lazerler Lazerin aktif bölgesinin kalınlığı daha da çok düşürülerek (elektronun de Broglie dalga boyu mertebesinde) verimli ve frekans band aralığı daha küçük lazerler elde edilebilir. Kuantum çukurlı lazerlerde tiik olarak eşik akım değerinde 10 kat azalma sağlanabilir n-gaas n-algaas -GaAs -AlGaAs Aktif Katman -GaAs -AlGaAs -GaAs d Å E g (AlGaAs) E g (GaAs) E 2 C E 1 C E g (AlGaAs) n-algaas n-gaas Alttaş E 1 V E 2 V d Å Aktif Katman GaAs 2008 HSarı 35

36 Yüzey Salınımlı Lazerler (VCSEL) Yarıiletken lazer yaılarında ışık, aynanın yan yüzeylerde oluşundan dolayı yan yüzeylerden dışarıya çıkar. Bu tür lazerlere yüzey salınımlı lazerler (edge emitting lasers) denir. Aktif bölgenin yaklaşık µm kalınlıkta olduğu düşünülürse lazer ışığının genişlemesinde asimetrik etkiye sebe olabilmektedir Yüzeyden salınım yaan lazer geometrisi ile lazer dizileri yamak mümkün değildir Bazı uygulamalarda tek bir lazerden ziyade lazer dizilerine ihtiyaç duyulabilir. Örneğin bir yüzey alanının ışıkla taranması gibi x x n d x d x y d y y d y d x d y d x =d y 2008 HSarı 36

37 Yüzey Salınımlı Lazerler (VCSEL) Vertical Cavity Surface Emitting Lasers (VCSELs) Yüzeyden salınım yaan lazer geometrisi ile lazer dizileri(array) yamak mümkün değildir DBR Ayna (23 çift) Akım sınırlayıcı Aktif bölge DBR Ayna (23 çift) GaAs n-alas n-gaas n-alas GaAs -AlGaAs GaAs n-alas n-gaas n-alas n+-gaas DBR-AlAs/GaAs GaAs DBR-AlAs/GaAs alttaş Enine Mod 2008 HSarı 37

38 Lazer Yaımında Kullanılan Malzemeleri GaAlAs/GaAs tabanlı yarıiletkenler: Hem direk bant aralığına sahi hem de değişik komozisyonlarda büyütülmesinde roblem olmadığı (örgü sabitleri arasındaki fark çok küçük olduğu için) üretilebilmektedir. InGaAsP/InP tabanlı yarıiletkenler: Değişik dalgaboyunda ışık üretimine elverişli ve sorunsuz büyütülebildiği için λ=1,3-1,55 µm aralığında herhangi bir dalgaboyuna ayarlanabilir GaAs (1-x) P x Bant aralığı x ile doğrusal olarak değişir ve < x=0,45 e kadar direk bant aralığına sahitir LED ler için kullanılan en uygun GaAs 0,6 P 0,4 Bu aralıkta bant direktir ve 1,9 ev enerji ile kırmızı Bölgeye düşer. Bu LED ler hesa makinelerinde ve diğer ışıklı göstergelerin yaımında kullanılır 2008 HSarı 38

15. Ders Optoelektronik Devre Elemanları-I. n p

15. Ders Optoelektronik Devre Elemanları-I. n p 15. Ders Optoelektronik Devre Elemanları-I V n p 1 Bu bölümü bitirdiğinizde, Işık üreten optoelektronik devre elemanlar, Işık aan diot (LED), Lazer, Yarıiletken dalga kılavuzlar, Optik fiber konularında

Detaylı

Yarıiletken Optoelektronik Devre Elemanları. 2008 HSarı 1

Yarıiletken Optoelektronik Devre Elemanları. 2008 HSarı 1 Yarıiletken Optoelektronik Devre Elemanları 2008 HSarı 1 Optoelektronik Devre Elemanları p-n Eklemlerinin Optoelektronik Uygulamaları Işık Üreteçler» Işık Yayan Diyotlar (LED)» Lazerler Işık Dönüştürücüler»

Detaylı

Optoelektronik Tümleşik Devreler. 2008 HSarı 1

Optoelektronik Tümleşik Devreler. 2008 HSarı 1 Optoelektronik Tümleşik Devreler 2008 HSarı 1 Kaynaklar: R. G. Hunsperger, Integrated Optics: Theory and Technology, 3rd Edition, Springer Series in Optical Science, Springer-Verlag, 1991 2008 HSarı 2

Detaylı

Yarıiletken Yapılar. 2009 HSarı 1

Yarıiletken Yapılar. 2009 HSarı 1 Yarıiletken Yapılar 2009 HSarı 1 Ders İçeriği Yarıiletken klemler» Homo klemler» Hetero klemler Optoelektronik Malzemeler Optoelektronik Üretim Teknolojisi 2009 HSarı 2 Kaynaklar: 1) Solid State lectronics

Detaylı

13. Ders Yarıiletkenlerin Optik Özellikleri

13. Ders Yarıiletkenlerin Optik Özellikleri 13. Ders Yarıiletkenlerin Optik Özellikleri E(k) E(k) k k 1 Bu bölümü bitirdiğinizde, Optik soğurma, Optik geçişler, Lüminesans, Fotoiletkenlik, Eksiton, Kuantum Stark etkisi konularında bilgi sahibi olacaksınız.

Detaylı

14. Ders. Yarıiletkenler Yapılar

14. Ders. Yarıiletkenler Yapılar 14. Ders Yarıiletkenler Yapılar c c f v v 1 Bu bölümü bitirdiğinizde, Pn eklemlerinin yapısı, Pn eklemlerin VI eğrileri, Homo ve heteroyapıları, Kuantum yapılar, Optoelektronik malzemeler ve üretim teknikleri

Detaylı

OPTİK HABERLEŞMEDE YARIİLETKEN TABANLI AYGIT TEKNOLOJİSİ

OPTİK HABERLEŞMEDE YARIİLETKEN TABANLI AYGIT TEKNOLOJİSİ OPTİK HABERLEŞMEDE YARIİLETKEN TABANLI AYGIT TEKNOLOJİSİ AYŞE EROL İSTANBUL ÜNİVERSİTESİ FEN FAKÜLTESİ FİZİK BÖLÜMÜ ayseerol@istanbul.edu.tr V. Fizik Çalıştayı - 19 Şubat 2015 2 Nano- ve Optoelektronik

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

12. Ders Yarıiletkenlerin Elektronik Özellikleri

12. Ders Yarıiletkenlerin Elektronik Özellikleri 12. Ders Yarıiletkenlerin lektronik Özellikleri T > 0 o K c d v 1 Bu bölümü bitirdiğinizde, Yalıtkan, yarıiletken, iletken, Doğrudan (direk) ve dolaylı (indirek) bant aralığı, tkin kütle, devingenlik,

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optik Sensörler Üzerine düşen ışığa bağlı olarak üstünden geçen akımı değiştiren elemanlara optik eleman denir. Optik transdüserler ışık miktarındaki değişmeleri elektriksel

Detaylı

Optik Özellikler. Elektromanyetik radyasyon

Optik Özellikler. Elektromanyetik radyasyon Optik Özellikler Işık malzeme üzerinde çarptığında nasıl bir etkileşme olur? Malzemelerin karakteristik renklerini ne belirler? Neden bazı malzemeler saydam ve bazıları yarısaydam veya opaktır? Lazer ışını

Detaylı

Işığın Modülasyonu. 2008 HSarı 1

Işığın Modülasyonu. 2008 HSarı 1 şığın Mdülasynu 008 HSarı 1 Ders İçeriği Temel Mdülasyn Kavramları LED şık Mdülatörler Elektr-Optik Mdülatörler Akust-Optik Mdülatörler Raman-Nath Tipi Mdülatörler Bragg Tipi Mdülatörler Magnet-Optik Mdülatörler

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

Lazer ile şekil verme. Prof. Dr. Akgün ALSARAN

Lazer ile şekil verme. Prof. Dr. Akgün ALSARAN Lazer ile şekil verme Prof. Dr. Akgün ALSARAN Lazer Lazer (İngilizce LASER (Light Amplification by Stimulated Emission of Radiation) fotonları uyumlu bir hüzme şeklinde oluşturan optik kaynak. Lazer fikrinin

Detaylı

Lazerin Endüstriyel Uygulamalarında İş Sağlığı ve Güvenliği

Lazerin Endüstriyel Uygulamalarında İş Sağlığı ve Güvenliği T.C. ÇALIŞMA VE SOSYAL GÜVENLİK BAKANLIĞI İŞ SAĞLIĞI VE GÜVENLİĞİ GENEL MÜDÜRLÜĞÜ 27. İş Sağlığı ve Güvenliği Haftası 7-8 Mayıs 2013 Lazerin Endüstriyel Uygulamalarında İş Sağlığı ve Güvenliği Hazırlayan:

Detaylı

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 4. BÖLÜM

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 4. BÖLÜM DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 4. BÖLÜM OPTİK KAYNAKLAR Fiber Optik Haberleşme için Kullanılan Başlıca Işık Kaynakları: Lazer Diyot : Çok eklemli (heterojunction) biçimlendirilmiş

Detaylı

DİKDÖRTGEN KESİTLİ YARIİLETKEN KUANTUM ÇUKURLU LAZERLERDE NORMALİZE YAYILMA SABİTİNİN HESAPLANMASI

DİKDÖRTGEN KESİTLİ YARIİLETKEN KUANTUM ÇUKURLU LAZERLERDE NORMALİZE YAYILMA SABİTİNİN HESAPLANMASI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DİKDÖRTGEN KESİTLİ YARIİLETKEN KUANTUM ÇUKURLU LAZERLERDE NORMALİZE YAYILMA SABİTİNİN HESAPLANMASI Özgür Önder KARAKILINÇ Yüksek Lisans Tezi DENİZLİ

Detaylı

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot ElektronikI Laboratuvarı 1. Deney Raporu AdıSoyadı: İmza: Grup No: 1 Diyot Diyot,Silisyum ve Germanyum gibi yarıiletken malzemelerden yapılmış olan aktif devre elemanıdır. İki adet bağlantı ucu vardır.

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Arş. Gör. Mustafa İSTANBULLU Doç. Dr. Mutlu AVCI ADANA,

Detaylı

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM Prof. Dr. Olcay KINCAY Y. Doç. Dr. Nur BEKİROĞLU Y. Doç. Dr. Zehra YUMURTACI İ ç e r i k Genel bilgi ve çalışma ilkesi Güneş pili tipleri Güneş pilinin elektriksel

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Yarıiletken Fiziği: Elektronik ve Optik Özellikler HSarı 1

Yarıiletken Fiziği: Elektronik ve Optik Özellikler HSarı 1 Yarıiletken Fiziği: lektronik ve Optik Özellikler 2008 HSarı 1 Ders İçeriği lektronik Özellikler Yarıiletken, İletken, Yalıtkan nerji Bantları Katkılama Yarıiletken İstatistiği Optik Özellikler Optik Soğurma

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 4: Fotovoltaik Teknolojinin Temelleri Fotovoltaik Hücre Fotovoltaik Etki Yarıiletken Fiziğin Temelleri Atomik Yapı Enerji Bandı Diyagramı Kristal Yapı Elektron-Boşluk Çiftleri

Detaylı

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ

TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ TÜRK HIZLANDIRICI MERKEZİ SERBEST ELEKTRON LAZERİ PROJESİ Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) Doç. Dr. Suat ÖZKORUCUKLU İÇERİK Serbest Elektron Lazeri Prensibi Türk Hızlandırıcı

Detaylı

Süpermarket LED Aydınlatma Çözümleri

Süpermarket LED Aydınlatma Çözümleri Süpermarket LED Aydınlatma Çözümleri Maksimum enerji tasarrufu ve satışta pozitif etki LUXAR LED Ürünlerinin Avantajları Düşük Enerji Tüketimi Düşük Enerji Tüketimi - Yüksek Verim İçerdikleri son teknoloji

Detaylı

Enerji Band Diyagramları

Enerji Band Diyagramları Yarıiletkenler Yarıiletkenler Germanyumun kimyasal yapısı Silisyum kimyasal yapısı Yarıiletken Yapım Teknikleri n Tipi Yarıiletkenin Meydana Gelişi p Tipi Yarıiletkenin Meydana Gelişi Yarıiletkenlerde

Detaylı

YARIİLETKEN LAZERLERİN OPTİK VERİMİNİN FERMI-DIRAC YAKLAŞIMI YÖNTEMİ İLE İNCELENMESİ. Emre EREN

YARIİLETKEN LAZERLERİN OPTİK VERİMİNİN FERMI-DIRAC YAKLAŞIMI YÖNTEMİ İLE İNCELENMESİ. Emre EREN YARIİLETKEN LAZERLERİN OPTİK VERİMİNİN FERMI-DIRAC YAKLAŞIMI YÖNTEMİ İLE İNCELENMESİ Emre EREN Yüksek Lisans Tezi Fizik Anabilim Dalı Prof. Dr. İskender ASKEROĞLU 2012 Her Hakkı Saklıdır 1 GAZİOSMANPAŞA

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ FREKANS MODÜLASYONU İçerik 3 Açı modülasyonu Frekans Modülasyonu Faz Modülasyonu Frekans Modülasyonu Açı Modülasyonu 4 Açı modülasyonu Frekans Modülasyonu

Detaylı

1. AMAÇ Işınımla ısı transferi olayının tanıtılması, Stefan-Boltzman kanunun ve ters kare kanunun gösterilmesi.

1. AMAÇ Işınımla ısı transferi olayının tanıtılması, Stefan-Boltzman kanunun ve ters kare kanunun gösterilmesi. IŞINIMLA ISI TRANSFERİ 1. AMAÇ Işınımla ısı transferi olayının tanıtılması, Stefan-Boltzman kanunun ve ters kare kanunun gösterilmesi. 2. TEORİ ÖZETİ Elektromanyetik dalgalar şeklinde veya fotonlar vasıtasıyla

Detaylı

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması FİZİK 4 Ders 6: Atom Enerjisinin Kuantalanması Atom Enerjisinin Kuantalanması Atom Spektrumları Atom Modelleri Bohr Atom Modeli Atomun yapısı ve Laserler Dalga Parçacık İkilemi Tüm fizikçiler fotoelektrik

Detaylı

FZM450 Elektro-Optik. 9.Hafta

FZM450 Elektro-Optik. 9.Hafta FZM450 Elektr-Optik 9.Hafta şığın Mdülasynu 008 HSarı 1 9. Hafta Ders İçeriği Temel Mdülatör Kavramları LED ışık mdülatörler Elektr-ptik mdülatörler Akust-Optik mdülatörler Raman-Nath Tipi Mdülatörler

Detaylı

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

PRATİKTE AYDINLATMA KAVRAMLARI VE TERİMLERİ

PRATİKTE AYDINLATMA KAVRAMLARI VE TERİMLERİ İSO ATMK - AGİD Sektör Toplantısı PRATİKTE AYDINLATMA KAVRAMLARI VE TERİMLERİ A.Kamuran TÜRKOĞLU, Kevork BENLİOĞLU, Tuba BASKAN 23.06.2011 1 İÇERİK 1. Işık Şiddeti - Kandela 2. Işık Akısı - Lümen 3. Aydınlık

Detaylı

InGaAsP/InP ÇOKLU KUANTUM KUYULU ÇATI DALGA KILAVUZLU LAZER DİYOTLARIN FABRİKASYONU VE LAZER DİYOT PARAMETRE ANALİZİ. Aylin BENGİ DOKTORA TEZİ FİZİK

InGaAsP/InP ÇOKLU KUANTUM KUYULU ÇATI DALGA KILAVUZLU LAZER DİYOTLARIN FABRİKASYONU VE LAZER DİYOT PARAMETRE ANALİZİ. Aylin BENGİ DOKTORA TEZİ FİZİK InGaAsP/InP ÇOKLU KUANTUM KUYULU ÇATI DALGA KILAVUZLU LAZER DİYOTLARIN FABRİKASYONU VE LAZER DİYOT PARAMETRE ANALİZİ Aylin BENGİ DOKTORA TEZİ FİZİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ARALIK 009

Detaylı

Raman Spektroskopisi

Raman Spektroskopisi Raman Spektroskopisi Çalışma İlkesi: Bir numunenin GB veya yakın-ir monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU FİZ201 DALGALAR LABORATUVARI Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU LASER (Light AmplificaLon by SLmulated Emission of RadiaLon) Özellikleri Koherens (eş fazlı ve aynı uzaysal yönelime sahip), monokromalk

Detaylı

Prof. Dr. H. SELÇUK VAROL OPTOELEKTRON"K & F"BER OPT"K

Prof. Dr. H. SELÇUK VAROL OPTOELEKTRONK & FBER OPTK I Prof. Dr. H. SELÇUK VAROL MUSTAFA YA!IMLI OPTOELEKTRON"K & F"BER OPT"K II Yayın No : 2017 Teknik Dizisi : 126 1. Bası A!ustos 2008 - "STANBUL ISBN 978-975 - 295-914 - 9 Copyright Bu kitabın bu basısı

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

Işınım ile Isı Transferi Deneyi Föyü

Işınım ile Isı Transferi Deneyi Föyü Işınım ile Isı Transferi Deneyi Föyü 1. Giriş Işınımla (radyasyonla) ısı transferi ve ısıl ışınım terimleri, elektromanyetik dalgalar ya da fotonlar (kütlesi olmayan fakat enerjiye sahip parçacıklar) vasıtasıyla

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

Light Amplification by Stimulated Emission of

Light Amplification by Stimulated Emission of Düzlem dalga örneği ve holografinin i temel ışık kkanağığ Light Amplification b Stimulated mission of Radiation Zorlamalı ışık salması (emison) Atomlar kendiliğinde soğurma apamazlar. Işık alanı + Temel

Detaylı

YARIİLETKEN LAZERLERDE YÜKLÜ TAŞIYICILARIN ENERJİ DURUMLARININ İNCELENMESİ

YARIİLETKEN LAZERLERDE YÜKLÜ TAŞIYICILARIN ENERJİ DURUMLARININ İNCELENMESİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 00 : 8 : : 155-160

Detaylı

FOTOVOLTAIK HÜCRELERIN YAPıSı VE ÇALıŞMA PRENSIPLERI DOĞRUDAN ELEKTRIK ÜRETIMI

FOTOVOLTAIK HÜCRELERIN YAPıSı VE ÇALıŞMA PRENSIPLERI DOĞRUDAN ELEKTRIK ÜRETIMI DOĞRUDAN ELEKTRIK ÜRETIMI DOĞRUDAN ELEKTRIK ÜRETIMI Güneş enerjisinden doğrudan elektrik enerjisi üretmek için güneş hücreleri (fotovoltaik hücreler) kullanılır. Güneş hücreleri yüzeylerine gelen güneş

Detaylı

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ Taner ÇARKIT Elektrik Elektronik Mühendisi tanercarkit.is@gmail.com Abstract DC voltage occurs when light falls on the terminals

Detaylı

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI 6. Bölüm: Alan Etkili Transistörler Doç. Dr. Ersan KABALCI 1 FET FETler (Alan etkili transistörler) BJTlere çok benzer yapıdadır. Benzerlikleri: Yükselteçler Anahtarlama devreleri Empedans uygunlaştırma

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

Elektromanyetik ışınlar ve dalga boyları

Elektromanyetik ışınlar ve dalga boyları Elektromanyetik ışınlar ve dalga boyları İnsan gözü, dalga boyu 380-780 nanometreye kadar olan elektromanyetik dalgaları ışık olarak algılar. EBO 304- Ölçme ve Enstrümantasyon 2 Işığa duyarlı eleman çeşitleri

Detaylı

Ahenk (Koherans, uyum)

Ahenk (Koherans, uyum) Girişim Girişim Ahenk (Koherans, uyum Ahenk (Koherans, uyum Ahenk (Koherans, uyum http://en.wikipedia.org/wiki/coherence_(physics#ntroduction Ahenk (Koherans, uyum Girişim İki ve/veya daha fazla dalganın

Detaylı

Fotonik Kristallerin Fiziği ve Uygulamaları

Fotonik Kristallerin Fiziği ve Uygulamaları Fotonik Kristallerin Fiziği ve Uygulamaları Ekmel Özbay, İrfan Bulu, Hümeyra Çağlayan, Koray Aydın, Kaan Güven Bilkent Üniversitesi, Fizik Bölümü Bilkent, 06800 Ankara ozbay@fen.bilkent.edu.tr, irfan@fen.bilkent.edu.tr,

Detaylı

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç GİRİŞİM Girişim olayının temelini üst üste binme (süperpozisyon) ilkesi oluşturur. Bir sistemdeki iki farklı olay, birbirini etkilemeden ayrı ayrı ele alınarak incelenebiliyorsa bu iki olay üst üste bindirilebilinir

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

Atomların Kuantumlu Yapısı

Atomların Kuantumlu Yapısı Atomların Kuantumlu Yapısı Yazar Yrd. Doç. Dr. Sabiha AKSAY ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra, Atom modellerinin yapısını ve çeşitlerini, Hidrojen atomunun enerji düzeyini, Serileri, Laser ve

Detaylı

LAZER CĐHAZI : (1 ) lazer ortamı (2) maddeye verilen enerji (ışık), (3) ayna, (4) yarı geçirgen ayna, (5) dışarı çıkan lazer ışını

LAZER CĐHAZI : (1 ) lazer ortamı (2) maddeye verilen enerji (ışık), (3) ayna, (4) yarı geçirgen ayna, (5) dışarı çıkan lazer ışını 50. YILINDA LAZER Đlk kullanılabilir lazer 1960 yılında Dr. Theodor Maiman tarafından yapılmıştır. Lazerin bulunuşunun 50. yılı kutlama etkinlikleri, 2010 yılı boyunca sürecektir. Einstein in 1917 yılında,

Detaylı

Bahar Yarıyılı Bölüm Ankara A. OZANSOY

Bahar Yarıyılı Bölüm Ankara A. OZANSOY FİZ314 Fizikte Güncel Konular 2015-2016 Bahar Yarıyılı Bölüm-4 5.04.2016 Ankara A. OZANSOY Bölüm 4: Atom ve Molekül Fiziği 1. Atomun Temel Özellikleri 2. Atom Modelleri 3. Hidrojen Atomu için Schrödinger

Detaylı

Aşağıdaki şekillerden yararlanarak test soruların cevaplarını vermeye çalışınız.

Aşağıdaki şekillerden yararlanarak test soruların cevaplarını vermeye çalışınız. Aşağıdaki şekillerden yararlanarak test soruların cevaplarını vermeye çalışınız. Aşağıdaki Tariflerin boşluklarına uygun kelimeleri seçiniz izi 1. Ortamdaki ısı,ışık, ses, basınç gibi değişiklikleri algılayan

Detaylı

Gamma Bozunumu

Gamma Bozunumu Gamma Bozunumu Genelde beta ( ) ve alfa ( ) bozunumu sonunda çekirdek uyarılmış haldedir. Uyarılmış çekirdek gamma ( ) salarak temel seviyeye döner. Gamma görünür ışın ve x ışını gibi elektromanyetik radyasyon

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Soru-1) IŞIK TAYFI NEDİR?

Soru-1) IŞIK TAYFI NEDİR? Soru-1) IŞIK TAYFI NEDİR? Beyaz ışığın, bir prizmadan geçtikten sonra ayrıldığı renklere ışık tayfı denir. Beyaz ışığı meydana getiren yedi rengin, kırılmaları değişik olduğu için, bir prizmadan bunlar

Detaylı

SICAKLIK ALGILAYICILAR

SICAKLIK ALGILAYICILAR SICAKLIK ALGILAYICILAR AVANTAJLARI Kendisi güç üretir Oldukça kararlı çıkış Yüksek çıkış Doğrusal çıkış verir Basit yapıda Doğru çıkış verir Hızlı Yüksek çıkış Sağlam Termokupldan (ısıl İki hatlı direnç

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır.

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır. IŞIK VE SES Işık ve ışık kaynakları : Çevreyi görmemizi sağlayan enerji kaynağına ışık denir. Göze gelen ışık ya bir cisim tarafından oluşturuluyordur ya da bir cisim tarafından yansıtılıyordur. Göze gelen

Detaylı

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler SPEKTROSKOPİ Spektroskopi ile İlgili Terimler Bir örnekteki atom, molekül veya iyonlardaki elektronların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır?

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? 1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? a) Yüzde 10 b) Yüzde 5 c) Yüzde 1 d) Yüzde 20 3. Direnç

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 5: Fotovoltaik Hücre Karakteristikleri Fotovoltaik Hücrede Enerji Dönüşümü Fotovoltaik Hücre Parametreleri I-V İlişkisi Yük Çizgisi Kısa Devre Akımı Açık Devre Voltajı MPP (Maximum

Detaylı

SPEKTROSKOPİK ELİPSOMETRE

SPEKTROSKOPİK ELİPSOMETRE OPTİK MALZEMELER ARAŞTIRMA GRUBU SPEKTROSKOPİK ELİPSOMETRE Birhan UĞUZ 1 0 8 1 0 8 1 0 İçerik Elipsometre Nedir? Işığın Kutuplanması Işığın Maddeyle Doğrusal Etkileşmesi Elipsometre Bileşenleri Ortalama

Detaylı

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU T.C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ ORTAÖĞRETİM FEN VE MATEMATİK ALANLARI EĞİTİMİ BÖLÜMÜ FİZİK EĞİTİMİ ANABİLİM DALI FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU TÇ 2007 & ҰǓ 2012 Öğrencinin Adı

Detaylı

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin dış ortamdan ısı absorblama kabiliyetinin bir göstergesi

Detaylı

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan IŞIK Görme olayı ışıkla gerçekleşir. Cisme gelen ışık, cisimden yansıyarak göze gelirse cisim görünür. Ama bu cisim bir ışık kaynağı ise, hangi ortamda olursa olsun, çevresine ışık verdiğinden karanlıkta

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Kavramları Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri

Detaylı

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SEVİYENİN ÖLÇÜLMESİ Seviye Algılayıcılar Şamandıra Seviye Anahtarları Şamandıralar sıvı seviyesi ile yukarı ve aşağı doğru hareket

Detaylı

04.01.2016 LASER İLE KESME TEKNİĞİ

04.01.2016 LASER İLE KESME TEKNİĞİ LASER İLE KESME TEKNİĞİ Laser: (Lightwave Amplification by Stimulated Emission of Radiation) Uyarılmış Işık yayarak ışığın güçlendirilmesi Haz.: Doç.Dr. Ahmet DEMİRER Kaynaklar: 1-M.Kısa, Özel Üretim Teknikleri,

Detaylı

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI

12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 9. ÖZET 10. DEĞERLENDİRME SORULARI 12. ÜNİTE IŞIK KONULAR 1. IŞIK VE IŞIK KAYNAKLARI 2. Işık 3. Işık Nasıl Yayılır? 4. Tam Gölge ve Yarı Gölge 5. Güneş Tutulması 6. Ay Tutulması 7. IŞIK ŞİDDETİ, TAYİNİ VE AYDINLATMA BİRİMLERİ 8. Işık Şiddeti

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM 108 Elektrik Devreleri I Laboratuarı Deneyin Adı: Kırchoff un Akımlar Ve Gerilimler Yasası Devre Elemanlarının Akım-Gerilim

Detaylı

Şekil 1. Darbe örnekleri

Şekil 1. Darbe örnekleri PWM SOKET BİLGİ KİTAPÇIĞI PWM(Darbe Genişlik Modülasyonu) Nedir? Darbe genişlik modülasyonundan önce araçlardaki fren sistemlerinden bahsetmekte fayda var. ABS frenler bilindiği üzere tekerleklerin kızaklanmasını

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri pasif olarak

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan. akdogan@gyte.edu.tr X-Işınları 3. Ders: X-ışınlarının maddeyle etkileşmesi Gelen X-ışınları Saçılan X-ışınları (Esnek/Esnek olmayan) Soğurma (Fotoelektronlar)/ Fluorescence ışınları Geçen X-ışınları Numan Akdoğan akdogan@gyte.edu.tr

Detaylı

Mekanik. 1.3.33-00 İp dalgalarının faz hızı. Dinamik. İhtiyacınız Olanlar:

Mekanik. 1.3.33-00 İp dalgalarının faz hızı. Dinamik. İhtiyacınız Olanlar: Mekanik Dinamik İp dalgalarının faz hızı Neler öğrenebilirsiniz? Dalgaboyu Faz hızı Grup hızı Dalga denklemi Harmonik dalga İlke: Bir dört köşeli halat (ip) gösterim motoru arasından geçirilir ve bir lineer

Detaylı

İleri Elektronik Uygulamaları Hata Analizi

İleri Elektronik Uygulamaları Hata Analizi İleri Elektronik Uygulamaları Hata Analizi Tuba KIYAN 01.04.2014 1 Tarihçe Transistör + Tümleşik devre Bilgisayar + İnternet Bilişim Çağı Transistörün Evrimi İlk transistör (1947) Bell Laboratuvarları

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK-I LABORATUVARI DENEY 1: YARIİLETKEN DİYOT Yrd.Doç.Dr. Engin Ufuk ERGÜL Arş.Gör. Ayşe AYDIN YURDUSEV Arş.Gör. Alişan AYVAZ Arş.Gör. Birsen BOYLU AYVAZ ÖĞRENCİ

Detaylı

FOTOVOLTAİK (PV) TEKNOLOJİLERİ. Prof. Dr. Süleyman ÖZÇELİK sozcelik@gazi.edu.tr

FOTOVOLTAİK (PV) TEKNOLOJİLERİ. Prof. Dr. Süleyman ÖZÇELİK sozcelik@gazi.edu.tr FOTOVOLTAİK (PV) TEKNOLOJİLERİ Prof. Dr. Süleyman ÖZÇELİK sozcelik@gazi.edu.tr Sunum İçeriği 1. Fotovoltaik (PV) teknolojilerin tarihsel gelişimi 2. PV hücrelerin çalışma ilkesi 3. PV hücrelerin kullanım

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

AYDINLATMA SİSTEMLERİ. İbrahim Kolancı Enerji Yöneticisi

AYDINLATMA SİSTEMLERİ. İbrahim Kolancı Enerji Yöneticisi AYDINLATMA SİSTEMLERİ İbrahim Kolancı Enerji Yöneticisi Işık Göze etki eden özel bir enerji şekli olup dalga veya foton şeklinde yayıldığı kabul edilir. Elektromanyetik dalgalar dalga uzunluklarına göre

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ Makine Elemanları 2 DİŞLİ ÇARKLAR I: GİRİŞ 1 Bu bölümden elde edilecek kazanımlar Güç Ve Hareket İletim Elemanları Basit Dişli Dizileri Redüktörler Ve Vites Kutuları : Sınıflandırma Ve Kavramlar Silindirik

Detaylı

LED AYDINLATMA. 2. LED Aydınlatmanın Avantajları Nedir ve Aydınlatmada Neden Led Kullanılmalı?

LED AYDINLATMA. 2. LED Aydınlatmanın Avantajları Nedir ve Aydınlatmada Neden Led Kullanılmalı? LED AYDINLATMA 1. LED Nedir? 2. LED Aydınlatmanın Avantajları Nedir ve Aydınlatmada Neden Led Kullanılmalı? 3. LED Aydınlatma Uygulamaları 4. Örnek LED Aydınlatma Uygulaması ve Sağladığı LED NEDİR? LED,

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot Karakteristikleri Diyot, zener diyot DENEY

Detaylı