4. DEVİRLİ ALT GRUPLAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "4. DEVİRLİ ALT GRUPLAR"

Transkript

1 4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme 4.2 : G bi gup ve M i) M vey { } ie M ii) M ie, G olu. Bu tkdide ={ } di. M ={ : M, N, Z, i 1,2,... } dı. 1 2 i i İpt : i) { } ve G i he lt gubu yi kpdığıd { } di. Ayıc { } ie M ={ } olduğu çıktı. 1 2 ii) H {.... : M, N, Z, i 1,2,... } kümeii G i bi lt gubu 1 2 i i olduğuu göteelim: m1 m2 m ve b b1. b2... b olmk üzee, b H içi m b... b m b m H olduğud H G di. 2 1 m M llım. m yi kedii bi kuvvet çpımı olk düşüeek yi H i tımıd 1 ve 1 1 lk m H buluu. Şu hlde M Hdı. H G olduğud, M H elde edili. Teie H M kpmıı göteelim: H llım. 1, 2,..., M M ve M bi gup olduğud bu elemlı kuvvetlei ve bulı çpımı d M de klı. Şu hlde M, yi H M elde edili. Souç olk H M di b Uyı: G toplml gup ve ie { } di. Tım 4.3 : Bi G gubu içi, G M olck şekilde bi M G lt kümei bulubiliyo, G ye M ile üetilmiş gup dei. Eğe M olu bi küme ie G ye olu üetilmiş gup, M {} tek elemlı bi küme ie G ye ile üetilmiş devili gup dei ve ile göteili. Öeme 4.2 de G, ile üetilmiş çpıml devili gup ie G = { : Z} ve G, ile üetilmiş toplml devili gup ie G = { } olcğı çıktı. Öekle ) Z, 1 ile üetilmiş ouz devili guptu. Geçekte, 1

2 Z 1 1 olduğuu göebiliiz. 2) G {1, i, 1, i} gubu i ile üetilmiş 4. metebede bi (olu) devili guptu. 3) Z {0, 1, 2,..., m 1}, 1 ile üetilmiş m. metebede bi devili guptu. m 4) T {6,15} Z içi T 3Z di. ( 1) ve 6=2.3, 15=5.3 olduğud T 3Z dı. 5) Z de 5 i üettiği gup 5 {5 : Z} di. 6) ( Q, ) bi devili gup değildi. Ipt. ( ) bi devili gup olu. Şu hlde ve ( ) olck şekilde vdı. olduğud olck şekilde vdı. Böylece çelişkii elde edili. 7) (Z3 x Z 4, + ) ypııı bi devili gup olduğuu göteelim. (, b),( c, d) Z3 x 4 gup olduğu çıktı. Z içi (, b) ( c, d) ( c, b d) işlemie göe (Z3 x Z 4, + ) ı bi Şimdi gubu devili olup olmdığı bklım. (1,1) Z 3 x Z 4 elemıı göz öüe llım. 1(1,1)=(1,1) 4(1,1)=(1,0) 2(1,1)=(2,2) 5(1,1)=(2,1) 3(1,1)=(0,3) 6(1,1)=(0,2) 7 (1,1)=(1,3) 10(1,1)=(1,2) 8 (1,1)=(2,0) 11(1,1)=(2,2) 9(1,1)=(0,1) 12(1,1)=(0,0) olup Z3x Z 4 =<(1,1)> olduğud gup devilidi. 8), b Z olu. ) Z bz { k bd : k, d Z} Z b) ve b 7 elemlı Z bz yi üeti. Yi Z bz =<, b 7> dı. Çözüm : ) Açık. b) k bl Z bz k bl ( k 7 l) ( b 7 ) l olduğud Z bz = di. 2

3 Not 4.5. Pozitif tmyıı içi 1 ve (, ) 1 ol tm yılı yıı ( ) ile göteili ve budki fokiyo Eule fokiyou dei. Eule fokiyouu şu özelliklei vdı: 1) p l ie ( p) p 1 2) p l ve N ie ( p ) p p p (1 ). p 3) ( m, ) =1 ie ( m) ( m) ( ) 1 2 4) m p 1. p 2... p Öek 4.6. gupt üeteçti. Not ie ( m) ( 1 ). ( 2 )... ( p p p ) = p p... p (1 )...(1 ) p p * Z 10 devili guptu. * 3 Z 10 ııfıı metebei 4 tü. Geçekte, * Z 10 ı metebei (10) (2) (5) 4 ol bi guptu. Bu 2 3 9, , 3 1. Yi 3 bi Eule Teoemi : m Z olu. ( m, ) 1 ol Z içi ( m) 1(mod m) vey ( m) 1. Femt Teoemi : Özel olk m p l yı ie Z içi p 1 1(mod p) di. Öekle 4.8. * 1 ) Z 15 bi devili gup değildi. Z * 15 içi (15) (3) (5) 8 di. 4 1 olu. Hlbuki, * Z 15 metebei 2 ) olmk üzee ltee gubu 3 uzuluğudki devile tfıd üetilmişti. İlk olk he elemıı 3-lü devililei bi çpımı olduğuu göteelim. olu. ve çift tm yı olmk üzee tpoziyolı içi olu. Hehgi ( ) tpoziyou içi ( ) ( )( )( ) olduğud m çift tm yı olmk üzee ( )( ) ( ) elde edeiz. Fkt ( )( ) ( ) olduğud f lü devilei bi çpımıdı. He üçlü devi çift pemütyo olduğud he üçlü devi gubuu bi elemıdı. Yukıd götediğimiz gibi gubuu he elemı 3-lü devilei bi çpımıdı. Böylece gubu 3-lü devile tfıd üetilmişti. 3

4 Not 4.9. G olu. ı bütü pozitif kuvvetleii göz öüe ldığımızd iki duum öz kouudu. Duum 1 ) ı bütü kuvvetlei bibiide fklıdı. Şu hlde, G ouz devili guptu. Duum 2 ) ı bzı kuvvetlei yıdı. Eğe özeliğii kullk tmyılı içi e buluu. Pozitif tmyılı iyi ılı oluşud, küçük pozitif tmyı bulubili. Bu e küçük pozitif tmyı t ie olu. Geçekte Z olmk üzee G llım. qt,0 t, q, Z şeklide yzbiliiz ( ) olduğud e 2 t {,,..., } yi ie kıltm m e ol e G e 2 t {,,..., } yi t ile kllı böleek, { } buluu. G olduğud te kpm d doğudu. Tım G bi gup ve G olu. ı üettiği < > devili gubuu metebeie elemıı metebei dei ve o ( ) vey ile göteili. Şu hlde o ( ), ğly 0 tmyıl ıd e küçük olıdı. e koşuluu Öeme G bi gup, G ve o ( ) = olu. Şu hlde di. İpt : : m e olu. m yi ile kllı böleek, m k,0 olck şekilde k Z bulubili. o ( ) = olduğud, m k e ve e ( ) buluu. Fkt 0 ie e olmı i bu koşulu ğly e küçük pozitif tmyı olmı ile çelişi. Şu hlde 0, yi olmlıdı. m k k : olu. m k, k Z ie ( ) e e olu. Öeme G,. metebede bi devili gup olu. olmı içi geek ve yete koşul (, ) 1 olmıdı. i G i bi üeteci İpt : :, G i bi üeteci ie G di. ( ) t, t N. t 1 Kıltm özelliği kullk, e ve Öeme 4.11 de buluu. Şu hlde, bi y Z içi t 1 y ve böylece t y 1 olcğıd (, ) 1 elde edili. :(, ) 1 olu. Şu hlde x y 1 olck şekilde x, y Z. Böylece ( ) ( ) ( ) olcğıd G olduğu d çıktı. Böylece G di. G dı. olduğud Öeme G bi ouz devili gup ie üeteçlei ve 1 di. İpt :, G ı bi üeteci ie ( ) ouz devili gup olmı edeiyle x 1 yi 1 buluu. x olck şekilde x Z. Bud < i 4

5 Öeme Devili bi gubu he lt gubu d devilidi. İpt : G çıktı. ve H G olu. H {} e ie H i e ile üetile bi devili gup olduğu H {} e ve 0 tmyıı içi dı. Şu hlde geelliği bozmd 0 olmk üzee iyi ılı olduğud H olcğıı göteelim. Teie bi H olu. H G olduğud, ( ) 1 H H kbul edeiz. Pozitif tmyıl H olck şekilde e küçük pozitif tmyı olu. Bu duumd H ve H G olduğud < H llım. yi ile kllı böleek q,0, q, Z şeklide yzlım. Şu hlde ( ) ve böylece ( ) olu. Fkt 0< ve H olmı i eçimi ile çelişi. Bu duumd 0 ve bud dolyı q buluu. Bud q ( ), yi buluu. He iki kpmd d H Öeme 4.15 G dı. buluu. bi ouz devili gup ie lt gubu d bi ouz devili guptu. İpt : Öeme 4.14 e göe devili bi gubu he lt gubu d devilidi. Şimdi ouz bi devili gubu he lt gubuu d ouz olcğıı göteelim. H olu. Öeme 4.14 de H ol e küçük pozitif tmyı ie H olduğuu götemiştik. < > ouz bi devili gup olduğud, ı bütü kuvvetlei dolyııyl kuvvetlei fklıdı. Şu hlde H de bi ouz devili gup olu. m Öeme G bi gup, G ve o( ) olu. o ( ) dı. ( m, ) İpt : G, o( ) ve ( m, ) d olu. m dm ve d m m o ( ) = olduğuu göteelim. o( ) k olu. ( m, ) ie ( m, ) 1 olu. ( ) ( ) / m k ve (, m ) 1 olduğud buluu. Diğe tft ( ) ( ) m ( ) buluu. Şu hlde, o( ) k di. ( m, ) i bütü Öeme metebei ol olu devili gup olu. Şu hlde G gubuu i he pozitif bölei içi metebei d ol tek bi lt gubu vdı. İpt. ve d, m i bi pozitif bölei olu. Şu hlde olck şekilde vdı. Böylece ve Öeme 4.16 d ( ) ( ) ( ) elde edili. olu. Böylece ( ) elde edili. Souç olk metebei d ol bi gup elde etmiş olduk. Şimdi H i tek olduğuu göteelim. 5

6 K metebei d ol bi lt gup ve t de olck şekilde e küçük pozitif tm yı olu. Bud dolyı di. K ı metebei d olduğud ( ) di. Öeme 4.16 de ( ) ( ) ve böylece ( ) elde edeiz. Bu ie olduğuu ve böylece olck şekilde vdı. Bud dolyı ( ) ve böylece elde edeiz. Fkt olduğud ve H, K lt guplı olu olduğud olu. Böylece metebei ol tek bi lt gup vdı. Öekle ) G x < 1 ve < x > =30 ie < x > i lt guplı şuldı. 29 x >=< x >={ e, x,..., x } 2 28 x >={ e, x,..., x }, < x 2 > =15 < x >={ e, x,..., x }, x 10 < x >={ e, x,..., x }, x 6 < x >={ e, x,..., x }, x 5 < x >={ e, x, x }, x 3 < 10 { } = 2 { }, 2) Z 30 u tüm lt guplı şuldı. <0> ={0}, <0> =1 <1> ={0,1,,29}, <1> =30 <2> ={0,2,4,,28}, <2> =15 <3> ={0,3,,27}, <3> =10 <5> ={0,5,,25}, <5> =6 <6> ={0,6,,24}, <6> =5 <10> ={0,10,20}, <10> =3 <15> ={0,15}, <15> =2 3) G, 20. metebede bi devili gup ie bütü üeteçleii ve lt guplıı bullım. o ( ) 20 olduğud G ı üeteçlei yıı Bul (,20) 1 ve 1 20 olmk üzee ledi. Yi G 2 (20) (2 ) (5) tedi. Alt guplıı yıı d 20= i pozitif böleleii yıı yi (20) dı. olmk üzee, d. metebede lt gup 20/d ile belilidi. 6

7 4) G bi gup, H ve K b ııyl m. ve. metebede lt guplı olmk üzee ( m, ) 1 olu. H K, m metebede devili bi guptu. m m m Geçekte, (, b) d olu. (, b) (, b ) ( e, e) olduğud di. Ayı d d d zmd, ( e, e) (, b) (, b ) olduğud elde edili. Souç olk m gubuu üeti. Böylece =<( b, ) di. d d e b di. Böylece ve de d di. ( ) olduğud ( b, ) elemı 5 ) 4. öekte ( ) ie gubu devilidi. Öek gubu Dihedl gup dei. Şimdi { } olduğuu göteelim : olmı ( ) olmıı geektii. Bu şekilde ( ) devm edeek içi elde edeiz. Fkt ( ) olduğud olmk üzee di. Böylece { } { } olduğu göülü. Tım 4.20., =, ve G gubu ve b tfıd üetiliyo ( ) G ye Quteio gup dei. Öek T, Ȼ komplek yıl kümei üzeide teleebili mtilei bi kümei olu. bilie mti çpımı ltıd bi guptu. T gubuu [ ] ve [ ] ile üetilmiş lt gubu G olu. Şu hlde, ve olduğud i bi Quteio gup olduğu göülü. Öeme uzuluğudki bi devii metebei di. İpt : ( ) yi uzuluğudki bi devi kbul edelim. içi ie ie dı. Bud ve içi olduğu göülü. Bu duumd i metebei di. 7

8 Öeme Bi uzuluklıı ekok dı. pemütyouu metebei, yıldığı yık devilei İpt : i yık devilee yılışı olmk üzee deviii uzuluğu ve olu. yık devilei çpımı değişmeli olduğud di olduğud di. Bud di. Diğe tft i deki yıl kııtlışı yi vediğide olmı he içi olmıı geektii. Şu hlde di. Böylece ol e küçük pozitif tm yıı ( ) = olduğu göülü. Öek f= (3 4)(1 2 5) ve SORULAR 1 ) ( { } ) gubuu devili olmdığıı göteiiz. 2) ( { } ) çpıml gubud devili lt gubuu belileyiiz. 3) Devili guplı değişmeli olduğuu göteiiz. 4) Devili olmy olu gub öek veiiz. 5) Devili olmy ouz gub öek veiiz. 6) Metebei 3 ol gubu devili olduğuu göteiiz. 7) Ylız bi üeteci ol gub öek veiiz. 8) He öz lt gubu devili ol gup devili midi? Nede? 9) G bi gup ve ie olduğuu göteiiz. 10) G bi gup ve,b olu. Şu hlde olduğuu göteiiz. 11) G bi gup ve,b ie olduğuu göteiiz 8

9 12) Sıfıd fklı komplek yılı çpıml lt kümei ı devili lt gubu diyelim. ı elemlıı ve metebeii belileyiiz. 13) Aşğıdki guplı metebeleii belileyiiz. () u ile üetile devili lt gubu, (b) u ile üetile devili lt gubu. 14) Aşğıdki guplı tüm lt guplıı metebeleii belileyiiz. () (b) (c) (d) (e) 15)( ) ve (, ) guplıd elemı metebeleii buluuz. 16) gubudki tüm elemlı metebeleii buluuz. 17) 36. metebede devili bi gubu tüm lt guplıı ve üeteçleii belileyiiz. 18) gubuu metebei 4 ol lt guplıı buluuz. 19) gubuu {( ) ( )} lt kümeii üettiği lt gubu belileyiiz. 20) ( ) gubud { } lt gubuu belileyiiz. 21) ( ) gubud m, olmk üzee gubuu üetecii buluuz. 22) G bi gup ve b=b olck şekilde,b olu. ( ) ( ) ve ( ) ie ( ) olduğuu göteiiz. 23) gubud ve olck şekilde buluuz. 24 ) devili gup mudu? Nede? 25) ( ) ( ) olu. i) ( ) ve ( ) yi buluuz. ii) olduğuu göteiiz. iii) de yi buluuz. iv) yi buluuz. 26) Klei 4-lü gubuu tüm lt guplıı buluuz. 9

10 27) ( ) yi belileyiiz. 28) G,, = ve olmk üzee ve b tfıd üetile bi Quteio gup olu. Aşğıdki ifdelei iptlyıız. i) G gubuu he elemıı olmk üzee şeklidedi. ii) G gubuu elem yıı 8 di. iii) G değişmeli olmy bi guptu. 29) ( ) gubuu {[ ] } lt kümeii bi devili lt gup olduğuu göteiiz. 30) { } toplml gubu devili midi? 31) G bi gup ve H ve K d lt guplı olu. olmı içi geek ve yete koşulu vey olmıdı. Göteiiz. 32) ve iki devili gup olmk üzee ( ) ( ) olduğuu iptlyıız. 33) bi gup, H ve K d G i lt guplı olu. olmı içi geek ve yete koşulu olduğuu göteiiz. 34) ve iki fklı l yı olu. gubuu kç te devili lt gubu vdı? 35) l yı, olu. devili gubuu kç te üeteci vdı? 36) Aşğıdki ifdele doğu vey ylış mıdı? Doğu ie ipt ediiz, ylış ie bi öek bulk ebebii çıklyıız. () He değişmeli gup devilidi. (b) toplml devili guptu. (c) Devili bi gubu he elemı gubu üetecidi. (d) Veile he içi metebede e z bi değişmeli gup vdı. (e) Metebei ol he gup devilidi. (f) i tüm üeteçlei l yıldı. (g) ve, gubuu iki lt gubu ie, i lt gubudu. (h) Metebei ol he devili gubu e z iki fklı üeteci vdı. 10

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlei he hkkı sklıdı. Hgi mçl olus olsu, testlei tmmıı ve bi kısmıı İhtiç Yıcılık

Detaylı

Cebir Notları. Geometrik Dizi ( ) ( ) Mustafa YAĞCI,

Cebir Notları. Geometrik Dizi ( ) ( ) Mustafa YAĞCI, www.mustfygci.com, 006 Cebi Notlı Mustf YAĞCI, ygcimustf@yhoo.com Geometik Dizi Aitmetik diziyi bi htılylım bklım. Tüm dışık teimlei sıdki fkl sbitti. Yi stgele bi ilk teim vdı, o ilk teime bi d eel syısı

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

1. SAYI CİSİMLERİ SÜREKLİ KESRİN UYGULAMALARI ELİPTİK EĞRİLER...88

1. SAYI CİSİMLERİ SÜREKLİ KESRİN UYGULAMALARI ELİPTİK EĞRİLER...88 ANKARA ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ YÜKSEK İSANS TEZİ CEBİRSE SAYIAR TEORİSİNDEN BAZI AGORİTMAAR Züleyh MUTU MATEMATİK ANABİİM DAI ANKARA 5 He hı slıdı İÇİNDEKİER ÖZET i ABSTRACT ii TEŞEKKÜR iii

Detaylı

Başlangıç değerleri. olduğundan iterasyona devam!

Başlangıç değerleri. olduğundan iterasyona devam! ESKİŞEHİR OSMANGAZİ ÜNİVERSİESİ Mühedl Mmlı Fülte İşt Mühedlğ Bölümü E-Pot: ogu.hmet.topcu@gml.com Web: http://mmf.ogu.edu.t/topcu Blgy Detel Nüme Alz De otlı Ahmet OPÇU m X X X.5.5.5.5.75 -.5.5.875.75

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

TG 1 ÖABT ORTAÖĞRETİM MATEMATİK

TG 1 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hı slıdı. Hgi mçl olus olsu, testlei tmmıı vey bi ısmıı İhtiyç Yyıcılı

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 4.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . İki bsmklı toplm sı vdı. ile lınd sl olmsı için ve e tm bölünmemeli e bölünen sıl 8 det e bölünen sıl det LYS /.NM MTMTİK TSTİ ÇÖZÜMLİ 8. - ` j - 8 k - 8 8-8 8 nck ʼin ktı oln sıl ( tne) kee lındı. -

Detaylı

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır.

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır. . OLASILIK TEORİSİ İsttstsel ştımlı temel oulıd b souu öede es ol blmeye bzı şs bğlı olylı (deemele) olsı tüm mümü souçlıı hg sılıl oty çıtığıı belleyeblmet. Bu sou sttstte olsılı poblem ol dldıılı ve

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 1.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ .. (,! Z ) min için! `, j LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp:. {,,,,,, 7,, 9} Z/'te $ 7,,. $,,. $ 9,,. k ve k ve k ve k f p f p f p f pf pf p evp:. ` j! k 7 ` j! ` j` j 7 ` j!! `-j! `- j!!!.. b. c b c b

Detaylı

TG 10 ÖABT İLKÖĞRETİM MATEMATİK

TG 10 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlei he hkkı sklıdı. Hgi mçl olus olsu, testlei tmmıı vey i kısmıı İhtiyç

Detaylı

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır.

Temel Elektrik Kavramlar Aşağıdaki notlar, D.J.Griffit s in Elektromanyetik Teori kitabından alınmıştır. 1 Temel Elektik Kvml Aşğıdki notl, D.J.Giffit s in Elektomnyetik Teoi kitındn lınmıştı. 1- Elektik Aln (E) Yüklü i cisim, fzl elekton vey potonu oln i cisimdi. Cisimdeki u fzl net yükün üyüklüğü, fzl oln

Detaylı

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI V. Ulusl Üetim Aştımlı Sempozyumu, İstbul Ticet Üivesitesi, 25-27 Ksım 2005 ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI Tme EREN Kııkkle Üivesitesi

Detaylı

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

a 2 =h 2 +r 2 DERS: MATEMATĐK 8 KONU:KONĐ FORMÜLLERĐ ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: 1) KONĐ: Bi çembein bütün noktlının çembein dışındki bi nokt ile bileştiilmesinden elde edilen cisme koni deni. Kısc Koni, tbnı die oln pimitti. DĐK KONĐ PĐRAMĐT 1-A)DĐK KONĐ: Bi dik üçgenin, dik kenlındn

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 6 ÖABT ORTAÖĞRETİM MATEMATİK Bu testle he hkkı sklıı. Hg mçl olus olsu, testle tmmıı ve kısmıı İhtç Yıcılık

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s)

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s) Kök-Yer Eğrileri: Kplı-dögü deeti iteii geçici-duru dvrışıı teel özellikleri kplı-dögü kutuplrıd belirleir. Dolyııyl probleleri çözüleeide kplı-dögü kutuplrıı - krşık yı düzleideki dğılıı rştırılı gerekir.

Detaylı

Cebir Notları. Diziler Mustafa YAĞCI,

Cebir Notları. Diziler Mustafa YAĞCI, www.mustfygci.com, 006 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Diziler Mtemtiği e zevkli ve sürükleyici koulrıd birie geldik. Pek zorlcğımı thmi etmiyorum, çükü yei esil diziler e oldukç merklı. Kurtlr

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ

LYS1 / 3.DENEME MATEMATİK TESTİ ÇÖZÜMLERİ . `n 5j- `n- j - n - n vey n- n n 8. 8 8 LYS /.NM MTMTİK TSTİ ÇÖZÜMLRİ evp: evp:. - f p$ f - p f p 9 - - 5! 5 -! 5 5 5. 8... 5 5. 5.. y 8 8 5 5... z < y < z _. ` j. $ ` j ` ise y. ` j y $ ` j ` j yk. `

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4.

a R, n tek ve Örneğin, a, b R + ve m, n Z + olmak üzere; 1. n a b a b dir. 2. n m n m a a n n n 5. m n m 6. 0 a b n a n b dir. Örnek 4. Bölü. Köklü Syılr Muhrre Şhi. Köklü Syılr.. Köklü Syılrı Tıı Bu bölüde, kök dediğiiz sebollerle gösterile gerçek syılrı köklü syılr olrk tıtck ve bulrı gerçek syılrı rsyoel kuvvetleri olduğuu göstereceğiz.

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

Çubukta açılan delikler

Çubukta açılan delikler YTÜ İş Müh. Böl. Çlik Ypıl I D Nolı Y. Doç. D. Dvim ÖZHENDEKCİ ÇEKME ÇUBUKLRI Ki zou olk ylız l oğulu çmy muz kl ll çm çuuklı i; kf ili çm çuuklı, il, kıl, v. u ü şıyıı ll ö öilili. Çm çuuklı y çok çlı

Detaylı

BASİT MAKİNELER BÖLÜM 4

BASİT MAKİNELER BÖLÜM 4 BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir.

KATI CİSİMLER. Aşağıdaki şekilde, ABCDEFGH tabanlı ABCDEFGHA B C D E F G H sekizgen dik prizması verilmiştir. I İSİMLR tı isimlein İsimlendiilmesi ve Özeliklei şğıdki şekilde, tnlı sekizgen dik pizmsı veilmişti. Pizml tnlındki çokgene ve diklikeğiklik duumun göe ' ' ' ' isim lıl., ' ' ' ', dikdötgenleine ynl yüzey

Detaylı

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E.

DRC sayısının kendisi hariç en büyük üç farklı pozitif tam. Deneme - 3 / Mat. Cevap B. 2 ve 5 numaralı kutular açık olur. Cevap E. nm - / Mt MTMTİK NMSİ Çözüml. + + -. + + + + + 8 + 8 bulunu. 8 y - 0, y 90 & 0, y y - y 90 y - 0+ y- & y - y 0y+ -y 9+ y 9y+ 7 + y 8y + 5 5y 5 y 5 5 +. + - ^ h - - 9-0 -9 bulunu. - - k. R vp. 5 6 çık çık

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

Aritmetik Fonksiyonlar

Aritmetik Fonksiyonlar BÖÜM V Aiteti osiyola Taı 5. Taı üesi oğal sayıla ola, : N C, şeliei osiyolaa aiteti osiyola ei., içi.. oşuluu sağlaya aiteti osiyolaa ise çaısal osiyola ei. Öe He N içi, ve 3 0 şelie taılaa osiyola bie

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN İLİMLERİ ENSTİTÜSÜ POZİTİF TNML MTRİSLERİN RİTMETİK GEOMETRİK VE EİNZ ORTLMLR ÜZERİNE SNRLR Öğrecii dı SOYD İrhim lil GÜMÜŞ DOKTOR TEZİ Mtemtik ilim Dlı Temmuz- KONY er kkı

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

Quasilineer uzaylarda alt ve üst yarı baz kavramları

Quasilineer uzaylarda alt ve üst yarı baz kavramları 48 Ç Yılmz ciyes Üisitesi Fe Bilimlei stitüsü Degisi 3():48-488 Qusiliee uzyl lt üst yı bz mlı * Sümeyye ÇAKAN Yılmz YIMAZ İöü Üisitesi Fe ebiyt Fültesi Mtemti Bölümü 448 Mlty Tüiye. Aht Kelimele: Qusiliee

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

ELEKTRIKSEL POTANSIYEL

ELEKTRIKSEL POTANSIYEL FİZK 14-22 Des 7 ELEKTRIKSEL POTANSIYEL D. Ali ÖVGÜN DAÜ Fizik Bölümü Kynkl: -Fizik 2. Cilt (SERWAY) -Fiziğin Temellei 2.Kitp (HALLIDAY & RESNIK) -Ünivesite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) www.ovgun.com

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

DERS 12. Belirli İntegral

DERS 12. Belirli İntegral DERS Belili İntegl.. Bi eği ltınd kln ln. Bi [, ] kplı lığı üzeinde süekli i onksionu veilmiş olsun ve e [, ] için olduğunu kul edelim. in giği ile ekseni sınd kln ölgenin lnı ile u deste göeeğimiz elili

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

11. Sınıf ileri düzey matematik

11. Sınıf ileri düzey matematik . Sııf ilei düze tetik ÖZET Sevgili Öğecile, Bu özet kitp, okul üfedtı ugu olk hzılıştı. Kitptki koul, des kitbıızl uulu olk sılış ve çıklıştı. Özet kitbıızı hzılış cı, sizlei oğu ve boğucu ıtıll dolu

Detaylı

JEOTERMAL REZERVUARLARIN MODELLENMESİ

JEOTERMAL REZERVUARLARIN MODELLENMESİ 233 JEOTERMAL REZERVUARLARIN MODELLENMESİ Hüly SARAK Abduhmn SATMAN ÖZET Litetüde jeoteml ezevu dvnışlını modelleyen çeşitli modelle mevcuttu. Bunl üetim debisi zlm yöntemi, boyutsuz ezevu modellemesi

Detaylı

PERMUTASYON A B C B C A C A B C B C A B A ABC ACB BAC BCA CAB CBA

PERMUTASYON A B C B C A C A B C B C A B A ABC ACB BAC BCA CAB CBA PERMUTASYON Pemutsyo, elli syıdki eselei i sı içeiside fklı şekillede düzelemesidi. Öek olk A, B, C gii üç kitp i ft kç fklı şekilde sılili? O A B C B C A C A B Olmk üzee ğç diygmı ile kolylıkl çözüleili.

Detaylı

3. BEKLENEN DEĞER VE MOMENTLER

3. BEKLENEN DEĞER VE MOMENTLER 3. BKLNN DĞR V ONTLR emksel bekle kvmı şs oulıd doğmuşu. lı bçmle, b oucuu kzbleceğ mk le kzm olsılığıı çpımıdı. Sözgelm büük ödülü 48TL olduğu b çeklşek. blee b bzmse memksel beklemz 48*/. =,48 olu. 3.

Detaylı

Tümevarım ve Özyineleme

Tümevarım ve Özyineleme Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme

Detaylı

Çözüm Kitapçığı Deneme-7

Çözüm Kitapçığı Deneme-7 KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ 7-9 MAT 7 Çözüm Kitapçığı Deneme-7 Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN

ANALİZ III DERS NOTLARI. Prof. Dr. Nurettin ERGUN ANALİZ III DERS NOTLARI Prof. Dr. Nuretti ERGUN İ Ç İ N D E K İ L E R Syf No BÖLÜM Foksiyo Dizi ve Serileri... BÖLÜM Fourier Serileri... BÖLÜM 3 Özge Olmy Tümlevler...48 BÖLÜM 4 Dik Poliom Serileri...7

Detaylı

TG 9 ÖABT ORTAÖĞRETİM MATEMATİK

TG 9 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERONEL EÇME INAVI ÖĞREMENLİK ALAN BİLGİİ Eİ ORAÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖAB ORAÖĞREİM MAEMAİK Bu testlei he hkkı sklıdı. Hgi mçl olus olsu, testlei tmmıı ve bi kısmıı İhtiç Yıcılık ı zılı izi

Detaylı

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

LİMİT VE SÜREKLİLİK ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT LİMİT VE SÜREKLİLİK ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Limit. Kzım : Bir bğımsız değişkei verile bir sı klşmsıı öreklerle çıklr.. Kzım : Bir foksiou bir oktdki iti, sold iti ve sğd iti kvrmlrıı öreklerle

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

TEST - 1 BAS T MAK NELER. fiekil-ii

TEST - 1 BAS T MAK NELER. fiekil-ii BA A EER E - fiekil-i fiekil-ii difllisi fiekil - II deki konuma yönünde devi yapaak gelebili Bu duumda difllisi yönünde döne f f ve kasnakla n n ya çapla eflit oldu undan kasna- tu atasa, de tu ata,,

Detaylı

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200

OLİMPİYAT SINAVI. a ise b 2006 b 2005 =? A) 1330 B) 1995 C) 1024 D) 1201 E) 1200 ., b, c, d Z olmk üzere / + /b + /c + /d = ½ ve ( + b + c + d) =.b + c.d + ( + b ).(c +d) + dekliklerii sğly kç (, b, c, d) dörtlüsü vrdır? A) 48 B) 4 C) D) 6 E) 5. Alı 40 birim kre ol bir ABC üçgeii AB,

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı Bölüm-4 30.03.2015 Ankara Aysuhan OZANSOY FİZ2 FİZİK-II Ank Ünivesitesi Fen Fkültesi Kimy Bölümü 24-25 Bh Yıyılı Bölüm-4 Ank Aysuhn OZANSOY Bölüm 4. Elektiksel Potnsiyel. Elektiksel Potnsiyel Eneji 2. Elektiksel Potnsiyel ve Potnsiyel Fk 3. Noktsl

Detaylı

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7.

TEST 12-1 KONU. çembersel hareket. Çözümlerİ ÇÖZÜMLERİ s ise. 1. H z ve ivme vektörel olduğundan her ikisinin yönü değişkendir. 7. KOU çebesel heket Çözüle S - ÇÖÜMLR. H z ve ive vektöel olduğundn he ikisinin yönü değişkendi. 6. 30 s ise 3 4 sniye f Hz 4. F, ıçp vektöü ile hız vektöü sındki çı 90 di. k 7. 000 7. 7 h 3600s 0 /s X t

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

Çözüm Kitapçığı Deneme-3

Çözüm Kitapçığı Deneme-3 KAMU PESONEL SEÇME SINAVI ÖĞETMENLİK ALAN İLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ - OCAK 7 Çözüm Kitapçığı Deeme- u testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı vea i kısmıı Mekezimizi

Detaylı

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME BASİT RASSAL ÖRNEKLEME Örekleme ve Thmi Teorii Solu Kitle BüyüklüğüN ol olu bir kitlede büyüklüğüde lıck bir öreği eçilme şı, büyüklüğüdeki bir bşk öreği eçilmei şı ile yı ie bu tür öreklemeye bit rtl

Detaylı

Çözüm Kitapçığı Deneme-4

Çözüm Kitapçığı Deneme-4 KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN İLGİSİ TESTİ LİSE MTEMTİK ÖĞRETMENLİĞİ -5 ŞUT 7 Çözüm Kitapçığı Deneme- u tetlein he hakkı aklıdı. Hangi amaçla olua olun, tetlein tamamının vea bi kımının Mekezimizin

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

ÇEMBERİN ANALİTİK İNCELENMESİ

ÇEMBERİN ANALİTİK İNCELENMESİ ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MEMİK ENEME ÇÖZÜMLERİ enee -. - + - + - - + - + - 7 - evp E. - + + 9 ifdelei tf tf çplı. ^- h^ + + 9h - 7. + + + ifdesinde zlı. + 7 ise + 7 evp + + + + + + + + + + +. z + z + + + z + z + dı. z z

Detaylı

BÖLÜM 3 AKIŞKANLARIN KİNEMATİĞİ

BÖLÜM 3 AKIŞKANLARIN KİNEMATİĞİ BÖLÜM 3 AKIŞKANLARIN KİNEMATİĞİ Kieik kışkı hekeii, kelei gö öüe ld e değişiele, hıl, e iele ciside ifde ede. He bi ee hehgi bi d kedie öel hı ship olbili. E geel hlde b hıl heke sısıd okd ok değişebili,

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 9. MATEMATİK YARIŞMASI 6. SINIFLAR TEST SORULAR ve YANITLAR

ÖZEL EGE LİSESİ OKULLAR ARASI 9. MATEMATİK YARIŞMASI 6. SINIFLAR TEST SORULAR ve YANITLAR 1) 2, 8, 26, 80... şeklideki ir syı örütüsüde 30. teri kçtır? A) 3 30 + 1 B) 3 30 1 C) 2 30 1 D) 2 30 + 1 5) Adylrı oy kulldığı ir seçide 889 öğrei oy kullktır. Seçie ktıl 8 dyd irii kzilesi içi e z kç

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı