Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini"

Transkript

1 Snrsel Bulanık Sstemler İle Trafk Gürültüsünün Tahmn Ahmet Tortum Yrd. Doç. Dr.,Atatürk Ünverstes,Mühendslk Fakültes,İnşaat Bölümü,Erzurum E-posta : Yasn Çodur Arş.Gör., Atatürk Ünverstes,Mühendslk Fakültes,İnşaat Bölümü,Erzurum Öz Bu çalışmada kent trafğnn sebep olduğu gürültünün tahmn brleştrlmş snrsel bulanık sstemler (BSBS)le modellenmştr. Gürültü ve sebepler arasındak lşk üzerne karalar verlrken trafk gürültüsü ve bununla lgl özellkler göz önünde bulundurulur. BSBS yaklaşımı yoldak trafkten dolayı L 0 gürültü sevyesn tahmn etmek çn kullanılmıştır. Çalışmada çeştl kaynaklardan toplanan verler kullanılmıştır. Ölçüm verler L 0, haff araçların sayısı, ağır araçların sayısı, toplam trafk akışı ve ortalama araç hızlarını çerr. BSBS kullanılarak gerçekleştrlen trafğnn sebep olduğu gürültünün tahmn sonuçları; klask model sonuçları le karşılaştırılmıştır. BSBS modeller klask modellere göre trafğnn sebep olduğu gürültünün tahmnnn doğrusal olmayan davranışını temsl etmede daha başarılı olduğu görülmüştür. Anahtar Kelmeler: Yapay snr ağları, bulanık mantık, brleştrlmş snrsel bulanık sstemler, trafk gürültüsü Grş Otomobl ulaşımının yaygınlaşması kentsel alanda gürültü krllğ ve benzer brçok probleme yol açar. Şehr alanlarındak gürültü krllğ yaşam kaltesn düşürür ve nsan sağlığını tehdt eder [].Gürültünün ana kaynağı, motorlu taşıt akışı ve dğer fzksel parametrelerdr. Brçok araştırmacı, gürültü krllğ problemyle lglenmekte, anlamaya çalışmakta ve matematksel modellerle tanımlamaya çabalamaktadır. Amaç kentsel alanlardak gürültü krllğn sınırlandırmaktır. Gürültüyü blmsel br temelde azaltmak çn ölçüleblr parametreler ve gürültü emsyonu arasında k lşknn blnmes gerekr. Karayolundak trafk gürültüsü hçbr zaman sabt değldr. Gürültü sevyes araç sayısı, türü ve hızına bağlı olarak sürekl değşmektedr. Pratk br yöntem gürültü verlern temsl edeblecek tek br sayıya çevrmektr. İstatstkçler değşken haldek trafk gürültü sevyelerne karşılık hemen hemen her zaman tek sayı kullanırlar. Bunlardan yaygın olarak en çok kullanılan k yöntem L0 ve Leq dır. L0 hesaplanırken ses sevyesnn %0 unu geçen kısım kullanılır. L 0 değşken olmayan kaynakla değşken olan gürültü kaynağını yaydığı (çıkardığı) aynı akustk enerjnn ses basınç sevyes demektr. L 0 nun lşkl olduğu fzksel parametreler haff araçların sayısı, ağır araçların sayısı, toplam trafk akışı ve ortalama araç hızlarını gb parametrelerdr. Şu ana kadar fonksyonel lşkler, regresyon analz gb ölçülen gürültü sevyesnn temelnde doğrusal modellerdr. Bu lşkler doğrusal olmadığı çn bell sayıdak fzksel parametreler le ölçülen ses basınç sevyesnn oluşturduğu lşkler çok doğru 44

2 göstermezler. Gürültü krllğ olgusunu tanımlamak çn çok sayıda doğrusal model mevcuttur []. Bu çalışmada, trafk gürültünün tahmn çn yen br model gelştrlmştr. Yen model brleştrlmş snrsel bulanık sstemler yaklaşımı kullanılarak elde edlen doğrusal olmayan br modeldr. BSBS yaklaşımı, doğrusal olmayan trafk gürültü krllğne sebep olan değşkenler arasındak karmaşık lşklern anlaşılmasını sağlar. Model çn verler yollarındak gürültü ölçümlern tutmuş değşk kaynaklardan elde edlmştr. BSBS kullanılarak gerçekleştrlen trafk gürültü tahmn modellernden elde edlen sonuçlar; klask model sonuçları le karşılaştırılmıştır. Yapay Snr Ağları Materyal Ve Yöntem Yapay Snr Ağları (YSA), beynn fzyolojsnden yararlanılarak oluşturulan blg şleme modellerdr. Lteratürde 00 den fazla yapay snr ağı model vardır. Bazı blm adamları, beynmzn güçlü düşünme, hatırlama ve problem çözme yeteneklern blgsayara aktarmaya çalışmışlardır. Bazı araştırmacılar se, beynn fonksyonlarını kısmen yerne getren br çok modeller oluşturmaya çalışmışlardır[3].ysa ların öğrenme özellğ, araştırmacıların dkkatn çeken en öneml özellklerden brsdr. Çünkü herhang br olay hakkında grd ve çıktılar arasındak lşky, doğrusal olsun veya olmasın, elde bulunan mevcut örneklerden öğrenerek daha önce hç görülmemş olayları, öncek örneklerden çağrışım yaparak lgl olaya çözümler üreteblme özellğ YSA lardak zek davranışın da temeln teşkl eder [4]. YSA nın hesaplama ve blg şleme gücünü, paralel dağılmış yapısından, öğreneblme ve genelleme yeteneğnden aldığı söyleneblr. Genelleme, eğtm ya da öğrenme sürecnde karşılaşılmayan grşler çn de YSA nın uygun tepkler üretmes olarak tanımlanır. Bu üstün özellkler, YSA nın karmaşık problemler çözeblme yeteneğn gösterr. Günümüzde brçok blm alanında YSA, aşağıdak özellkler nedenyle etkn olmuş ve uygulama yer bulmuştur [5]. Bulanık Mantık Bulanık Snrsel Brleştrlmş Sstemler Klask mantık, her önerme ya doğrudur ya da yanlıştır varsayımına dayanarak hareket etmektedr. Oysa bazı önermelern doğruluk değer ölçümlern temel sınırlamalarından dolayı belrsz olablmektedr. Bulanık mantık, klask mantıkta k önerme arasında belrszlk adı verlen üçüncü br önerme ortaya konmuştur. Böylece klask k değerl mantığın doğru ve yanlış olan doğruluk değerler daha esnek hale getrlmştr. Bulanık mantık konusu lk defa Zadeh [8]. tarafından ortaya atılmıştır. Zadeh bu çalışmasında nsanların bazı sstemler maknelerden daha y denetleyeblmelernn nedenn nsanların kesnlk le fade edlemeyen (belrsz) bazı blgler kullanarak karar vereblme özellğne sahp olmalarına dayandırmıştır. Bulanık mantık şlemler, br problemn analz ve tanımlanması, değşken kümelern ve mantık lşklernn gelştrlmeden bulunan blglern bulanık kümelere dönüştürülmes ve modeln yorumlanması şlemlernden oluşmaktadır. Bulanık mantık algortması her 45

3 türlü problem çn uygun olmayablr. Başka br modeln uygun olduğu durumda bulanık mantık kullanmak stenen sonucu vermeyeblr. Br veya brden fazla denetm değşkennn olduğu durumlarda ve ssteme at matematksel br modeln bulunmadığı veya bulunsa da bunu kodlamanın zor olduğu durumlar le gerçek zaman şlemler çn ayrıntılı hesaplamanın çok karmaşık olduğu durumlarda bulanık mantık uygulanablr [6]. Snrsel-Bulanık Sstemler Öncek bölümlerde, snr ağlarına ve bulanık mantığa at blgler sunuldu. Snr ağları bölümünde verlen blglerde dkkat edlmes gereken husus snr ağlarının k temel faydalı özellğnn olmasıdır. Bunların lk, nümerk verlerden doğrusal olmayan hartalama yapablme özellğ, kncs se, paralel çalışma özellğdr. Tüm bunların yanısıra, snr ağları pekçok zayıflığa sahptr. Örneğn; çok katmanlı perceptron ağ yapısında, sstem blgsnn tüm ağa synaptk ağırlıklarla dağıtılmış olmasıdır. Bu yüzden, ağırlıkların anlamsal özellklern açıklamak oldukça zordur ve ağ sstemnde bulunan daha öncek blgler brleştrmek neredeyse mkansızdır. Bulanık mantık se sstem blgsn açıklamak çn nsanın anlayableceğ yapıdak sözel fadeler kullanır. Bu özellk, sstem ve nsan arasındak kapalı br etkleşm mümkün kılar. Bu da arzu edlen br durumdur [7]. Snrsel -bulanık sstemlern amacı her k yaklaşımın da faydalarını toplayıp, şekl de verldğ gb brleştrmektr. Sözel Verler Sözel İfadeler If-Then Sayısal Verler Paralel İşlemel Öğrenme Şekl. Snrsel -Bulanık sstemlern snr ağları ve bulanık mantıkla lşks Buna ek olarak, snrsel -bulanık sstemler, sayısal ve sözel verlern brleştrlmesne olanak verrler. Snrsel-bulanık sstem aynı zamanda sayısal verlerden bulanık blgnn çıkarılmasını sağlar. Snrsel-bulanık sstemler k ana gruba ayrılablrler:. Snrsel -Bulanık sonuçlandırma sstemler (Neural-fuzzy nference systems). Bulanık snr ağı yapılarıdır (Fuzzy neural netorks). Snrsel-Bulanık sonuçlandırma sstemler, yapay snr ağı kavramlarıyla bulanık mantık sonuç sstemlernn brleştrlmesnden doğmuştur. Her k sstemn brleşm olduğu çn oluşturulan bu yen sstemn mmars de paraleldr. Bulanık snr ağlarında (BSA), bulanık fkrler snr ağları le brleştrlmştr. Bulanık snr ağları, bulanık sonuçlandırmanın snr ağı prensplerne uygulandığı sstemlerdr. Bu sstemler yalın haldek bulanık denetleyclerden daha y şeklde çalışırlar. Bu tp 46

4 bulanık denetleycler, br problem çn üyelk fonksyonlarının düzenlenmes ve bulanık kuralların tanımlanmasının otomatk olarak yapılablmes bakımından pekçok avantaja sahptrler. BSA nın topolojs sebepsellk veya kurala dayalı yaklaşım olablr. Ağ:. Döngü hatası e ve hatadak değşm de. Kontrol çıkış şaret u veya du olmak üzere k temel dayanak noktasına sahptr. Herbr nokta değşk sayıda üyelk fonksyonuna sahp olablr. Şekl 3.4 de verlen sstem çn, her nokta üç üyelk fonksyonuna Küçük (K), Orta (O), Büyük (B)- Gauss tpl eğr le verlen sgmodal fonksyona sahptr. c ağırlıkları üyelk fonksyonlarının aralıklarını kontrol ederken, g ağırlıkları se üyelk fonksyonlarının eğmn kontrol eder. Grş Uzayı ve Bulanık Mantık e ce c g f f f - f c g f f f -Orta f Sgmod Büyük Küçük Büyük Küçük Orta a0 a a U U Çıkış Lneer Eştlk = a0+ a.e + U U= U + U + a.ce Şekl. Bulanık snr ağı yapısı Ağırlıklar ger-yayılım algortmasıyla belrlenr. Dayanak noktaları olan e,ce ve U hem kurala ve hem de sebebe dayalı topoloj üzerne kuruludur. Çarpım (π) şlemnden sonra dokuz çıkışın olması, dokuz kuralın olduğunu göstermektedr. BSA nın sonuç-çıkış değer, aşağıda gösterldğ gb, sonuçtak lneer eştlkler ve çıkıştak doğruluk değerlernn çarpımlarının toplamından elde edlr. Şekl dek tpk kural şu şeklde özetleneblr: If e s K and ce s O then Uμ + U μ U = () μ + μ Burada: U = a0 + a.e + a.ce () U = a0 + a.e + a.ce (3) 47

5 dr. Şekl 3.4 den görülebleceğ gb sstemn k grş ve tek çıkışı vardır. Daha kompleks sstemler çn olan uygulamalarda hem üyelk fonksyonlarının sayısı, hem de grş/çıkış şaretlernn sayısı artırılablr. Yukarıda tanıtılan Bulanık snr ağı yapısının harcnde Jang tarafından önerlen Snrsel -Bulanık sstem yapısı da mevcuttur. Bu yapı bulanık sonuçlandırma sstemne adaptf snr ağı yapısının uygulanması le elde edlr. Bu yapı temelde Sugeno tarafından önerlen bulanık sonuçlandırma yapısının adaptf ağ yapısında snr ağlarına uygulanmış şekldr. Bu yapının mmars şekl 3 de verlmştr [9].. Katman. Katman 3. Katman 4. Katman 5. Katman A x y x A f f y B B f x y Şekl 3. Snrsel-Bulanık sstem mmars Bu yapıda kullanılan If-Then kural yapısı: şeklndedr. Kural : If x s A and y s B then f =p x+q y+r Kural : If x s A and y s B then f =p x+q y+r. katmanda herbr düğüm br fonksyona sahptr. Öylek, bu fonksyonlar her br grş çn etket ve üyelk fonksyonları le üyelk derecesne at üyelk değerlern tanımlar. Dğer br fadeyle; bu katman bulanıklaştırma katmanıdır ve katman çıkışı üyelk değerlerdr. Burada dkkat edlmes gereken en öneml husus kullanılan fonksyonların türevlernn mevcut olması gerektğdr.. katmanda T-norm şlem gerçeklenr ve bu genelde düğüme gelen şaretlern çarpımıdır. =μ A (x)*μ B (y), =, (4) Bu katmandak herbr düğüm çıkışı, at olduğu kuralın ateşlenme sevyesn verr. 3. katmanda ateşlenme sevyeler normalze edlr. = (5) + 4. katmanda se kuralın sonuç kısmı yer alır ve çıkışı: 48

6 f = ( p x+q y+r ) (6) şeklndedr. Burada {p,q,r } sonuç kısmına at parametre kümesdr. Son katman se tüm çıkışlar üzernden elde edlen toplam çıkış değer hesaplanır. = f = f (7) f Model Grdler Şehrlerarası Yük Taşıması Tür Seçmnn Modellenmes Çalışmada kullanılan verler çeştl kaynaklardan yararlanarak oluşturulmuştur [,,3]. L 0 bağımlı değşken olmak üzere, açıklayıcı değşken arasından en y tür seçm tespt etmeye çalışılmıştır. Açıklayıcı değşkenlern muhtemel kombnasyonları çn regresyon analz ve BSS modeller oluşturulmuştur. Doğrusal regresyon modeller Modellern Uygulamaları Modellerde çoklu regresyon analznden yararlanılmıştır. Model parametreler en-küçük kareler (EKK) metodu yardımıyla tahmn edlmştr. Modellern tümünde, parametrelern anlamlılığı t test, modeln genel anlamlılığı F test, %5 önem düzeynde test edlmştr. Açıklayıcı değşkenlern trafğ açıklama dereces R (Korelasyon Katsayısı) ve R (Belrleme Katsayısı) değerler le hesaplandı. İstatstk analzler Statstca ve SPSS paket programı yardımıyla le yapılmıştır. Lteratürde L0 gürültü sevyesnn trafk verlernn logartmk fonksyonuna bağlı olduğunu göstermştr. Bu çalışmada da bağımsız değşkenlern logartmaları alınarak modeller gelştrlmeye çalışılmıştır. Regresyon Modeln kurmak çn kullanılan parametreler aşağıda belrtldğ gbdr. ) Toplam saatlk trafk (Q) ) Ağır araç sayısı (H) 3) Haff araç sayısı (L) 4) Araçların ortalama hızı (V) Bu çalışmada yukarıda verlen değşkenlern değşk kombnasyonları çn modeller gelştrtmştr ve en y performans gösteren bağımlı değşkenn L 0 olduğu, bağımsız değşkenlern de toplam saatlk trafk (Q), ağır araç sayısı (H), haff araç sayısı (L),araçların ortalama hızı (V) olan modeln sonuçları verlmştr. BSBS modeller Trafk gürültüsünü tahmn çn brleştrlmş snrsel bulanık sstem modeller gelştrlmştr. BSBS olarak Jang ve arkadaşları tarafından gelştrlen ANFIS 49

7 (Adaptve Neuro-Fuzzy Inference System ) sstem kullanılmıştır. Bağımsız değşkenler grd, bağımlı değşkenler se çıktı olarak adlandırılır. Bu çalışmada kullanılan modeller çn grdler ve çıktılar doğrusal regresyon modeller gbdr. Model grdler le model çıktıları arasında en y sonucu veren model gelştrlmeye çalışılmıştır. Sonuçta toplam saatlk trafğn logartmasının grd olarak kullanıldığı model en y performans gösteren model olarak bulunmuştur ve bu modeln sonuçları verlmştr İşlemler MATLAB programının toolbox ları kullanılarak yapılmıştır. Verler eğtme sokulmadan önce normalze edlmştr. Verlern %70 eğtmde, %30 u da teste kullanılmıştır. Bu çalışmada ANFIS yapısında eğtm algortması olarak melez altküme ve eğtm adımları çn melez algortma kullanılmıştır. Grd ve çıktı değşkenler çn aynı tp üyelk fonksyonları kullanılmıştır. Üyelk fonksyonlarının farklı tpler ön çalışmalarda denenmş ve en y performansı gösteren Gussan üyelk fonksyonu seçlmştr(şekl 4). Eğtmdek değerler altküme parametreler çn eğtme adımlarında, etk oranı 50, sıkıştırma faktörü.5, kabul oranı 0.5, red oranı 0.5, epoch 30 olarak belrlenmştr. Toplam saatlk trafğn logartmasının grd ve L 0 çıktı şeklnde kurulan modeln eğtm verlern kullanarak oluşturulan başlangıç ve btş üyelk fonksyonlarının şekller aşağıda verlmştr (Şekl 6-7). Eğtmden sonra üyelk fonksyonlarının şeklnde öneml değşklklern olduğu gözlenmştr. Modeln kurallar tablosu ve çıktı değernn grd değerlerne göre tahmn şekllerde verlmştr (Şekl 9-0). Q Grd G.Ü.Fonk. Kural Ç.Ü.Fonk. Ağırlık Çıktı BSBS Blgler: Düğüm Sayısı :44 Lneer Parametre Sayısı :0 Nonlneer Parametre Sayısı : 0 Toplam Parametre Sayısı :40 Eğtme Gren Ver Sayısı :7 Kontrol Edlen Ver Sayıs :8 Bulanık Kural Sayısı :0 L 0 Şekl 4. Model e at eğtlen BSBS yapısı Şekl 5. Modeln grdler, çıktıları ve tp 50

8 Şekl 6. Toplam saatlk trafk (Q) grdsnn eğtmden öncek üyelk fonksyonu Şekl 7. Toplam saatlk trafk (Q) grdsnn eğtmden sonrak üyelk fonksyonu Şekl 8. L 0 çıktısının üyelk fonksyonu Şekl 9. BSBS modelnn kurallar tablosu 5

9 Şekl 0. BSBS de çıktı değernn grd değerlerne göre tahmn Sonuçlar BSBS kullanılarak gerçekleştrlen kent trafğnn sebep olduğu gürültünün tahmn modelnden elde edlen sonuçlar; klask model sonuçları le karşılaştırılmıştır. Doğrusal regresyon modellernn katsayıları statstk test sonuçlarına göre anlamlı bulunmamıştır. Mode genel anlamlılığı açısından öneml olmasına rağmen modele at R (belrleme katsayısı) değerler çok düşük olması modeldek açıklayıcı değşkenlern bağımlı değşken açıklama oranı yeterl olmadığını göstermştr. Modeln hatalarının tam normal dağılım göstermedğ, tahmn edlen değerler le hataların dağılımının 0 (sıfır) çzgs üzernde olmadığı, standardze hata hstogramının sağa ve sola doğru çok açık olduğunu, sıfır hata frekansının düşük olduğu ve tahmn edlen değerler le gözlenen değerler arasında y br uyum olamadığı görülmektedr (Şekl 6-30). Doğrusal regresyon model kent trafğnn sebep olduğu gürültünün tahmn olayını açıklayamamaktadır. BSBS modelnde hataların normal dağılım gösterdğ, tahmn edlen değerler le hataların dağılımının 0 (sıfır) çzgs üzerne yakın br şeklde olduğu, standardze hata hstogramının sağa ve sola doğru açık olmadığı ve tahmn edlen değerler le gözlenen değerler arasında y br uyumun olduğu görülmüştür (Şekl 4-45). Tablo. Modellere at blg krterler MODELLER BİLGİ DOĞRUSAL BSBS KRİTERLERİ REGRESYON AİC,3454 7,53 RMSE,488,587 KORELASYON KATSAYISI (R) 0,8786 0,976 5

10 Modellere at belrleme katsayısı değerler klask modellere göre yüksek bulunmuş (Tablo ) ve modellerdek açıklayıcı değşkenlern bağımlı değşken açıklama performansının y olduğu söyleneblr. Modellere at blg krterler ncelendğnde, BSBS modelnn üstünlüğü göze çarpmaktadır. BSBS modeln düşük RMSE le yüksek korelasyon katsayısına sahptr. Klask modelde tahmn edlecek parametre sayısının az olduğu çn daha düşük AIC ya sahp olmalarına rağmen daha yüksek RMSE le düşük korelasyon katsayısının olması modellern performansının y olmadığının göstergelerdr. Sonuç olarak trafğnn sebep olduğu gürültünün tahmnnn doğrusal olmayan davranışını temsl etmede BSBS model başarılı olmuştur. Doğrusal regresyon modelne at şekller,0 5,5 4 Beklenen Normal Değerler,0 0,5 0,0-0,5 -,0 -,5 Hatalar , Hatalar Şekl. Hataların normal olasılık grafğ Tahmn Edlen Değerler Şekl. Tahmn edlen değerler le hataların dağılımı Beklenen Normal Gözlem No 3 Gözlenen Değerler Şekl 3. Hataların hstogramı BSBS modelne at şekller Tahmn Edlen Değerler Şekl 4. Tahmn edlen değerler le gözlenen değerler arasındak lşk,0 3,5 Beklenen Normal Değerler,0 0,5 0,0-0,5 -,0 -,5 Hatalar , Hatalar Şekl 5. Hataların normal olasılık grafğ Tahmn Edlen Değerler Şekl 6 Tahmn edlen değerler le hataların dağılımı 53

11 Gözlem No 4 3 Gözlenen Değerler ,5 -,0 -,5 -,0-0,5 0,0 0,5,0,5,0,5 3, Tahmn Edlen Değerler Şekl 7. Hataların hstogramı Şekl 8. Tahmn edlen değerler le gözlenen değerler arasındak lşk Kaynaklar. Cammarata G, Fchera A, Grazan S, et al., 995, Fuzzy logc for urban traffc nose predcton Journal of The Acoustcal Socety of Amerca 98 (5): W.M. To, C.W. Ip, C.K. Lam and T.H. Yau, 00, A multple regresson model for urban traffc nose n Hong Kong. J. Acoust. Soc. Am., pp Anagün, A. S., l999. Blg Güvelğnn Sağlanmasında Kullanıcı Özellklerne Dayalı Br Yapay Snrsel Ağ Yaklaşımı. Endüstr Mühendslğ, 0 (4), Burr, D. J., 988. Experments on Neural Net Recognton of Spoken and Wrtten Text. IEEE Transactons on Acoustcs, Speech, and Sgnal Processng, 36 (7), Tortum, A., 003, Yapay Snr Ağları ve Brleştrlmş Snrsel Bulanık Sstemler le Şehrlerarası Yük Taşıması Tür Seçmnn Modellenmes, Doktora Tez, Atatürk Ünverstes Fen Blmler Ensttüsü, Erzurum. 6. Anderson, J. A., 995. An Introducton to Neural Netorks. Cambrdge, MA: MIT Press. 7. Barnard, E., 99. Optmzaton for tranng neural nets. IEEE Transactons on Neural Netorks, 3 (), Zadeh, L.A., 965. Informaton and Control, Fuzzy Sets,.8, Jang, J. S. R., 99. Self-learnng fuzzy controllers based on temporal backpropagaton. IEEE Transactons on Neural Netorks, 3,

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ Necla ÖZKAYA Şeref SAĞIROĞLU Blgsayar Mühendslğ Bölümü, Mühendslk Fakültes, Ercyes Ünverstes, 38039, Talas, Kayser Gaz Ünverstes,

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

2.4GHz ISM Bandı Alıcı Verici Sistemleri için ANFIS Kullanılarak 280MHz Band Geçiren Aktif Filtre Tasarımı ve Analizi

2.4GHz ISM Bandı Alıcı Verici Sistemleri için ANFIS Kullanılarak 280MHz Band Geçiren Aktif Filtre Tasarımı ve Analizi Fırat Ünverstes-Elazığ 2.4GHz ISM Bandı Alıcı Verc Sstemler çn ANFIS Kullanılarak 280MHz Band Geçren Aktf Fltre Tasarımı ve Analz Mehmet Al BELEN, Adnan KAYA 2.2 Elektronk-Haberleşme Mühendslğ Bölümü Süleyman

Detaylı

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi Fırat Ünv. Fen ve Müh. Bl. Der. Scence and Eng. J of Fırat Unv. 18 (1), 133-141, 2006 18 (1), 133-141, 2006 Tuğla Duvardak ve Tessattak Isı Kaybının Yapay Snr Ağları İle Belrlenmes Ömer KELEŞOĞLU ve Adem

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri Süleyman Demrel Ünverstes, Fen Blmler Ensttüsü, 9-3,(5)- Mut Orman İşletmesnde Karaçam, Sedr ve Kızılçam Ağaç Türler İçn Dp Çap Göğüs Çapı İlşkler R.ÖZÇELİK 1 Süleyman Demrel Ünverstes Orman Fakültes Orman

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

AYLIK ORTALAMA GÖL SU SEVİYESİNİN BULANIK-OLASILIK YAKLAŞIMI İLE GÖZLENMİŞ ZAMAN SERİSİNDEN TAHMİNİ

AYLIK ORTALAMA GÖL SU SEVİYESİNİN BULANIK-OLASILIK YAKLAŞIMI İLE GÖZLENMİŞ ZAMAN SERİSİNDEN TAHMİNİ AYLIK ORTALAMA GÖL SU SEVİYESİİ BULAIK-OLASILIK YAKLAŞIMI İLE GÖZLEMİŞ ZAMA SERİSİDE TAHMİİ Veysel GÜLDAL, Hakan TOGAL 2 S.D.Ü.Mühendslk Mmarlık Fakültes İnşaat Müh Böl., Isparta/TÜRKİYE vguldal@mmf.sdu.edu.tr

Detaylı

Türkiyede ki ĠĢ Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini

Türkiyede ki ĠĢ Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini Türkyede k ĠĢ Kazalarının Yapay Snr Ağları le 2025 Yılına Kadar Tahmn Hüseyn Ceylan ve Murat Avan Kırıkkale Meslek Yüksekokulu, Kırıkkale Ünverstes, Kırıkkale, 71450 Türkye. Kaman Meslek Yüksekokulu, Ah

Detaylı

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna

Prof. Dr. Nevin Yörük - Yrd. Doç. Dr. S. Serdar Karaca Yrd. Doç. Dr. Mahmut Hekim - Öğr. Grv. İsmail Tuna Anadolu Ünverstes Sosyal Blmler Dergs Anadolu Unversty Journal of Socal Scences Sermaye Yapısını Etkleyen Faktörler ve Fnansal Oranlar le Hsse Getrs Arasındak İlşknn ANFIS Yöntem le İncelenmes: İMKB de

Detaylı

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM Sevl ŞENTÜRK Anadolu Ünverstes, Fen Fakültes, İstatstk Bölümü,26470, ESKİŞEHİR, e-mal:sdelgoz@anadolu.edu.tr

Detaylı

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI

TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI 1 TÜKETİCİ TATMİNİ VERİLERİNİN ANALİZİ: YAPAY SİNİR AĞLARI ve REGRESYON ANALİZİ KARŞILAŞTIRMASI Metehan TOLON Nuray GÜNERİ TOSUNOĞLU Özet Tüketc tatmn araştırmaları özelde pazarlama yönetclernn, genelde

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON Gökalp Kadr YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 011 Her hakkı saklıdır ÖZET Yüksek Lsans Tez BULANIK HEDONİK

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

Bulanık-Sinir Ağı Yapısı İçin Yeni Bir Karma Yaklaşım

Bulanık-Sinir Ağı Yapısı İçin Yeni Bir Karma Yaklaşım Bulanık-Snr Ağı Yapısı İçn Yen Br Karma Yaklaşım Canan ŞENOL, Tülay YILDIRIM Mühendslk Fakültes, Elektronk Mühendslğ Bölümü Kadr Has Ünverstes canan@khas.edu.tr Elektrk-Elektronk Fakültes, Elektronk ve

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini Tarım Blmler Araştırma Dergs 3 (): 45-5, 00 ISSN: 308-3945, E-ISSN: 308-07X, www.nobel.gen.tr Yapay Snr Ağı ve Bulanık-Yapay Snr Ağı Yöntemler Kullanılarak Tava Buharlaşma Tahmn Özgür KIŞI Selcan AFŞA

Detaylı

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi Karacğer mkrodz kanser versnn sınıflandırılması çn genetk algortma kullanarak ANFIS n eğtlmes Bülent Haznedar 1*, Mustafa Turan Arslan 2, Adem Kalınlı 3 ÖZ 21.06.2016 Gelş/Receved, 30.11.2016 Kabul/Accepted

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*)

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*) Gazosmanpaşa Ünverstes Zraat Fakültes Dergs Journal of Agrcultural Faculty of Gazosmanpasa Unversty http://zraatderg.gop.edu.tr/ Araştırma Makales/Research Artcle JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ Yednc lusal Kmya Mühendslğ Kngres, 5-8 ylül 26, Anadlu Ünverstes, skşehr 6 OZ DRJAN ÜRİM SİSİNDKİ PÜSKÜRMLİ KRMA ÜNİSİND KSRJİ ANALİZİ GÜLSÜN BKAŞ*, FİRZ BALKAN ge Ünverstes Kmya Mühendslğ Bölümü, 351,

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ YAPILARI EERJİ ESASLI TASARIMI İÇİ BİR HESAP YÖTEMİ Araş. Gör. Onur MERTER Araş. Gör. Özgür BOZDAĞ Prof. Dr. Mustafa DÜZGÜ Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Fen Blmler Ensttüsü

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SWITCHING REGRESYON DA BULANIK SİNİR AĞLARI YAKLAŞIMI İLE PARAMETRE TAHMİNİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SWITCHING REGRESYON DA BULANIK SİNİR AĞLARI YAKLAŞIMI İLE PARAMETRE TAHMİNİ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SWITCHING REGRESYON DA BULANIK SİNİR AĞLARI YAKLAŞIMI İLE PARAMETRE TAHMİNİ Türkan ERBAY DALKILIÇ İSTATİSTİK ANABİLİM DALI ANKARA 005 Her hakkı

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

SİLİS DUMANI KATKILI BETONLARIN ÇARPMA DAYANIMININ YAPAY SİNİR AĞI İLE BELİRLENMESİ

SİLİS DUMANI KATKILI BETONLARIN ÇARPMA DAYANIMININ YAPAY SİNİR AĞI İLE BELİRLENMESİ ISSN:1306-3111 e-journal of New World Scences Academy 2008, Volume: 3, Number: 1 Artcle Number: A0046 NATURAL AND APPLIED SCIENCES CIVIL ENGINEERING Receved: June 2007 Accepted: December 2007 2008 www.newwsa.com

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

Saccharomyces cerevisia Maya Hücresinin Büyüme Eğrisinin ANFIS ile Modellenmesi

Saccharomyces cerevisia Maya Hücresinin Büyüme Eğrisinin ANFIS ile Modellenmesi 06 Publshed n 4th Internatonal Symposum on Innovatve Technologes n Engneerng and Scence 3-5 ovember 06 (ISITES06 Alanya/Antalya - Turkey) Saccharomyces cerevsa Maya Hücresnn Büyüme Eğrsnn AFIS le Modellenmes

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ders Kodu Teork Uygulama Lab. Ulusal Kred Öğretm planındak AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ön Koşullar : Grafk İletşm I ve II, Tasarım Stüdyosu I, II, III derslern almış ve başarmış

Detaylı

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering KSÜ Mühendslk Blmler Dergs, (), 9 5 KSU Journal of Engneerng Scences, (), 9 EMG İşaretlernn K-Ortalama Algortması Kullanılarak Öbekleştrlmes Mücahd Günay, Ahmet ALKA, KSÜ Mühendslk-Mmarlık Fakültes Elektrk-Elektronk

Detaylı

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 007 : 13 : 1 : 911

Detaylı

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM Emrah ONAT SDT - Space & Defence Technologes A.Ş. emrahonat@yahoo.com

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI YÜKSEK LİSANS TEZİ Müh. Ramadan VATANSEVER Anablm Dalı: İşletme Mühendslğ Programı: İşletme

Detaylı

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131.

Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Y.2008, C.13, S.1 s.111-131. Süleyman Demrel Ünverstes İktsad ve İdar Blmler Fakültes Y.008, C.3, S. s.-3. BİREYSEL EMEKLİLİK FONLARINDA FON YAPILARININ KARMA DENEMELER YÖNTEMİ İLE İNCELENMESİ EXAMINING THE STRUCTURE OF FUNDS BY MIXTURE

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS EN KÜÇÜK KARELER, RİDGE REGRESYON VE ROBUST REGRESYON YÖNTEMLERİNDE ANALİZ SONUÇLARINA AYKIRI DEĞERLERİN ETKİLERİNİN BELİRLENMESİ ZOOTEKNİ ANABİLİM

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : 5- TRİSTÖR VE TRİYAK

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ

MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ Erkam Murat BOZKURT Mehmet Turan SÖYLEMEZ Kontrol ve Otomasyon Mühendslğ Bölümü, Elektrk-Elektronk Fakültes, İstanbul

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA Canan ŞENOL Tülay YILDIRIM Kadr Has Ünverstes, Elektronk Mühendslğ Bölümü, 3430, Cbal, Fath-İstanbul Yıldız Teknk Ünverstes, Elektronk

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

CuEEG: EEG Verilerinin Hızlı İşlenmesi için GPU Tabanlı Bir Yaklaşım CuEEG: A GPU-Based Approach for Fast Processing of EEG Data

CuEEG: EEG Verilerinin Hızlı İşlenmesi için GPU Tabanlı Bir Yaklaşım CuEEG: A GPU-Based Approach for Fast Processing of EEG Data ELECO '212 Elektrk - Elektronk ve Blgsayar Mühendslğ Sempozyumu, 29 Kasım - 1 Aralık 212, Bursa CuEEG: EEG Verlernn Hızlı İşlenmes çn GPU Tabanlı Br Yaklaşım CuEEG: A GPU-Based Approach for Fast Processng

Detaylı

UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS)

UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS) ÖZET UZAKTAN ALGILANMIŞ GÖRÜNTÜLERDE SINIFLANDIRMA VE ANALİZ (CLASSIFICATION OF REMOTE SENSING IMAGES AND ANALYSIS) Emnnur AYHAN Fevz KARSLI Esra TUNÇ Sınıflandırma; brçok blm dalında kullanılan br karar

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI ÜÇ FAZLI ASENKRON MOTORLARIN YAPAY SİNİR AĞLARI İLE VEKTÖR ESASLI HIZ KONTROLÜ ZAFER KOCA

Detaylı

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ 2. Ulusal Tasarım İmalat ve Analz Kongres 11-12 Kasım 21- Balıkesr GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ Esra YILMAZ*, Ferhat GÜNGÖR** *ylmazesraa@gmal.com

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

BULANIK REGRESYON İLE TAHMİN VE BİR UYGULAMA. Selma DÜZYURT YÜKSEK LİSANS TEZİ ENDÜSTRİ MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BULANIK REGRESYON İLE TAHMİN VE BİR UYGULAMA. Selma DÜZYURT YÜKSEK LİSANS TEZİ ENDÜSTRİ MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BULANIK REGRESYON İLE TAHMİN VE BİR UYGULAMA Selma DÜZYURT YÜKSEK LİSANS TEZİ ENDÜSTRİ MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2008 ANKARA Selma DÜZYURT tarafından hazırlanan BULANIK

Detaylı

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için)

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için) Ders Kodu Teork Uygulama Lab. Uluslararası Muhasebe ve Fnansal Raporlama Standartları Ulusal Kred Öğretm planındak AKTS 344000000000510 3 0 0 3 6 Ön Koşullar : Bu dersn ön koşulu ya da yan koşulu bulunmamaktadır.

Detaylı

Türkiye deki Đşsizlik Oranının Bulanık Doğrusal Regresyon Analiziyle Tahmini

Türkiye deki Đşsizlik Oranının Bulanık Doğrusal Regresyon Analiziyle Tahmini İstatstkçler Dergs: İstatstk & Aktüerya Journal of Statstcans: Statstcs and Actuaral Scences IDIA 8, 5, -6 Gelş/Receved:6.4.5, Kabul/Accepted: 3.6.5 www.statstkcler.org Türkye dek Đşszlk Oranının Bulanık

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ T.C. KARA HARP OKULU SAVUNMA BİLİMLERİ ENSTİTÜSÜ HAREKÂT ARAŞTIRMASI ANA BİLİM DALI ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ DOKTORA TEZİ Hazırlayan Al Rıza BOZBULUT

Detaylı

Fırat Üniversitesi, Mühendislik Fakültesi, Makine Bölümü, ELAZIĞ

Fırat Üniversitesi, Mühendislik Fakültesi, Makine Bölümü, ELAZIĞ GENETİK ALGORİTMA İLE PARAMETRELERİ OPTİMİZE EDİLMİŞ AĞ TABANLI BULANIK DENETİM SİSTEMİNİN SİSMİK İZOLASYONA UYGULANMASI VE MATLAB İLE SİMÜLASYONU Doç Dr. Hasan ALLİ ve Arş. Gör. Oğuz YAKUT Fırat Ünverstes,

Detaylı

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ . Türkye Deprem Mühendslğ ve Ssmoloj Konferansı 5-7 Eylül 0 MKÜ HATAY DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ ÖZET: H. Çlsalar ve K. Aydın Yüksek Lsans Öğrencs, İnşaat

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 22, No 4, 855-862, 2007 Vol 22, No 4, 855-862, 2007 BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA İzzettn TEMİZ ve

Detaylı

POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZYONA ETKİSİ

POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZYONA ETKİSİ TMMOB Harta ve Kadastro Mühendsler Odası 0. Türkye Harta Blmsel ve Teknk Kurultayı 8 Mart - Nsan 00, Ankara POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZONA ETKİSİ M. ılmaz,

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER Akdenz İ.İ.B.F. Dergs (21) 2011, 17-45 ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER PREVALENCE AND SOCIOECONOMICS DETERMINANTS OF ADULTS OBESITY IN ANTALYA Arş. Gör. F.

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı