İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi..."

Transkript

1 İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma... Benzer Terimle Karşılaşma... 6 İç İçe Parantezler... 7 Parantezle Parantezin Dağılımı... 8 Ortak Çarpan Parantezi... 9 Sayı İfadelerinde Ortak Çarpan Parantezi Parantezli Ortak Çarpan Harfli İfadelerin Kesri ve Bölümü... 1 BASİT EŞİTSİZLİKLER Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... Eşitsizlik Yönü... Aralık Kavramı ve Eşitsizlik Çözümü... Bilinenler Bir Tarafa, Bilinmeyenler Diğer Tarafa... 6 Kesirli Eşitsizlikler... 7 İki Bilinmeyenli Eşitsizlikler... 8 Eşitsizliklerde En Büyük ve En Küçük... 9 Uygulama Tekrar Zamanı Çözümlü Test Çözümlü Test Harfli İfadelerde Basitleşme... 1 Harfli İfadelerde Sadeleşme... 1 Parantezli Sadeleşmeler... 1 İşaret Değiştiren Parantez Harfe Değer Verme Uygulama Zamanı DENKLEMLER Denklem ve Denklem Çözme... Bilinenler Bir Tarafa, Bilinmeyenler Diğer Tarafa... Kesirli Denklemler... Paydası Bilinmeyenli Denklemler... Olacağı Belli Kesirli Denklemler... 6 Denklemlerde Basitleşme ve Sadeleşme... 7 Köke Değer Verme / lerin Basitleşmesi / Denklem İçinde Ondalıklar... 8 İki Bilinmeyenli Denklemler ve Yok Etme Yöntemiyle Denklem Çözme... 9 Bilinmeyenleri Birbiri Cinsinden Yazma ve Yerine Koyma Yöntemiyle Denklem Çözme... 0 Kesirli İki Bilinmeyenler... 1 Denklemlerde İstenilene Ulaşma... MUTLAK DEĞER Mutlak Değer Kavramı Mutlak Değerin Açılımı I Mutlak Değerin Açılımı II... 7 Mutlak Değer İçi İşlemler... 7 Mutlak Değer Denklemleri... 7 Aynı Çatı Altında Mutlak Değer Denklemi... 7 f ( ) < a Eşitsizliği a < f( ) Eşitsizliği a < f( ) < b Eşitsizliği İç İçe Mutlak Değer Denklemi İç İçe Mutlak Değer Açılımı ve Eşitsizliği Mutlak Değer Toplamlarının Sıfır Olması En Büyük En Küçük Değer... 8 Uygulama Tekrar Zamanı Çözümlü Test Çözümlü Test Uygulama Zamanı 9... Tekrar Zamanı Çözümlü Test Çözümlü Test... 9

2 Harfli İfadeler ve Elemanları HARFLİ İFADELER Tanım: Harfler ve sayıların işlemlerinden oluşan matematik cümlelerine "harfli ifadeler" ya da "cebirsel ifadeler" denilir. ( + y 7 gibi) ile tanışalım: Harfli ifadelerde genellilikle, y ve z harfleri kullanılır. Harf ile sayı arasındaki belirtilmeyen işlem çarpmadır. ( = gibi) Elemanları: Harfli ifadede Değişken / Bilinmeyen: Kullanılan harflere denilir Terim: Birbirinden toplama (+) veya çıkarma ( ) işlemleriyle ayrılan kısımlara denilir. Katsayı: Her terimdeki harfli kısmın katını belirten sayıdır. vv vv Katsayı tekrarlı toplamının adetini belirtir. ( = + + gibi) Belirtilmeyen katsayı gizli 1 çarpanıdır. ( = 1 gibi) Derece: Her terimdeki harfli kısmın üssünü (kuvvetini) (*) belirten sayıdır. vv Derece tekrarlı çarpımın adetini belirtir. ( = gibi) y harfli ifadesinin elemanlarını belirtiniz. Değişkenleri: ve y dir. Terimleri Katsayısı Derecesi = 1 1 = 1 1 y = y y + y Yukarıdaki harfli ifadeye göre aşağıdaki soruları cevaplayınız. 1. Terimleri nedir? Aşağıdaki eşitliklerden doğru olanları "D", yanlış olanları "Y" ile belirtiniz. 6. = 0 (...) 7. + = (...). Değişkenleri nedir? 8. = (...). Katsayıları nedir? 9. = 1 (...) 10. a + a + a = a (...). Katsayıları toplamı kaçtır? 11. = 0 (...). Değişkensiz (sabit) terimi kaçtır? 1. y y = y (...) 1. = 1 (...) 1), y, y, ) ve y ),, 1, ) 6 ) (*) Üst (kuvvet); tekrarlı çarpımın adetini belirtir. 6) Y 7) D 8) Y 9) D 10) Y 11) Y 1) D 1) D 1

3 HARFLİ İFADELER Benzer Terim Harfli ifadedeki her terimi, katsayısını belirtmeden değişken ve derecesiyle adlandırmaya terimleri adlandırma; aynı şekilde adlandırılan terimlere benzer terim denilir. Değişkeni olmayan terime sabit terim denilir. Benzer terimleri harfli ifadeleri toplayıp çıkarırken kullanacağız. (Adlandırma) harfli ifadesinin terimlerini adlandırınız. (Benzer Terim) Aşağıdaki terim çiftlerinin benzerliklerini belirtiniz. a) ile b) ile d) ile e) ile 1 c) ile y a) ( li) ( li) benzer. b) ( li) f) y ile ( li) benzer. c) ( li) y (y li) benzemez. d) ( li) ( li) benzemez., li terim;, li terim; 1, sabit terim e) (sabit) 1 (sabit) benzer. f) y (y li) ( li) benzemez. Aşağıdaki terimleri adlandırınız. 1. Aşağıdaki terim çiftlerinden benzeyenleri "" ile benzemeyenleri "" ile belirtiniz. 8. ile ( ). y. 9. ile ( ) ile ( ) y - + y + - Yukarıdaki cebirsel ifadeye göre aşağıdaki soruları cevaplayınız.. li terimin katsayısı kaçtır? 11. ile y ( ) 1. y ile y ( ) 6. y li terimin katsayısı ile derecesi toplamı kaçtır? 1. a ile a ( ) 7. Sabit terim kaçtır? 1. b ile ( ) 1) li terim ) y li terim ) li terim ) sabit terim ) 6) 7) 8) 9) 10) 11) 1) 1) 1)

4 Harfli İfadenin Terimlerini Toplayıp Çıkarma HARFLİ İFADELER Harfli ifadelerde sadece benzer terimler (aynı şekilde adlandırılanlar), katsayıları değişecek şekilde toplanıp çıkarılır. Yukarıdaki durumu "elma ile elma, armut ile armut" kuralı olarak aklınızda tutunuz. Harfli ifadede benzer terim yoksa toplayıp çıkarmaya zorlanmaz olduğu gibi kalır. Toplanıp çıkarıldığında katsayısı "0" olan terim yok olur. + harfli ifadesinin eşitini ifadesinin eşitini > > = = - (Toplanıp Çıkarılamayanlar) Aşağıdaki ifadelerin eşitini a) a b) + c) y + y = ( + 1- ) 1 =- li terimlerin katsayıları, parantezinde toplanıp çıkarılır. Yukarıdaki harfli ifadelerin her birinde benzer terim bulunmadığından oldukları gibi kalırlar. a) a b) + c) y + y Aşağıda verilen harfli ifadelerin eşitini = = =. a a + a = =. y + y y + y = =. + + =. a a + a a = 1. + = 6. + = 1. a 6 = 7. y + 7y y = 1. + = 8. ab + ab + ab = 16. ab + a + b = 9) ) + 11) + 1) ) 9 ) 6a ) 7y ) 11 ) a 6) 7) 10y 8) ab 1) + 1) a 6 1) + 16) ab + a + b

5 HARFLİ İFADELER Harfli İfadelerin Terimlerini Çarpma Tekrarlı çarpımların adeti üs (kuvvet) olarak yazılır.... = 1 n tane Aynı harfler çarpılırken, üsler toplamı kadar tekrarlı çarpım oluşur. a b = a + b Çarpmanın değişme özelliği ile katsayılar ile katsayılar harfler ile harfler çarpılır. () () = ( ) ( ) = 6 gibi (Tekrarlı Toplam, Tekrarlı Çarpım) Aşağıdaki ifadelerin eşitini a) + + =? b) =? c) + =? a) + + = (Tekrarlı toplam) Karıştırmayınız! b) = (Tekrarlı çarpım) c) + = + > 9 n (Aynı Harflilerin Çarpımı) Aşağıdaki ifadelerin eşitini a) =? b) y y =? c) + + =? + a) = = 1 1+ b) y y = y = y y y y c) + + = 9 ; + (Katsayı ile Katsayı, Harf ile Harf) Aşağıdaki ifadelerin eşitini a) ( ) =? b) y =? c) a( ) =? a) ( ) = ( ) = 10 b) y = y = 6y c) a ( ) = ( ) a = 6a Aşağıda verilen harfli ifadelerin eşitini 9. a b c = 1. a + a + a + a = 10. a a a =. a a a a =. = 11. a a a = 1. =. y = 1. y z =. = 1. y y y = 6. y ( y) = 1. a a a + a a + a = 7. = ( ) = 8. a a = 9) abc 10) a 8 11) 0a 1) 1) a ) a ) 6 ) 1y ) 0 6) 6y 7) 8) a 7 1) 10yz 1) 0y 1) a + a + a 16) 6 8

6 Harfli İfadelerde Parantez Açma HARFLİ İFADELER Sayıyı paranteze dağıtma; (Dağılamayanlar) a(b a) ifadesini eşitini a ( + y z) = a + a y + a ( z) b ( + y z) = b b y b ( z) İşareti paranteze dağıtma; Katsayılar bir arada harfler bir arada çarpılır. Çarpma çarpmaya dağılmaz. Doğru çözüm: a(b a) = ( ) (a a b) = 6a b Hatalı çözüm: +( + y z) = +1 ( + y z) = y + 1 ( z) = + y z a (b a) = a b a a = ab ab a = 6a b ( + y z) = 1 ( + y z) = 1 1 y + ( 1) ( z) = y + z Çarpmanın sadece toplama veya çıkarma üzerine dağılımı vardır. Çarpmanın çarpmaya ya da bölmeye dağılımını kesinlikle yapmayınız. Çarpmanın değişme özelliğiyle paranteze dağıtılacak ifade öne alınabilir. (İşaret Dağıtma) Aşağıdaki işaret dağılımlarını yapınız a) +( y) b) ( y) (Parantez Dağılımı) Aşağıdaki ifadelerin parantezini açınız. a) ( + y) b) ( 1) a) +1 ( y) = ( y) = y Pozitif paranteze dağıtılınca parantez içi aynı kalır. a) ( + y) = + y = y b) ( 1) = ( 1) = 6 + b) 1 ( y) = 1 1 ( y) = + y = y Negatif paranteze dağıtılınca parantez içi yer değiştirir. Aşağıda verilen harfli ifadelerde parantezleri açınız. 1. ( + y) =. (a b) = 9. (a + b) = 10. ( y + ) = 11. y( y + ) =. ( ) =. ( + 7) =. ( + 1) = 6. ( y) = 7. ( + 1) = 8. y( y) = 1. ( y 6z) = 1. (a b c) = 1. ( + 1) = 1. y(y y ) = 16. a( y z) = 1) 6 + 1y ) 6a + 8b ) 1 0 ) 7 ) 8 6) + y 7) + 8) 1 y + 6y 9) a + b 10) 8y 1 11) 10y 1y 1) 8 0y z 1) a + 10b +1c 1) 6 + 1) 10y + 6y + y 16) 8a + 1ay + 0az

7 HARFLİ İFADELER Benzer Terimle Karşılaşma Parantez dağılımından sonra benzer terimler görüldüğü her yerde toplanır çıkarılır. Dağılımından sonra y li ve y li terimler görülürse çarpmanın değişme özelliğiyle benzer hale getirilir. (y = y gibi) (y + 1) + y( 1) ifadesinin eşitini (y + 1) + y ( 1) = y + + y y = y + y + y = y + y (a + a 1) + a(a + 1)ifadesinin eşiti nedir? (a + a 1) + a(a + 1) = 6a + a + a + a = (6a + a ) + (a + a) = 9a + a ( + 1) ( 1) ifadesinin eşitini ( + 1) ( 1) = + ( 1) = ( - ) + + = Aşağıda verilen harfli ifadelerin eşitini 9. ( a + a) (a a) = 1. ( + ) + ( + 1) =. (a ) (a + 1) = 10. ( ) ( ) =. (1 ) + ( + ) = 11. (a + a ) + (a + a) =. (y ) + ( y) = 1. (y + ) + (y 1) =. 6( ) + ( + 1) = 1. ( + 1) + ( + ) = 6. (a + ) (1 + a) = 1. ( ) + ( ) = 7. (a + ) + (a + 1) = 1. y( + z ) + y ( + z) = 8. ( a 1) + (a 1) = 16. a(b c) + a(b + c) = 6 1) ) a 11 ) 19 + ) 11y + 6 ) + 1 6) 19a 1 7) 8a + 9 8) a 9) a + 19a 10) 11) a + 1 a 9 1) y 1) ) 7 1 1) 8y + 11yz 16) ab + 1 ac

8 İç İçe Parantezler HARFLİ İFADELER En içteki parantezden başlayarak, en dıştaki paranteze doğru açılım yapılır. Benzer terimler oluştuğu anda toplanır çıkarılır [ ( 1)] ifadesinin eşitini [ ( 1) + ] ifadesinin eşitini 6 - ( - 1) = [ ] > < - 6 = [ + 6] = [ 1 ( 1)] = [ + 1] = [ ] = = + 9 Aşağıda verilen ifadelerin eşitine 9. [ ( + 1) ] = 1. [ + ( + )] =. [1 + ( + 1)] = 10. [a + (1 + a)] =. [( + 1) + ] = 11. a + + [6 (a + 1)] =. a + [a + (a + )] = 1. y [1 + (y + z) y] =. 6 [ + (a 1)] = 1. [ ( ) ] = 6. [ + (a + 1)] = 1. [( ) + ( + 1) + 1] = 7. [( + 1) ] = 1. [( + 1) ] ( + 1) = 8. [ ( ) ] = 16. [ + ( 1 )] + ( ) = 1) ) 8 1 ) 0 + ) 9a + 6 ) 18a 6 6) 1a + 1 7) 8 8) 6 + 9) ) 9a + 11) a + 6 1) y z 1 1) + 8 1) 1) 1 16) 8 7

9 HARFLİ İFADELER Parantezle Parantezin Dağılımı İki parantezli ifade dağıtılırken; ilk parantezdeki her terim, ikinci parantezdeki terimlerin her biriyle sırasıyla dağıtılır. Üç parantezli ifadeler dağıtılırken; önce ikisini dağıtıp oluşan parantezle kalan parantezi dağıtırız. (Çok karşılaşılmaz) (İki Parantezli Dağılım) ( 1) ( ) ifadesinin eşitinin I. yol (Üç Parantezli Dağılım) ( + 1) ( + ) ( + ) ifadesinin eşitini ( + 1) [( + ) ( + )] = ( + 1) [ ] = ( + 1) ( + + 6) = = ( 1) ( ) = + ( ) 1 1 ( ) II. yol = 6 + = 7 + ( + y) ( y) ifadesinin eşitini F ( + 1)( - ) = ( -)-1( -) < = + ( ) 1 1 ( ) = 6 + = 7 + ( + y) ( - y) = - y + y - y = -y Aşağıda verilen harfli ifadelerin eşitini 7. ( ) ( + ) = 1. ( + ) ( + 1) = 8. (a 1) (a ) =. (a + ) (a + ) = 9. (y ) (y 1) =. ( + ) ( + 1) = 10. ( + 1) ( + ) =. (a + 1) (a + ) = 11. (a + b) (a + b) =. (y + ) (y ) = 1. (a 1) (a + 1) (a + ) = 6. (a + ) (a 1) = 1. ( y ) ( y) = 8 1) + + ) a + a + 6 ) ) 10a + 17a + ) y + y 6 6) a + a 7) 6 1 8) a 7a + 9) 6y 1y + 10) ) a + a b + b 1) a + a a 1) 10y + 8y

10 Paydası Bilinmeyenli Denklemler DENKLEMLER Paydasında bilinmeyen bulunan kesirli denklemlerde, tespit edilen kök, ifadedeki herhangi bir kesrin paydasını 0 yapıyorsa kök olarak alınamaz. Çünkü: Sayı 0 = Tanımsızdır - = denkleminin çözüm kümesini - - = = = - 1 = 0 Ancak = ifadede yerine yazıldığında şeklinde 0 belirsiz kesir oluşur. = kök olarak alınamaz. Ç. K.= { } (*) 1 = denkleminin çözüm kümesini = + 1 = 6 = = in paydasını 0 yaptığı kesir yok, köktür. Ç. K. = {} 8 - = + olduğuna göre i = + & - = + & = & = 1 & = 1 & = 6 = 6 nın paydasını sıfır yaptığı kesir yok, köktür. Aşağıda verilen denklemlerin köklerini =. - = = = = = = = + + 1) ) 0 ) ) ) 6) - 7) 1 8) - 9 (*) { } ya da boşküme anlamındadır.

11 DENKLEMLER Olacağı Belli Kesirli Denklemler Üstü ve altı işlemli kesir ve merdiven kesri denklemlerinde, üst ve alt ayrı ayrı işleme alınarak üstü altına bölünür ve uygun aşamada çapraz çarpım uygulanır. Ancak bu tarz sorularda genellikle pay ya da paydaya "olacağı belli" değerler verilerek, adım adım köke ulaşılabilir. (Çapraz Çarpım) + 1 = 1 denklemine göre kaçtır? 1 + (Olacağı Belli) Aşağıdaki denklemleri "olacağı belli" yöntemiyle çözünüz a) = b) 1 + = a) = 1 - = b) = 1 + = = 1 & + = + & = ( ) ( ) & + 6 = + 6 & - = 6-6 & = 0 ( = 0 ın paydasını sıfır yaptığı kesir yok, köktür.) = 7 = 7 ( = 7 nin ifadede paydasını 0 yaptığı kesir yok, köktür) 1 + = 6 = = 6 Aşağıda verilen denklemlerin bilinmeyenleri =. 10 = = = = = = = ) ) ) 7 ) 1 ) 7 6) 1 7) 8) 0

12 Denklemlerde Basitleşme ve Sadeleşme DENKLEMLER Basitleşme: Eşitliğin her iki tarafındaki toplam veya fark halindeki aynı sayı ya da harfli ifade aynı tarafa geçirildiğinde birbirini sıfırlaştırıp etkisiz hale getireceğinden karşılıklı yok edilebilir. Sadeleşme: Eşitliğin her iki tarafındaki çarpım ya da bölüm durumundaki sayılar aynı sayılarla bölünüp sadeleşebiliyorsa karşılıklı sadeleştirilebilir. Eşitliğin her iki tarafındaki aynı harfli ifadeden oluşan çarpımlar sadeleştirilmez, kök kaybına neden olur. (Sadeleşmeler) Aşağıdaki denklemleri çözünüz. a) ( + 1) = ( + ) b) = 10 1 a) ( + 1) = ( + ) & + 1 = + 6 b) = = = & - = + 1& - = + 1 = (Basitleşme) Aşağıdaki denklemleri çözünüz. a) + y = y + 10 b) a) + y = y + 10 b) = 10 = = = = & = 1 & = (Yanlış Sadeleşme Kök Kaybı) ( ) = ( + 1) denkleminde yapılabilecek yanlış sadeleşmeyi belirtiniz. Eşitliğin her iki tarafında bulunan çarpım durumundaki bilinmeyenleri sadeleştirme, yanlış sadeleşmedir. _ ( - ) = ( + 1) Ancak = 0 da denklemi b - = + 1 b sağlar yanlış sadeleşme ile ` - = + 1 kök kaybına uğrar = 0 için = b 0 ( 0 ) = 0 (0 + 1) a 0 = 0 Aşağıda verilen denklemlerin köklerini = =. 6 - = = ( ) = ( + 6) 7. + y + = + y = = ) 10 ) 1 ) 1 ) ) 6) 8 7) 6 8) 7

13 DENKLEMLER Köke Değer Verme / lerin Basitleşmesi / Denklem İçinde Ondalıklar Denklemin kökü denklemi sağlayacağı için kök olarak verilen değer bilinmeyenin yerine yazılabilir. Kesirli denklemlerde çapraz çarpımdan sonra li ifadeler eşitliğin her iki tarafında ise basitleştirilebilir. Denklem içerisindeki ondalıklar ya da devirli ondalıklar kesre çevrilerek kesirli denklem halinde çözülür. ( leri Basitleştirme) + - = denkleminin kökünü = - & ( + )( - ) = ( -) & = - & - 16 =- & 8 = (Köke Değer Verme) + m + 1 = + denkleminin kökü = ise m yi m m = + & = + & + m = m = 7 m = (Denklem İçerisinde Ondalıklar) 0, - = 0, + denkleminin kökünü 0, - = 0, = ( 1) ( ) ( 1) ( ) - 1+ = 1 0, = = , = = 9 & - 1 = + 6 & -1- = 6-1 & - 1 = & - = Aşağıdaki verilen denklemlerin köklerini 1. 0, = 0, = -. 1,6 +, = 0,6 +, Aşağıdaki soruları cevaplandırınız.. 01, + 0, = 1, 9+ 0, m = - denkleminin bir kökü = olduğuna göre m yi , = 0, + 0, 9. denkleminin bir kökü = olduğu- + 1 m + + = na göre m kaçtır?. 0, + = = m = - + denklemimin bir kökü = olduğuna göre m kaçtır? 8 1) 0 ) ) 17 ) 7 ) - 6) ) 6 8) - 9) 10) -

14 İki Bilinmeyenli Denklemler ve Yok Etme Yöntemiyle Denklem Çözme DENKLEMLER Denklem içerisinde iki bilinmeyen varsa, her iki bilinmeyeni de bulabilmek için iki denkleme yani denklem sistemine ihtiyaç vardır. İki bilinmeyenli denklem sisteminin çözümü sıralı ikililerle (*) önce sonra y olacak şekilde (, y), çözüm kümesi de {(,y)} olarak belirtilir. Yok Etme Yöntemi ile denkem sistemi çözülürken; l. Adım: Her iki denklemde de bilinmeyenler aynı tarafa alınır. ll. Adım: Bilinmeyenlerden biri zıt işaretli olacak şekilde her iki denklemde katsayılar genişletilerek eşitlenir. lll. Adım: Denklemler, eşitlikler alt alta gelecek şekilde taraf tarafa toplanarak zıt işaretli bilinmeyenler yok edilir. lv. Adım: Oluşan bir bilinmeyenli denklem çözülüp, bulunan bilinmeyen denklemlerden birinde yerine yazılırak diğer bilinmeyen bulunur. Denklem genişletme; denklemin bütün terimlerini, eşitliğini koruyarak aynı sayıyla çarpmadır. + y = + y = 7 denklem sisteminin çözüm kümesini ( + y = ) + y = 9 1( + y = 7) -- y =-7 + = + y = denkleminde yerine yazılırsa + y = y = 1 Denklem sisteminin çözüm kümesi Ç. K. = {(, 1)} = y + ve + y = denklemlerine göre ve y yi - y = denklem sisteminin çözüm kümesini + y = - y = + y = + = 8 = 1 + y = denkleminde yerine yazılırsa, + y = y = 1 Ç. K. = {(, 1)} = y + ( + y = ) + - y = + y = 1 = 1 = + y = denkleminde yerine yazılırsa + y = y = 1 Aşağıda verilen denklem sistemlerinin çözüm kümeleri. + y = + y = 1. - y = + y = 1. + y = 1 - y =. = y- 1 + y = 11. y = y = y = 18 + y =-1 1) {(8, )} ) {(6, )} ) {(1, )} ) {(, 1)} ) {(, )} 6) {(, )} 9 (*) Sıralı ikili, belirli bir sırayla belirtilen ikili sayı sistemidir.

15 DENKLEMLER Bilinmeyenleri Birbiri Cinsinden Yazma ve Yerine Koyma Yöntemiyle Denklem Çözme İki bilinmeyenli denklemlerde, bilinmeyenler birbiri cinsinden ifade edilirken; istenilen bilinmeyen eşitliğin korunumuyla yalnız bırakılır. Yerine koyma yöntemi ile denklem sistemi çözülürken; l. Adım: Denklemlerden birinde bilinmeyen yalnız bırakılarak diğeri cinsinden yazılır. ll. Adım: Bu bilinmeyen diğer denklemde yerine yazılarak bir bilinmeyenli denklem oluşturulur. lll. Adım: Oluşturulan bir bilinmeyenli denklem çözülür, bulunan, bilinmeyen denklemlerden birinde yerine yazılarak diğer bilinmeyen bulunur. + y = 6 denklemine göre y nin cinsinden eşitini + y = 6 y = y = y = - y = - 1 Kutu içindeki ifadelerde kesirlerde toplama ve çıkarmanın tersinin uygulandığına dikkat ediniz + y = 1 denklem sistemine göre ve y yi y = + y = denklemine göre in y cinsinden eşitini + y = = -y toplam y eşitliğin karşı tarafına fark y ile geçirilerek yalnız bırakılır. Denklemlerden birisi, birbiri cinsinden yazılmış bilinmeyenlerden oluşuyor ise yerine koyma yöntemi kolaylık sağlar. + y = 1 denkleminde y = ise: + = 1 = 1 = y = denkleminde = ise: y = = 9 Aşağıda verilen ifadelerde in y türünden eşitini 1. + y = Aşağıda verilen ifadelerde b nin a türünden eşitini 6. a + b =. y = 7. b a = 1. + y = 1 8. a + b =. y = 9. a + = b 1. + y = 10. a + b = b + a y 1) y ) + y ) y - ) y - ) 1+ a 6) a 7) --a 8) a ) 10) a

16 MUTLAK DEĞER İçiçe Mutlak Değer Açılımı ve Eşitsizliği Kriteri verilen içiçe mutlak değerin açılımı yapılırken; içten dışa doğru işaret tespiti yapılarak ilerlenir. İçiçe mutlak değer eşitsizliklerinde; denklemlerde olduğu gibi dıştan içe doğru değer tespiti yapılarak ilerlenir. f() a < b b + a < f() < b + a (i) b + a < f() < b + a ve (ii) b + a < f() < b + a Ç = {(i) ve (ii) nin birleşimidir.} a < b < 0 olduğuna göre; a + b a ifadesinin eşitini (İçiçe Mutlak Açılımı) < 1 olduğuna göre; + ifadesinin eşitini < 1 ise > 1 dir. + = + - = = bulunur. + (İçiçe Mutlak Eşitsizliği) < eşitsizliğini sağlayan kaç tane tam sayısı vardır? (a < b 0 < b a) a + b a = a + (b a) + a + b a = a + b = a b a < 0 f + b < 0 p a+ b < 0 < < < < < 8 olduğundan, (i) < < 8 ve (ii) < < 8 8 < < Ç = { 7, 6,,,,,,,6,7} on tanedir. a < b < 0 < c < d için aşağıdaki verilen ifadelerin eşitini Aşağıdaki verilen eşitsizliklerin çözüm aralığını 1. a + b. c + d 6. <. b a 7. a + < 10. c + c d a c a b 9. + < ) b a ) c + d ) a b ) c + d ) c b 1 < < 7 6) c m 7) 8 < a < 8 8) 8 # # 9) 10 < < 6 7 < < 1

17 Mutlak Değer Toplamlarının Sıfır Olması MUTLAK DEĞER İki ayrı mutlak değerin toplamı 0 ise her bir mutlak ayrı ayrı sıfır olmak zorundadır. f() + g() = 0 ise f() = 0 ve g() = 0 dır. Aynı durum mutlak değerlerin farkı için geçerli değildir. a + b + a b = 0 ifadesine göre a ve b değerlerini a+ b- + a-b- = 0 ifadesine göre; a + b = Elde edilen denklem sistemi çözülürse a b = a = ve b = 1 bulunur. Aşağıdaki verilen ifadelerde bilinmeyenleri 6. ( ) + y + 6 = y = 0. a + + b = 0 7. (a ) + (b + ) + c + = 0. a + b c = y 1 = 0. + y 8 + y = y + z 1 = 0. a + b 1 + a b 6 = a + + b c + = 0 1) =, y = ) a =, b = ) a =, b = 1, c = ) =, y = ) a = 6, b = 0 6) =, y = 6 7) a =, b =, c = 8) =, y = 9) =, y =, z = 1 10) a =, b =, c = 81

18 MUTLAK DEĞER En Büyük - En Küçük Değer ifadesini en küçük yapan değerlerini Mutlak değerli bir ifadenin alabileceği en küçük değer 0 dır. f() in en küçük değeri f() = 0 dır. a + b gibi toplam ifadelerinde; her mutlak değeri 0 yapan = a ve = b değerleri ifadede yerine yazılarak en küçük değeri bulunur. Tek mutlak değerin en küçük değeri sıfırdır. = 0 = 0 = = ve ya = ifadesinin en küçük değerini A - a + - b iken, kesir büyük olur. gibi kesir ifadelerinde payda küçük 1 = 0 = 1 iken = 6 olur. = 0 = iken = olur. = 0 = iken = 6 olur. O halde en küçük değer 'tür. Aşağıdaki verilen ifadelerin en küçük değerini 1. + = Aşağıdaki verilen ifadelerin en küçük yapan değerlerini 6.. a + + a 1 = = Aşağıdaki verilen ifadelerin en büyük değerini = a + a + a = ) ) ) ) ) 6) 7) 8 ve 8) 9) 10) 11)

19 Uygulama Zamanı Uygulama 1 1. Aşağıda verilen ifadeleri mutlak değer dışına çıkarınız. a) = b) = < y < z < t için aşağıdaki verilen ifadelerin eşitini 8. z = c) = d) 100 = 7 9. t = 10. y z = e) 0 = f) 0, = 11. y + y z + t z = g) 0, = h) ( 6) = 1. t y t z = 1. y + y t = Aşağıda verilen işlemleri sonuçlandırınız.. = a < b < 0 < c için aşağıdaki verilen ifadelerin eşitini 1. c b =. + 9 = (16) 1. a c = = (7) 16. a + b =. 0 : = () 17. a b + c b = = (9) 18. a b + c a b c = 7. ( 6) = ( ) 1) a) b) c) 7 d) 100 e) 0 f) 0, g) 0, h) 6 ) ) 16 ) 7 ) 6) 9 7) 8) z 9) t 10) y z 11) t 1) y z 1) y + t 1) c b 1) c a 16) a b 17) c a 18) b a 8

20 19. < 0 < y için aşağıdaki ifadelerin eşitini a) = b) = 1. < a < için aşağıda verilen ifadelerin eşitini a) a = b) a = c) d) = c) a = d) 1 a = e) y = f) y = e) a + a = f) a a + 1 = g) y = h) y = g) a 1 + a 6 = h) a + a + = k) y = m) y = 0. < y < 0 < z için aşağıdaki ifadelerin eşitini a) = b) z = Aşağıda verilen mutlak değerli ifadelerin eşitini + +. = 7 - c) y d) y + y =. a- b + a- b a-b - a- b = e) + y + z = f) y z + y =. - y + y- y- - -y = g) + y = h) y y z + z = = k) z = l) + 1 y = = m) + = n) z z = 8 19) a) b) c) d) e) y f) y g) y h) y k) y m) y 0) a) b) z c) y d) e) z y f) z y g) y h) (y ) k) z l) y m) n) 0 1) a) a b) a c) a d) a 1 e) f) a g) a + h) ) ) ) ) 6)

21 Uygulama Zamanı Uygulama 1 Aşağıda verilen denklemlerin çözüm kümelerini = 1. = = 1. 1 = =. 1 = = = = = = = 1 7. = = = = = = - 1) { 1,7} ) { 6,7} ) {} ) ) { 1,11} 6) { 9,1} 7) { 16,16} 8) {,} 9) { 1,6} ) ',,, 1 11) {, 1,,} 1) { 1,1,,7} 1) {,} 1) {,1} 1) {,8} 16) {} 17) ', ) {1} 8

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF

ÜSLÜ SAYILAR SİBEL BAŞ AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF ÜSLÜ SAYILAR SİBEL BAŞ 20120907010 AKDENİZ ÜNİVERSİTESİ EĞİTİM FAK. İLKÖĞRT. MAT. ÖĞRT. 2. SINIF 1 ANLATIMI ÜSLÜ SAYILAR KONU Üslü sayılar konu anlatımı içeriği; Üslü sayıların gösterimi, Negatif üslü

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür.

KESİRLER BİRİM KESİRLERİ SIRALAMA. Birim kesirlerde paydası büyük olan kesir daha küçüktür. BİRİM KESİRLERİ SIRALAMA Bir bütünün eş parçalarından her birine kesir denir. Payı olan kesirlere birim kesir denir. Birim kesirlerde paydası büyük olan kesir daha küçüktür.,, 8 kesirlerini sıralayınız.

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ

1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ 1-)BİLİNMESİ GEREKEN ÜSLÜ İFADELER VE DEĞERLERİ * 2 0 = * 3 0 = * 4 0 = * 5 0 = * 2 1 = * 3 1 = * 4 1 = * 5 1 = * 2 2 = * 3 2 = * 4 2 = * 5 2 = * 2 3 = * 3 3 = * 4 3 = * 5 3 = * 2 4 = * 3 4 = * 4 4 = *

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız.

ONDALIK GÖSTERİMLER ONDALIK GÖSTERİM. ÖRNEK: Aşağıda verilen kesirlerin ondalık gösterimlerini yazınız. ONDALIK GÖSTERİM Paydası 10, 100, 1000 olan kesirlerin virgül kullanarak yazılışına ondalık gösterim denir. Ondalık gösterimlerde virgül tam kısım ile kesir kısmı ayırmak için kullanılır. ÖRNEK: Aşağıda

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 (

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 ( Bu konuda üslü sayılarla ilgili kazanımları maddeler halide işleyeceğiz Normalde 8 sınıf matematik kazanımları üslü sayılar konusunda negatif üs kavramı ile başlamasına rağmen bu çalışma kağıdında 6sınıf

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları Bu kitabın bütün yayın hakları saklıdır. Tüm hakları, yazarlara ve METİN YAYINLARI na aittir. Kısmen de olsa alıntı yapılamaz. Metin, biçim ve sorular, yayımlayan şirketin izni olmaksızın, elektronik,

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız.

Örnek...4 : P(x) = 3x + 2 ve Q(x)= x 2 +4x -3 polinomları için a) P(x). Q(x) b)x.p(x) 2.Q(x) işlem lerini ya pınız. POLİNOMLARDA Polinomlarda To plama ve Çıkarma P(x) ve Q(x) iki polinom olsun. P(x) + Q(x) veya P(x) Q(x) işlemi yapılırken eşit dereceli terimlerin katsayıları işlemine göre toplanır veya çıkarılır. Örnek...1

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ o TAMSAYILAR KONUSU ANLATILMAKTADIR Sıfırın sağındaki sayılar pozitif tam sayılar, sıfırın solundaki sayılar negatif tam sayılardır. Pozitif tam sayılar,

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer FİZİK İÇİN MATEMATİK tyuiopasdfghjklzxcvbnmqwerty --------------------------------------- uiopasdfghjklzxcvbnmqwertyui

Detaylı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı ) 3 4 5 3 0 A) B) 6 C) 5 D) 4 E) 3 0 Not : a 0 3 4 5 3 4 5 3 3 3.3.3... ÜSLÜ SAYILAR QUİZİ VE CEVAPLARI 6 4 4 3 buluruz. Doğru Cevap : E şıkkı 0 ) n bir doğal saı olmak üzere, ( ) ( ) n ( ) n n n A) 4

Detaylı

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda Matematik6 Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Kesirlerle İşlemler KESİR ve KESİRLERDE SIRALAMA Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. Bir kesirde

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR Kazanım: Tam sayılarla çarpma ve bölme işlemleri yapar. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. HATIRLATMA :TAM SAYILARDA TOPLAMA İŞLEMİ Aynı işaretli tam sayılar toplanırken işaretleri

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

AKILLI. sınıf. Musa BOR

AKILLI. sınıf. Musa BOR AKILLI sınıf. Musa BOR AFG Matbaa Yayıncılık Kağ. İnş. Ltd. Şti. Buca OSB, BEGOS. Bölge / Sk. No: Buca-İZMİR Tel:.. - Faks: 6 6 Bu kitabın tüm hakları AFG Matbaa Yay. Kağ. İnş. Teks. Paz. İm. San. ve Tic.

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS'de matematik testinde

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in

SIRA SENDE DÖRT İŞLEM, İŞLEM ÖNCELİĞİ BİLGİ. = 1 2 ile 3 zıt işaretli olduğundan 3 ten 2 yi çıkarıp 1 bulduk ve büyük olan 3 ün işaretini ( ) 1 in ÖRT ŞLM, ŞLM ÖCLĞ SORU 0 3 04 + 0 ) B) 0 C) ) ) = ile 3 zıt işaretli olduğundan 3 ten yi çıkarıp bulduk ve büyük olan 3 ün işaretini ( ) in önüne koyduk. SR S C BLG Tam sayılarda aynı işaretli sayılar

Detaylı

Rasyonel Sayılarla İşlemler. takip edilir.

Rasyonel Sayılarla İşlemler. takip edilir. Matematik Bir Bakışta Matematik Kazanım Defteri Rasyonel Sayılarla İşlemler Özet bilgi alanları... RASYONEL SAYILARLA ÇOK ADIMLI İŞLEMLER Çok adımlı işlemlerde şu sıra takip edilir : Parantez içindeki

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

1 ÜNİTE SAYILAR VE İŞLEMLER

1 ÜNİTE SAYILAR VE İŞLEMLER 1 ÜNİTE SAYILAR VE İŞLEMLER TAM SAYILARLA ÇARPMA VE BÖLME İŞLEMLERİ 7.1.1.1. Tam sayılarla çarpma ve bölme işlemlerini yapar. 7.1.1.2. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. 7.1.1.3.

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 65482465 ISBN NUMARASI: 65482465! ISBN NUMARASI:

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 İçindekiler RASYONEL SAYILARIN SAYI DOĞRUSUNDA GÖSTERİLMESİ... 5 RASYONEL SAYILARDA SIRALAMA... 8 RASYONEL SAYILARDA

Detaylı

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25 İçindekiler RASYONEL SAYILARDA İŞLEMLER. Çözümlü Sorular............................. 2.2 Sorular................................... 5 2 TEK - TERİMLİ veçok-terimli İFADELER 7 2. Çözümlü Sorular.............................

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ekrem KADIOĞLU İÇİNDEKİLER HEDEFLER SAYI KÜMELERİ. Sayılar Üslü Sayılar Köklü Sayılar Aralıklar Mutlak Değer

ÜNİTE. MATEMATİK-1 Prof.Dr.Ekrem KADIOĞLU İÇİNDEKİLER HEDEFLER SAYI KÜMELERİ. Sayılar Üslü Sayılar Köklü Sayılar Aralıklar Mutlak Değer HEDEFLER İÇİNDEKİLER SAYI KÜMELERİ Sayılar Üslü Sayılar Köklü Sayılar Aralıklar Mutlak Değer MATEMATİK-1 Prof.Dr.Ekrem KADIOĞLU Bu üniteyi çalıştıktan sonra; Üslü ve köklü ifadenin, mutlak değerin ne olduğunu

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

İki Bilinmeyenli Denklem Sistemleri

İki Bilinmeyenli Denklem Sistemleri 8 www.matematikportali.com Konu Özetleri İki Bilinmeyenli Denklem Sistemleri Birinci Dereceden İ ki Bilinmeyenli Denklem Sistemleri İki Bilinmeyenli Denklemler (Doğrusal denklem sistemleri) a, b, c R ve

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

RASYONEL SAYILAR. ÖRNEK: Aşağıda verilen eşitliklerde verilmeyen harflere karşılık gelen tamsayıları bulunuz. RASYONEL SAYILAR A =?

RASYONEL SAYILAR. ÖRNEK: Aşağıda verilen eşitliklerde verilmeyen harflere karşılık gelen tamsayıları bulunuz. RASYONEL SAYILAR A =? Kazanım : Rasyonel sayıları tanır ve sayı doğrusunda gösterir. RASYONEL SAYILAR a bir tamsayı ve b sıfırdan farklı bir tamsayı olmak üzere a b biçiminde yazılabilen sayılara rasyonel sayılar denir. Rasyonel

Detaylı

MATEMATİK 29. KPSS KPSS. Genel Yetenek Genel Kültür. yıl. Eğitimde. konu anlatımlı

MATEMATİK 29. KPSS KPSS. Genel Yetenek Genel Kültür. yıl. Eğitimde. konu anlatımlı KPSS Genel Yetenek Genel Kültür MATEMATİK KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla çözebildiğini açıkladı. konu

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE DENKLEM VE EŞİTSİZLİKLER Gerçek Sayılar... 4 Doğal Sayılarda İşlemler... 4 Tam Sayılar... 4 Rasyonel Sayılar... 5 İrrasyonel Sayılar... 5 Gerçek (Reel) Sayılar... 6 9 Konu

Detaylı

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI:

ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: ISBN NUMARASI: Bu formun ç kt s n al p ço altarak ö rencilerinizin ücretsiz Morpa Kampüs yarıyıl tatili üyeli inden yararlanmalar n sa layabilirsiniz.! ISBN NUMARASI: 84354975 ISBN NUMARASI: 84354975! ISBN NUMARASI:

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil ÖSYM nin Sorduğu Tüm Sorular DGS Tamamı Çözümlü ÇIKMIŞ SORULAR 00 00 005 006 007 008 009 00 0 Temmuz Dahil Komisyon DGS TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR ISBN 978-975-879-06- Kitapta yer alan bölümlerin tüm

Detaylı